Classification and Treatment of Tibial Tubercle Fractures in Adults

Xiang Yao¹, Hongyuan Liu¹,², Minjie Hu¹, Chong Wang¹,², Han Miao¹,² and Jilei Tang³

Xiang Yao, Hongyuan Liu and Minjie Hu contributed equally to this work.

¹ Department of Orthopaedics, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
² Jiangsu University, Zhenjiang, Jiangsu 212000, China
³ Department of Orthopaedics, Qidong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 226200, China

Corresponding author

J-L Tang, E-mail: orthopedictang@126.com

medRxiv preprint doi: https://doi.org/10.1101/2023.10.27.23297691; this version posted October 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Purpose

This study analyzed the incidence and treatment strategies of tibial tubercle fractures in adults according to the four-column and nine-segment classification system.

Methods

Data of patients with proximal tibial fractures involving tibial tubercle fractures who were treated at our hospital from August 2007 to March 2023 were retrospectively reviewed. The fractures were classified using the AO/OTA classification and four-column and nine-segment classification systems, and the treatment protocol (surgically treated or conservatively treated) was recorded.

Results

In total, 169 tibial tubercle fractures were found in 1484 proximal tibial fractures.

According to the AO/OTA classification, 7 of the 169 patients, (4.1%) were type A, 36 patients (21.3%) were type B, and 126 patients (74.6%) were type C. According to the four-column and nine-segment classification, type 1 cleavage without free fragment was the most common type of fracture (93/169, 55.0%), followed by type 2 dissociative segmental fragments (48/169, 28.4%) and type 3 comminuted fractures (28/169, 16.6%).

In addition, of the 1484 proximal tibial fractures, 19 were inferior patella avulsion fractures (EX2) (1.3%, 19/1484). Overall, 139 of the 169 proximal tibial fractures with tuberosity involvement were treated surgically. Among them, additional fixation of the tubercle fragment was performed in 52 fractures.

Conclusion
The incidence of tibial tubercle fractures involved in proximal tibial fractures was approximately 11.4% (169/1484) in adults, and approximately one-third of the tubercle bone fragment required additional fixation (30.8%, 52/169). The injury types in the four-column and nine-segment classifications are helpful for accurately judging and making treatment-related decisions for tibial tubercle fractures.

Keywords:
tibial tubercle fracture; extensor unit; patellar ligament; fracture classification; therapeutic strategy

Introduction

The tibial tubercle is an oblong bony elevation on the proximal, anterior aspect of the tibia and is the tibial insertion of the patellar ligament. It is a crucial player in maintaining the structural integrity and functional stability of the knee joint. Tibial tubercle fractures involve partial or total impairment of the knee extension function. The repair of this fracture is beneficial for the recovery of the knee extension function. If tibial tubercle fractures are not treated properly, complications such as knee pain, stiffness, and dysfunction can occur. These fractures can occur alone or can be involved in proximal tibial fractures. The size and morphology of the tibial tubercle fragment vary considerably. Judging the injury type of this fragment helps explain the injury mechanism and formulate repair strategies.

Several classifications were proposed focusing on adolescent tibial tubercle
fractures; however, they are unsuitable for adults [1, 2]. Among the classification systems widely used for tibial plateau fractures in adults, the Schatzker classification and three/four column classification do not highlight tibial tubercle injury [3-6]. In the AO/OTA classification, isolated tibial tubercle fractures are encoded as 41A1.2. In type B and type C tibial plateau fractures, the information on the combined tibial tubercle injuries is ignored [7-9].

Until 2018, the four-column and nine-segment classification named the tibial tubercle as segment c of the intermedia column and categorized tibial tubercle fractures into five injury types (three basic types and two extended types) [10]. This classification system appears to be precise and comprehensive, but a detailed summary of its clinical application is lacking. This study analyzed the incidence and treatment strategies for tibial tubercle fractures in adults according to the four-column and nine-segment classifications.

Methods

After approval was received from the ethics review committee of the hospital, in April-July 2023, this study retrospectively analyzed the medical records and computed tomography (CT) images of all proximal tibial fractures between August 2007 to March 2023 from the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China. All data were fully anonymized before you accessed them. Patient inclusion criteria were proximal tibial closed fractures, age of more than 18 years, no congenital deformities, availability of adequate imaging data, and no history of metabolic bone
disease or knee surgery. Based on these criteria, 1472 patients with 1484 affected knees were included. Of the 1484 affected knees, 169 knees exhibited tubercle fracture involvement. All tibial tubercle fractures were classified according to the AO/OTA classification and the four-column and nine-segment classification. All injury types and the treatment of the tibial tubercle fractures were recorded. According to the AO/OTA classification, the proximal tibial fractures were classified into three types: 41.A (extraarticular fracture), 41.B (partial articular fracture), and 41.C (complete articular fracture). According to the four-column and nine-segment classification system, the tibial tubercle fractures were classified into three basic types and two expanding types. The five injury types included: type 1: cleavage without free fragment, type 2: dissociative segmental fragments, type 3: comminuted fracture, expanding type 1 (EX1): patellar ligament tear, and expanding type 2 (EX2): inferior patellar avulsion fracture (Figure 1). Three observers, namely two orthopedic trauma surgeons and a radiologist, reviewed the X-ray and CT scans of the fractures. The classification was unanimously finalized after review by the three observers. No conflict of interest was observed between the observers and patients.

Statistics

Statistical analysis was performed using IBM SPSS Statistics 25.0 (SPSS Inc, Chicago, USA). Qualitative and quantitative data are presented as n (percentage) and mean ±SD, respectively. A two-sided t-test was conducted to determine the significance of differences between the gender and sides. P < 0.05 was considered to indicate
statistical significance.

Results

In total, 1472 patients with 1484 knees with proximal tibial fractures were retrospectively analyzed. Among them, 169 knees had tibial tubercle fractures (169/1484, 11.4%). These 169 patients included 64 women and 105 men. The mean age of the patients was 53.5 ±17 years (Table 1). According to the AO/OTA classification, 7 of the 169 patients (4.1%) were type A, 36 patients (21.3%) were type B, and 126 patients (74.6%) were type C. According to the four-column and nine-segment classification, among the three injury types of the tibial tubercle, type 1 fracture lines accumulated tibial tubercle (93/169, 55.0%) was the most common fracture, followed by type 2 large free tibial tubercle (48/169, 28.4%) and type 3 comminuted tibial tubercle fractures (28/169, 16.6%). EX1 was omitted because of invisibility on CT. Nineteen patients had EX2, and the proportion of proximal tibial fractures was 1.3% (19/1484). Among 169 cases of tibial tubercle fractures, 139 cases of proximal tibial fractures were treated surgically, and 52 cases of tibial tuberosity fragments received additional fixation. In type 1 injury, 68 of the 93 cases were treated surgically, of which 14 cases received additional tubercle fragment fixation. In type 2 injury, 43 of the 48 cases were treated surgically, of which 24 cases received additional tubercle fragment fixation. In type 3 injury, all 28 cases were treated surgically, and among them, 14 cases received additional tubercle fragment fixation. In type EX2 injury, 16 of the 19 cases underwent surgery (Table 2).
Discussion

We here investigated the incidence and treatment strategies for tibial tubercle fractures in adults according to the four-column and nine-segment classification. Tibial tubercle fractures were observed in 11.4% (169/1484) proximal tibial fractures. In our previous study, on plotting 3D fracture line heatmaps of proximal tibial fractures, we found that the frequency of tibial tubercle (segment c) involvement was lower (cold area) than that of articular cartilage and anterior/posterior cruciate ligament (ACL/PCL) tibial attachment [11]. The sample size used here was double that in the previous study (1484 vs. 766), but the incidence of tibial tubercle fractures remained consistent with that in previous studies (11.4% vs. 11.9%)[11]. Maroto et al retrospectively investigated 392 bicondylar fractures of the tibial plateau, of which 85 were tibial tubercle fractures (21.6%) [12]. Our cohort had more isolated avulsion and unicompartmental fractures, and therefore, the incidence of tibial tubercle fractures was lower than that reported in Maroto et al.’s study. Based on the AO/OTA classification, we found that type B and type C cases accounted for the majority of the fracture injuries (95.9%, 162/169). This indicates that greater violence is more likely to evoke tibial tubercle injury.

Tibial tubercle injury can be caused by knee joint extension or flexion. Tibial tubercle fixation is essential for the normal physiological activity of the knee extension device. The common treatment methods include conservatively treated (plaster immobilization), Kirschner wire and tension band, steel wire, anchor, and hollow screw
fixation [13-15]. Complications commonly observed after surgical fixation of tibial tubercle fractures include bursitis, compartment syndrome, and re-fracture [16]. Planning personalized treatment strategies according to the variable injury morphology of the tibial tubercle is more reasonable.

According to the four-column and nine-segment classification, type 1 (93/169, 55.0%) was the most common tibial tubercle fracture. This type can arise from an impact or traction applied to the fracture site. In general, conservative treatment is adopted for type 1 when the tubercle fragment is stable. Screw fixation can be employed for unstable bone fragments. In the cohort, 14 of the 93 from type 1 cases underwent additional tubercle fixation (Figure 2).

Type 2 dissociative segmental fragments were highly correlated with the patellar ligament tension, which was mainly tension injury. In general, the broken tibial tubercle is repaired and fixed to the posterior tibial cortex with one or more lag screws. MacDonald achieved excellent results by using lag screws for the treatment of tibial tubercle avulsion fractures [17]. Conservative treatment can be continued to be chosen when the displacement is small. When the posterior cortex of the tibial plateau is broken and screw fixation is unsuitable, wire strapping of the fracture site can also produce good results [18]. When the bicortical screw is placed, a popliteal neurovascular injury may occur because of the penetration of the screw into the posterior tibial cortex. To reduce the risk of posterior neurovascular injury, we recommend an oblique direction (anterior–lateral–superior to posterior–medial–inferior) for drilling and placing the screws (Figure 3). Using a unicortical screw can avoid this serious complication, along
with the reduction of pull-out resistance. In our cohort, 24 of the 48 from type 2 patients were treated with lag screws. Figure 4 presents one patient with a type 2 injury in whom the tibial tubercle fracture was fixed with lag screws (Figure 4).

In this study, the incidence of type 3 injury, that is, the comminuted fracture of the tibial tubercle, was low (28/169) and was mostly caused by extensive direct violence. Type 3 fractures are complex, and no unified fixation scheme is available for these fractures. Type 3 injuries can be categorized as mild and severe comminution based on the bone fragment size. Fixation is relatively easy in mild comminution of the fracture site, whereas severe comminution requires enhanced repair. In our cohort, 14 of 28 type 3 patients were treated with additional tibial tubercle fixation. Figure 5 presents a type 3 patient in whom the fracture was fixed through wire strapping (Figure 5). According to Rana et al, because the tibial plateau with the tibial tubercle fracture is rare, imaging should be used to ensure that it is not missed [19]. In complex tibial plateau fractures combined with tibial tubercle injuries, the focus is often only on articular surface reduction, leading to the neglect of tibial tubercle fractures and missed diagnosis.

The EX1 (patellar ligament tear) is caused by excessive flexion and pulling of the patellar ligament. A complete patellar ligament rupture needs to be repaired. If the patellar ligament is ruptured, an early repair will achieve good results. When EX1 injuries are missed, second-stage reconstruction may be required (Figure 6). In an adult case of tibial tubercle fracture combined with patellar tendon avulsion [20], Woolnough et al achieved good therapeutic results by using transosseous sutures through a slotted plate.
The inferior patella avulsion fracture (EX2) associated with a proximal tibial fracture is relatively rare. In our previous study, the incidence of EX2 with a proximal tibial fracture was approximately 1.4% (18/1253)[21]. In the present study, this incidence increased to approximately 1.3 % (19/1484). The injury mechanism of an inferior patella avulsion fracture (EX2) was similar to that of EX1. The inconspicuously displaced small fragment was treated conservatively, while the sizable fragment requires surgical fixation. Several fixation devices are available for the patellar inferior pole fracture, such as suture, wire, plate, anchor, and titanium cable [22-25]. A biomechanics study reported that hollow nails combined with steel wire provide the best stability [22]. In our study, the fragment from the inferior patella avulsion fracture was generally small. The predominant treatment modalities employed include conservative management, sutures, and anchors (Figure 7).

The previously used tibial plateau fracture classification systems (Schatzker, AO classification, three-column/four-quadrant) did not explain the tibial tubercle fracture in detail [3-6]. Obviously, the four-column and nine-segment classification system can effectively explain the injury types and mechanisms of tibial tubercle fractures. This classification is a pioneering approach that categorizes the patellar ligament tear (EX1) and avulsion fracture of the superior pole of the patellar ligament (EX2) as expanded subtypes of tibial tubercle injury. The precision and comprehensiveness of the four-column and nine-segment classification systems are significantly higher than those of alternative classification systems. The five injury types do not always exist independently, but sometimes occur simultaneously. In a patient having a tibial tubercle...
with an avulsion fracture of the inferior patellar pole, Kang et al divided the fracture of this bifocal knee extension device into five types. Four of these types are described as avulsion fractures of the tibial tubercle with other injuries [26]. Notably, misdiagnosing an unfused epiphysis as a fresh tibial tubercle fracture should be avoided. Figure 8 shows three cases of the unfused epiphysis of the tibial tubercle (Figure 8).

Limitations

This study has several limitations. First, this study was conducted in a single trauma center, and the sample size was constrained. A study involving multicenter samples will yield a more accurate incidence. Second, the EX1 incidence was disregarded because the patients did not undergo magnetic resonance imaging (MRI). MRI would have provided further details about soft tissue injury. Third, the relationship between the injury type of the tibial tubercle and the prognosis needs to be further clarified.

Conclusion

In this study, the incidence of tibial tubercle fractures with proximal tibial fractures was approximately 11.4% (169/1484) in adults, and approximately one-third of the tubercle bone fragment required additional fixation (30.8%, 52/169). The five injury types in the four-column nine-segment classification are helpful in the accurate judgment and treatment of tibial tubercle fractures.

Acknowledgements
We thank the whole team for their selfless dedication.

Authors’ contribution

X. Yao: Methodology, Writing - Original Draft.

H. Liu: Investigation, Writing - Review & Editing.

M. Hu: Data Curation.

C. Wang: Data Curation.

H. Miao: Data Curation.

J. Tang: Project Administration.

References

[18] Chakraverty J. K, Weaver M. J, Smith R. M, Vrahas M. S. Surgical management of tibial tubercle fractures in association with tibial plateau fractures fixed by direct

Research & Health Sciences 2014;3:1016-8

Legends

Fig 1. The five injury types of the tibial tubercle in the four-column and nine-segment classification
(a) Type 1: cleavage without a free fragment. (b) Type 2: dissociative segmental fragment. (c) Type 3: comminuted fracture. (d) Expanding type 1 (EX1): patellar ligament tear. (e) Expanding type 2 (EX2): inferior patella avulsion fracture.

Fig 2. Preoperative CT of 5 cases of typical type 1 tibial tubercle injury
(a-e) All fractures had cleavage without a free fragment

Fig 3. Schematic diagram of the lag screw fixation direction
Tibial tubercle fracture fixed with a lag screw. (a) Correct fixation of tibial tubercle.
(b) Wrong fixation of tibial tubercle. (c) 3D image of the tibial plateau. (Red cycle: popliteal artery and tibial nerve. Green cycle: safe tension screw exit point.)

Fig: A type 2 case fixed with a lag screw
(a, b) preoperative X-ray (c, d) preoperative CT; (e, f) postoperative X-ray.

Fig 5. A 32-year-old man with a type 3 tibial tubercle fracture fixed with wire strapping
(a–c) preoperative CT; (d, e) postoperative X-ray.

Fig 6. A EX1 cases fixed with local suture of the patellar ligament and titanium cable cerclage
(a, b) preoperative X-ray. (c) Preoperative CT. (d) Preoperative MR. (e, f) Intraoperative photographs. (g, h) Postoperative X-ray.

Fig 7. A EX2 type injury case fixed with sutures
(a, b) Preoperative X-ray. (c, d) Preoperative CT; (e, f) Postoperative X-ray.

Fig 8. Unfused tibial tubercle epiphysis
(a–d): CT images of a 48-year-old woman with a tibial tubercle fracture combined with epiphyseal unfused (blue arrow indicates the line of the tibial tubercle fracture).
(e–h): The CT image of a 36-year-old man with unfused tibial tubercle epiphysis.
(i–l): CT image of a 41-year-old man with unfused tibial tubercle epiphysis.
Table 1. The morphology of tibial tubercle injury in the four-column and nine-segment classification and related treatment.

<table>
<thead>
<tr>
<th>Injury type</th>
<th>conservatively-treated</th>
<th>surgically-treated</th>
<th>additional tubercle fragment fixation</th>
</tr>
</thead>
<tbody>
<tr>
<td>type 1</td>
<td>93 (55.0%)</td>
<td>68</td>
<td>14</td>
</tr>
<tr>
<td>type 2</td>
<td>48 (28.4%)</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>type 3</td>
<td>28 (16.6%)</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>169</td>
<td>139 (82.2%)</td>
<td>52 (30.8%)</td>
</tr>
<tr>
<td>EX1</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>EX2</td>
<td>19/1484(1.3%)</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

*EX1: extending type 1. EX2: extending type 2. “/”: data not available

*EX1 was not identifiable on CT and was omitted, and EX2 was found in 19 cases.

Table 2. Demographic characteristics of patients and fractures

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients (n=169)</th>
<th>Knees (n=169)</th>
<th>AO/OTA classification</th>
<th>Columns involved (n=169)</th>
<th>TPII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex ratio (Male/Female)</td>
<td>105/64 (1:0.61)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (±SD, years)</td>
<td>51.5±11.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (±SD, years; Male/Female)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left only</td>
<td>89 (52.7%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right only</td>
<td>80 (47.3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left/Right</td>
<td>89/80 (1:0.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41. A</td>
<td>7 (4.1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41. B</td>
<td>36 (21.3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41. C</td>
<td>126 (74.6%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 column</td>
<td>6 (3.6%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 columns</td>
<td>34 (20.1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 columns</td>
<td>73 (43.2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 columns</td>
<td>56 (33.1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.3±2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n=169)</td>
<td>Columns 3.1±0.8</td>
<td>Segments 6.2±2.1</td>
<td>Male/Female 9.1±2.8/9.6±2.8</td>
<td>Left/Right 9.4±2.7/9.1±2.9</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Mild comminuted (2-5)</td>
<td>17 (10.1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate comminuted (6-9)</td>
<td>60 (35.5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe comminuted (10-13)</td>
<td>92 (54.4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

371
Figure