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Title AI facilitated sperm detection in azoospermic samples for use in 

ICSI. 

Abstract 

Research question: Can artificial intelligence (AI) improve efficiency and efficacy of sperm 

searches in azoospermic samples? 

 

Design: This two-phase proof-of-concept study beginning with a training phase using 8 

azoospermic patients (>10000 sperm images) to provide a variety of surgically collected samples 

for sperm morphology and debris variation to train a convolutional neural network to identify 

sperm. Secondly, side-by-side testing on 2 cohorts, an embryologist versus the AI identifying all 

sperm in still images (cohort 1, N=4, 2660 sperm) and then a side-by-side test with deployment of 

the AI model on an ICSI microscope and the embryologist performing a search with and without 

the aid of the AI (cohort 2, N=4, >1300 sperm). Time taken, accuracy and precision of sperm 

identification was measured. 

 

Results: In cohort 1, the AI model showed improvement in time-taken to identify all sperm per 

field of view (0.019±0.30 x 10-5s versus 36.10±1.18s, P<0.0001) and improved accuracy 

(91.95±0.81% vs 86.52±1.34%, P<0.001) compared to an embryologist. From a total of 688 sperm 

in all samples combined, 560 were found by an embryologist and 611 were found by the AI in 

<1000th of the time. In cohort 2, the AI-aided embryologist took significantly less time per droplet 

(98.90±3.19s vs 168.7±7.84s, P<0.0001) and found 1396 sperm, while 1274 were found without 

AI, although no significant difference was observed. 

 

Conclusions: AI-powered image analysis has the potential for seamless integration into laboratory 

workflows, and to reduce time to identify and isolate sperm from surgical sperm samples from 

hours to minutes, thus increasing success rates from these treatments.   
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Introduction 

Male infertility is increasing worldwide at an alarming rate, sperm counts declining by 50% over 

the past 50 years (Levine et al., 2023). 30% human infertility cases are caused solely by male 

infertility and 50% of cases being attributed to male infertility as a contributing factor (Agarwal et 

al., 2015). While assisted reproductive technologies (ART) have proven to be effective in treating 

infertile couples, some forms of male infertility remain difficult to treat. Azoospermia, defined as 

the absence of spermatozoa in centrifuged semen on at least two occasions, is the most severe form 

of male infertility, affecting 10-20% of infertile men and 1% of the general male population 

(Verheyen et al., 2017, Wosnitzer et al., 2014).  

 

Azoospermia can be classified as either obstructive and/or non-obstructive. Obstructive 

azoospermia (OA) occurs due to obstruction of the reproductive tract and constitutes 40% of 

azoospermic cases, while non-obstructive azoospermia (NOA) results from either primary, 

secondary or incomplete/ambiguous testicular failure which compromises sperm production and 

constitutes 60% of azoospermic cases (Jarow et al., 1989, Wosnitzer, et al., 2014). Patients with 

OA can attempt for reconstruction (vasovasostomy, vasoepididymostomy or transurethral 

resection ejaculatory duct) when possible, or surgical sperm collection can be performed from the 

testis via testicular sperm aspiration (TESA), testicular sperm extraction (TESE) or 

microdissection testicular sperm extraction (mTESE) or the epididymis Microsurgical epididymal 

sperm aspiration (MESA) or percutaneous epididymal sperm aspiration (PESA) (Schrepferman et 

al., 2001) (Flannigan et al., 2017).  NOA patients will require sperm extraction from the testis 

(TESA, TESE or Micro TESE) and surgically collected sperm is then used for ICSI.  

 

The gold-standard for treating NOA patients, is mTESE, with a high sperm retrieval rate of up to 

64% in suitable patients operated on (Deruyver et al., 2014, Ramasamy et al., 2005, Schiff et al., 

2005). Although these rates seem promising, the current manual examination process to find sperm 

within tissue recovered from mTESE surgeries is time-consuming and inefficient, typically taking 

anywhere between 1-6 h of laboratory time, and in some cases even up to 14 h (Mangum et al., 

2020, Ramasamy et al., 2011). This extended time is due to the requirement for manual searching 



through prepared suspensions of testicular tissue with a microscope, before using isolated sperm 

for ICSI (Figure 1). 

 

The outcome of such searching is heavily dependent upon the complexity and contamination of 

the suspension provided to them by the surgeon. Viable sperm are easily overlooked due to 

variables such as collateral cell density, resulting in a process that is prone to human error, 

combined with inexperience and fatigue of lab staff (Ramasamy, et al., 2011). For patients with 

NOA, if sperm are overlooked due to human error, this could wrongly indicate absolute infertility 

(Samuel et al., 2016). Similarly, for extended sperm searches in semen as a diagnostic or as a last 

check in the ejaculate before surgery, failure to identify sperm present could striate patients into 

surgery unnecessarily. Furthermore, prolonged sample examination procedures can have adverse 

effects on the viability of sperm, consequently affecting their potential for fertilization (Ouitrakul 

et al., 2018). For patients with NOA, a more efficient and higher throughput method capable of 

locating and isolating sperm from the suspension would therefore greatly benefit the clinical 

workflow of assisting severe forms of male infertility.  

 

Panning through surgically collected sperm samples, under a microscope is a form of manual 

image analysis in which machine learning (ML) and artificial intelligence (AI) has the potential to 

automate and improve. Therefore, with preliminary works showing promising results (Goss et al., 

2023), this study aims to comprehensively assess the use of an assistive convolutional neural 

network (CNN) AI to identify sperm in complex tissue suspensions in real time was developed 

and trained (Figure 2). Using a YOLO V8 model, this software works in tandem with an 

embryologist to instantly identify and alert embryologists to sperm of interest for their assessment 

from the camera feed mounted into their microscope. The objective of this study was to compare 

the AI to embryologists without the AI’s aid in terms of time, accuracy, and number of sperm 

found first using still images in cohort 1, and then in a simulated sperm search with the AI 

integrated into an ICSI microscope kit for cohort 2, to demonstrate its potential for clinical 

implementation. 

 



Materials and methods 

Ethical approval 

Ethical approval for healthy sperm samples was received from the University of Technology 

Sydney ethics review board (ETH19-3677), and for the use of discarded testicular tissue samples 

from the IVFAustralia Human Research Ethics Committee (DG01192) and UTS ethics review 

board (ETH22-7189). 

 

Semen collection and processing 

Human semen samples were obtained through ejaculation after 2-5 days of sexual abstinence 

(WHO, 2021). Raw semen samples were left at room temperature for 20 minutes to allow for 

liquefaction. Samples were centrifuged for 8 minutes at 500 g to separate the sperm pellet from 

the seminal plasma.  

 

Cell culture for mock samples for initial training  

Red blood cells (RBCs) were obtained from whole blood specimens within three days of 

collection. Collected blood samples were also resuspended in GMOPS Plus (Vitrolife, Sweden) 

media. Two sets of mixed cell suspensions were created for microfluidic sperm recovery: a 

solution of sperm, RBCs, white blood cells (WBCs) and epithelial cells, and a solution of sperm 

with C2C12 and THP1 cells. All cells were mixed in warmed GMOPS Plus (37oC). Raw semen 

samples were diluted down to between 1x105 and 1x106 sperm/mL, RBC concentration ranged 

between 2-15x106 cells/mL (approximated ranges for a mTESE sample), WBCs (purchased from 

IQ Biosciences, 10x106 cells/mL) were diluted to a concentration between 5x105 and 1x106 

cells/mL, and epithelial cells were diluted to a concentration of between 7x105 and 1x106 cells/mL. 

To add extra complexity, background cells from sperm donors were isolated from 4 donors with 

high concentrations of background cell populations and cryopreserved until needed. These cells 

helped simulate the conditions of poor-quality samples with high levels of collateral cell 

contamination from surgery and for infertile semen samples with high levels of contamination in 

the ejaculate. 

 



Testicular biopsy retrieval and processing 

Surgical sperm collection was performed in accordance with the routine workflow for each method 

of sperm collection (mTESE and TESA). Azoospermic patients scheduled for surgical sperm 

collection for both OA and NOA. Surgical sperm collections were performed under general 

anesthesia, and the samples were immediately placed in a sterile conical tube containing 1 mL of 

G-MOPS Plus (37oC) and transported to the IVF laboratory. During mTESE, embryologists search 

through seminiferous tubules handed to them by the surgeon, with simultaneous further searching 

by the surgeon for dilated seminiferous tubules. Further samples are then sent to the IVF laboratory 

for further search before being placed in 1-2 mL of G-MOPS Plus in a sterile petri dish under a 

stereo microscope, to wash off excess blood from the tissue then moved to a new petri dish with 

300 µL of G-MOPS Plus. Tissue was gently teased apart using sterile syringes to release potential 

sperm from tubules into the surrounding G-MOPS Plus media. The macerated tissue and large 

pieces were then removed and placed into a separate tube, and the remaining suspension used for 

the sperm search and treatment. In cases whereby imaging and/or testing was not possible on the 

nsame day or following day, samples were fixed with 4% formalin to preserve its morphological 

integrity and prevent any microbial growth until use in the study. 

 

To prepare samples for comparison between AI-enabled sperm search and sperm search by an 

embryologist in cohort 1, samples that were recorded having no sperm found from clinical searches 

were spiked with low concentrations of sperm from semen donors. To help create a master count 

of total sperm in plated samples, spiked sperm were stained with propidium iodide (PI) and washed 

to remove excess stain before spiking. This was done to help identify the total number of sperm to 

be found in each sample for comparison with the AI and embryologist performance groups. 

Samples that had sperm present in the clinics were not spiked with donor semen and preserved in 

their clinical state for processing.  

 

Machine Learning Model Development and Training 

The training dataset comprises of 540 images, containing 5624 unique sperm instances, duplicated, 

and augmented generated at least one augmented copy per image, generating over 10 000 sperm 

to train the identification function. Any image set used to train the model was not used for 

comparison with the embryologist, although they were prepared similarly. The annotations were 



made using Computer Vision Annotation Tool (CVAT; Intel, USA).  The model used was YOLO 

v8 with the ‘small’ size architecture configuration with 225 layers and 1,1166,560 parameters to 

prioritize minimal inference time over potentially greater accuracy from more parameters (Jocher 

et al., 2023).  

 

Training images were 2456x1842px, JPG with 95% compression. These were resized to 

1664x1664px with black fill. 85% of the images were used for training and 15% reserved for 

validation of the model’s performance after training. Augmentations were applied to duplicates of 

the images to inflate the dataset and make the trained model more robust to variations in 

microscope camera images, such as compression artifacts, changing focal length, or lighting and 

colour variations. A vertical flip was applied to each duplicate image, ensuring it was unique from 

its source, then with various probability applied 2x2px blur, jpeg compression (60-80%) and 

multiplicative noise using the Python Albumentations library (Buslaev et al., 2020). Further 

augmentations are applied by YOLO v8 during the training process, including horizontal flipping, 

scaling, translation and augments to hue, saturation, and value. 

 

The training setup was restricted to <8GB VRAM. Thus, to maintain a high image resolution we 

used a small batch size of 4. We trained the model for 300 epochs with a learning rate of 0.01. The 

stochastic gradient descent optimizer was used with 0.937 momentum and 0.005 weight decay. 

The trained model is then used to make inferences on unseen, unlabeled images. This results in 

predictions of where a sperm might be in the image, as well as how confident the model is of each 

detection as a percentage. We also recorded the time it would take the AI to make predictions on 

a set of images. This time is dependent on the power of the computer, we opted for a desktop 

computer with an Intel Core i5-10600K CPU @ 4.10 GHz (6 cores) and an RTX 3070 graphics 

card. 

 

To evaluate the performance of the model and compared to that of the clinician, we used the model 

to annotate the same images as are assessed by an embryologist. These annotations are then 

compared to a ground truth of verified labels to attain a metric of performance including precision 

and accuracy. Precision is a measure of how many of the model’s detections are correct and 

accuracy a measure of how many of the sperm in an image the model finds. Detections with 



significant overlap (>40% Intersection of Union) with confirmed sperm were counted as positive 

detections and those without as negatives. Detections bordering the edge of an image are often 

cutoff and lack enough information to distinguish them as either positive or negative, thus any 

detections within 2px of the edge of the image were omitted. 

 

Proof-of-principle testing was first performed on mock samples containing mixtures of sperm, 

RBCs, WBCs and epithelial cells from cell culture media. Once the model’s ability to identify 

sperm was confirmed, clinically obtained testicular tissue samples were used for comparative 

performance evaluation.  Samples were plated in a similar manner to a clinical sperm search, 10 

long drops 2-3 mm in length under OVOIL (Vitrolife, Sweden) in an ICSI dish (Vitrolife, Sweden) 

and imaged.    

 

Side-by-side testing was split into two cohorts both using immotile sperm for the ability to 

standardize sperm special detection. The first cohort was performed on fixed samples at UTS 

research laboratories where the total number of sperm in each plated dish was pre-counted as 

described above, to assess the accuracy, time per field of view (FOV), precision, and number of 

sperm found. Still images of the droplets (200X) magnification were fed through the AI while 

embryologists assessed the same images manually and recorded their assessment time per FOV. 

Embryologists used CVAT to log the location of sperm they identified and the annotated images 

from the AI were also uploaded into CVAT for comparison. Each group was kept blind to the total 

count and location of sperm.  

 

The second cohort, to better simulate real-time clinical deployment, a side-by-side test of the AI 

comparing the performance of an embryologist with and without the AI was performed.  After 

plating a surgical sperm sample into an ICSI dish (Vitrolife, Sweden), the embryologists recorded 

the number of sperm they found per droplet for each tissue sample they processed with (see 

supplementary video 1) and without AI, as well as the time taken to complete their assessment. 

Dishes were blinded to the embryologist and re-ordered to prevent any memory of sperm location 

by the embryologist when performing each search. 

 



Statistical Analysis 

All statistical analyses were performed using GraphPad Prism 9.0 (GraphPad Software). Normal 

distribution was assessed using the Shapiro-Wilk Test. The statistical significance of the 

differences between groups were tested using the two-tailed unpaired Student’s t-test or Mann–

Whitney U test if the data were not normally distributed. Two-way analysis of variance to assess 

the effects of the counting method and sample were performed. P < 0.05 was considered 

statistically significant and means are expressed with Standard Error of the Mean (SEM) as a 

measure of sample mean estimates. 

 

Results  

In the first cohort of this study (N=4 patients, 512 still images and 2660 sperm to be found), the 

AI model showed dramatic improvement in time taken to identify sperm per FOV, improved 

accuracy in identifying sperm as well as a high level of precision (Figure 3A-C). The AI was able 

to identify all sperm within each field of view (FOV) in significantly less time compared to the 

trained embryologist, with a duration of 0.019 ± 0.3 x 10-5s versus 36.10 ± 1.18s, respectively (P 

< 0.0001; Figure 3A). This represents an approximate 99.95% reduction in time per FOV. The AI 

model demonstrated a significant difference in accuracy compared to the trained embryologist 

(91.95 ± 0.81% vs 86.52 ± 1.34%, P < 0.001; Figure 3B). The model exhibited a precision of 89.58 

± 0.87%, considering the correct identification of sperm and false positives relative to the control 

count (Figure 3C). In contrast, the embryologist had a precision of 98.18 ± 0.38%. Out of a total 

of 2660 sperm, the embryologist identified 1937, while the AI model detected 1997 (Table 1). 

 

In the second cohort of this study (N=4 patients, 40 media droplets with sample and > 1400 sperm 

to be found), a simulated deployment of the AI was performed in a research laboratory whereby 

the AI was used as an assistive tool to guide embryologists to identify sperm on a ICSI microscope 

kit (see supplementary video 1). Like cohort 1, the AI-assisted embryologist outperformed the 

individual assessment of an embryologist across all 4 samples. The embryologist using the AI took 

significantly less time to find all sperm per droplet (98.9 ± 3.19 vs 168.7 ± 7.84, P < 0.0001) and 

found a total of 1396 sperm while they found 1274 without the use of the AI (Figure 4A; Table 1). 

There was no significant difference in the number of sperm found per droplet for the embryologist 



using AI versus without the use of AI although a slight trend of more sperm found, consistently, 

was observed (34.9 ± 3.23 vs 31.85 ± 3.09 sperm respectively; Figure 4B). 

 

Discussion 

AI image analysis can identify sperm faster and more accurately than an embryologist in still 

images and significantly faster in a simulated sperm search scenario when integrated into an ICSI 

microscope. This is the first known application of ML AI for surgical sperm searches for the 

clinical treatment of azoospermia and results in a streamlining of a historical laborious process. 

ML is an algorithmic method of data analysis whereby a predictive model is trained to recognize 

patterns and associations from input data (Bannach-Brown et al., 2019). Supervised ML models 

can be trained on labelled images and/or video to understand how to predict the labels of unseen 

data. CNN algorithms are a type of deep-learning model that attempts to simply replicate the 

human visual cortex with a simulated network of connected neuron layers (neural network) that, 

through iterative training, transforms input data into the desired output labels. There have been 

considerable studies on the utility of machine learning and AI-based image analysis on the 

selection of embryos for prediction of euploidy status, implantation potential and incidence of 

miscarriage (Barnes et al., 2023, Diakiw et al., 2022, Duval et al., 2023, Hariharan et al., 2019, 

Tran et al., 2018, VerMilyea et al., 2020). Studies have also proven the application of ML in the 

selection and assessment of sperm for use in ICSI by tacking sperm correlated with better quality 

blastocysts (Joshi et al., 2023, Mendizabal-Ruiz et al., 2022). Furthermore, studies using images 

of sperm having been labelled as normal or abnormally shaped by a professional or stained for 

DNA integrity; given a sufficient volume and variety of these labelled images, ML models have 

been trained to label the morphology of predict DNA fragmentation of new, unseen, images of 

sperm (McCallum et al., 2019, Wang et al., 2019). Where the CNNs, commonly referred to as AI 

have largely looked at sperm in a clear environment, we have applied a CNN on complex, 

processed tissues from testicular sperm retrieval procedures and implemented it in a live video 

feed to real time identification of sperm for ICSI. 

 

The application of a computer vision-based ML model to identify sperm in real-time during sperm 

searches outperforms embryologists’ manual searching significantly using still images in time 

taken, accuracy and sperm count. The biggest noticeable difference is in the time reduction, where 



image analysis is almost instant (0.02 s per field of view) but does not consider clinical tasks such 

as dish setup, panning and magnification change, and collection of identified sperm. Significantly 

lower time taken to identify sperm per FOV (Figure 3A), higher accuracy (Figure 3B), and an 

increase in the total number of sperm found show clear superiority of AI image analysis compared 

to the eyes and focus of trained embryologists (Table 1). Although the AI had a lower precision 

value than embryologists in the first cohort (Figure 3C), it is worth noting that this is a result of 

the annotation approach taken when training the AI. In the second cohort, testicular tissue samples 

with supplemented sperm (for better quantification of efficacy) were searched by an embryologist 

in mock ICSI dishes to better simulate a clinical sperm search on an ICSI kit with and without the 

aid of the AI (see supplementary video 1), it was determined that the AI reduced the time taken to 

identify all sperm in the droplet by around 50% (Figure 4A), with no drop in number of sperm 

identified per drop (Figure 4B) and a higher total number of sperm identified (Table 1).  

 

The role of the AI is not to replace an embryologist, but to be a guide towards sperm of interest, 

leaving the embryologist to make the final determination on the suitability of a sperm for ICSI. AI 

can negate the biological limits of human error and observation as well as the effects of fatigue 

which have long been a limiting factor to extended sperm searches of heterogenous samples 

obtained via surgical sperm collection. It is important to remember however, the AI is limited to 

detection within the manually directed field of view, thus if the embryologist overlooked an area 

in the sample, the AI will not be able to detect sperm without having it within view.  

 

Using an exhaustively trained image analysis model to identify sperm based on tens of thousands 

of sperm images has clinical utility in directing an embryologist’s attention to what the AI deems 

may be of interest and can thus drastically reduce the time taken or manual extended sperm 

searches when integrated to a micromanipulator microscope. The CNN trained in this study is 

designed to cater for multiple clinics which may have different microscopes, light environments, 

filters, and cameras. These environmental and equipment factors may affect the performance of 

the AI and have thus been catered for. The image augmentations used to train the AI on, provide 

as much variety as possible and with carefully considered image augmentations such blur, colour 

variations, focus changes, image saturation, and colour balance changes make the model resilient 

and consistent (Figure 2). The model was also trained using both epididymal and testicular sperm 



to broaden the sample dataset empowering the AI to broaden target sperm prompting. The model 

can also identify sperm with the entire range of motility, from immotile to hyperactivated, and 

adjusts and adapts to magnification change and panning in real-time (see supplementary video 2). 

 

This study was performed solely on immotile sperm for the most accurate quantification for 

spatially identifying and locating sperm, although the AI identifies motile sperm very well, a 

clinical deployment will better prove the clinical utility model. This proof-of-concept study 

demonstrates the potential for AI-assisted sperm searches, both in semen for extended sperm 

searches and testicular tissue but. While the results of this study are promising, continuing to 

improve the core data set and image variety will make the model more robust and adoptable for 

clinics with significantly different microscope arrangements as well as achieving a higher level of 

accuracy.  The limitation of a simulated sperm search using an ICSI workstation with and without 

the use of the AI, using samples with spiked in sperm, do not consider the time spent confirming 

the locations of sperm in the field of view during panning (as to not recount or miss sperm), this 

is a drawback of the testing method and can contribute to the lower difference in time taken per 

method in cohort 2. Therefore, a robust clinical deployment study has been planned for consenting 

in-treatment patients whereby embryologists can perform sperm searches with the aid of the AI 

model. Furthermore, there is potential for the expansion of this AI to include motility and 

morphological assessments of identified sperm to aid in the choice of sperm for insemination when 

sperm outnumbers the number of oocytes suitable for injection.  

 

In conclusion, azoospermia affects 10% of infertile men, with NOA, the most severe form, 

constituting 60% of these cases (Verheyen, et al., 2017). The current approaches to recover sperm 

from men who undergo surgery from this condition are antiquated and potentially detrimental to 

the quality of the sperm found. In this study, we have successfully demonstrated a proof-of-concept 

application of an AI image analysis model to drastically reduce sperm search time in testicular 

tissue samples in simulated clinical sperm searches. When applying the AI to a simulated real-time 

search workflow, a 50% reduction in time taken to identify sperm has been demonstrated. 

Applying this approach with further development and ergonomic optimization, we believe it can 

result in a standardized and more efficient workflow, greatly improving the current processing 

procedure of all surgically retrieved samples and azoospermic ejaculates by increasing access to 



treatment for azoospermia and reducing staff time required, as well as increasing sample coverage 

to ultimately increase chances of finding sperm.  
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Figure 1 | An overview of the non-obstructive azoospermia (NOA) surgical sperm surgery and retrieval process. Tissue from 

surgery is processed by maceration and washed before being placed in media droplets for manual sperm search which can take up 

to 6 hours. Viable sperm are then used for intracytoplasmic sperm injection (ICSI). 

 

Figure 2 | Overview of the study workflow stages beginning with (A) Sample acquisition and processing from testicular surgery, 

(B) sample image capture and augmentation, (C) model training and optimization and (D) side-by-side testing comparing AI-based 



sperm detection and manual assessment by trained embryologists i) on still images, as well as ii) live deployment comparing 

searching by an embryologist with and without the aid of the artificial intelligence (AI) model. 

 

 

Figure 3 | Quantified comparison on still images between the AI and trained embryologists benchmarked against samples 

with a known number of sperm (cohort 1). A) Time per FOV, B) Accuracy and C) Precision. AI, artificial intelligence; FOV, 

field of view. 



Figure 4 | Side-by-side comparison between trained embryologists with and without the use of AI (cohort 2). (A) Time taken 

per droplet and (B) number of sperm identified per droplet for each group. AI, artificial intelligence; s, seconds 
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