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ABSTRACT  

Background. Acute kidney injury (AKI) is common in hospitalized patients with SARS-CoV2 

infection despite vaccination and leads to long-term kidney dysfunction. However, peripheral 

blood molecular signatures in AKI from COVID-19 and their association with long-term kidney 

dysfunction are yet unexplored. 

Methods. In patients hospitalized with SARS-CoV2, we performed bulk RNA sequencing using 

peripheral blood mononuclear cells(PBMCs). We applied linear models accounting for 

technical and biological variability on RNA-Seq data accounting for false discovery rate (FDR) 

and compared functional enrichment and pathway results to a historical sepsis-AKI cohort. 

Finally, we evaluated the association of these signatures with long-term trends in kidney 

function. 

Results. Of 283 patients, 106 had AKI. After adjustment for sex, age, mechanical ventilation, 

and chronic kidney disease (CKD), we identified 2635 significant differential gene expressions 

at FDR<0.05. Top canonical pathways were EIF2 signaling, oxidative phosphorylation, mTOR 

signaling, and Th17 signaling, indicating mitochondrial dysfunction and endoplasmic reticulum 

(ER) stress. Comparison with sepsis associated AKI showed considerable overlap of key 

pathways (48.14%). Using follow-up estimated glomerular filtration rate (eGFR) measurements 

from 115 patients, we identified 164/2635 (6.2%) of the significantly differentiated genes 

associated with overall decrease in long-term kidney function. The strongest associations were 

‘autophagy’, ‘renal impairment via fibrosis’, and ‘cardiac structure and function’. 

Conclusions. We show that AKI in SARS-CoV2 is a multifactorial process with mitochondrial 

dysfunction driven by ER stress whereas long-term kidney function decline is associated with 
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cardiac structure and function and immune dysregulation. Functional overlap with sepsis-AKI 

also highlights common signatures, indicating generalizability in therapeutic approaches.  
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SIGNIFICANCE STATEMENT 

Peripheral transcriptomic findings in acute and long-term kidney dysfunction after 

hospitalization for SARS-CoV2 infection are unclear. We evaluated peripheral blood molecular 

signatures in AKI from COVID-19 (COVID-AKI) and their association with long-term kidney 

dysfunction using the largest hospitalized cohort with transcriptomic data. Analysis of 283 

hospitalized patients of whom 37% had AKI, highlighted the contribution of mitochondrial 

dysfunction driven by endoplasmic reticulum stress in the acute stages. Subsequently, long-

term kidney function decline exhibits significant associations with markers of cardiac structure 

and function and immune mediated dysregulation. There were similar biomolecular signatures 

in other inflammatory states, such as sepsis. This enhances the potential for repurposing and 

generalizability in therapeutic approaches.  
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INTRODUCTION 

Acute kidney injury (AKI) is common in hospitalized patients with SARS-CoV2 infection 

and the clinical syndrome of coronavirus disease-19 (COVID-19).1,2 During the COVID-19 

pandemic in the United States, AKI incidence was highly variable.1,3-5 While the rates of AKI 

have decreased and even have overall less severity during vaccination, it is still a significant 

complication.6,7 However, the molecular pathophysiology of AKI in COVID-19 is unclear.2,8  

Previous studies used post-mortem histopathological samples  to understand the 

pathophysiology of COVID-19 associated AKI.2,9-11 Although limited by selection bias, acute 

tubular injury is the most common observation across these studies. Additionally, these studies 

demonstrated comparable morphological, transcriptomic, and proteomic features between 

COVID-19 associated AKI (COVID-AKI) and sepsis associated AKI.12 However, there have not 

been any studies on peripheral transcriptomics in general hospitalized populations to 

complement these findings.   

In addition to AKI, COVID-19 is associated with long term kidney function.13-15 Decline in 

kidney function is a major component of post-acute sequelae of SARS-CoV2 (PASC).16 

However, peripheral transcriptomics linked to long term kidney dysfunction and PASC are 

unknown, especially if the initial SARS-CoV2 infection required hospitalization.16  

We have previously shown that acute markers for tubular injury and hemodynamic 

instability play a role in COVID-AKI and long-term kidney function decline using plasma 

proteomics.17 In this study, we aim to understand how the molecular mechanisms of immune 

dysfunctions in COVID-AKI are regulated via transcriptomic analysis of peripheral-blood 

samples, using peripheral blood mononuclear cells (PBMCs) of patients. Specifically, we 

sought to (1) identify canonical pathways and genes that are differentially expressed in 
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COVID-AKI, (2) understand if AKI in COVID was distinct from other inflammatory states via 

comparison with a pre-COVID-19 bulk-transcriptomics dataset of sepsis associated AKI, and 

(3) evaluate whether any identified signatures and/or pathways are associated with long-term 

kidney dysfunction.  
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METHODS 

 

Patient Cohort 

The detailed cohort characteristics and specimen collection procedures are previously 

described.18 For each COVID-19 patient, we defined cases as COVID-19 patients who 

developed AKI (stage 1, 2 or 3) during their admission (n=106) and controls as all other 

COVID-19 patients (n=177) without AKI (Figure 1a). We used samples acquired at the last 

available timepoint during the hospital course (Figure 1b). We excluded patients who 

developed AKI after the last specimen collection. If a patient had multiple AKI events during 

their hospitalizations, we included the sample collected after their last AKI event to avoid 

repeat sampling/confounding.17 The Mount Sinai Institutional Review Board approved this 

study19 under a regulatory approval allowing for access to patient-level data and biospecimen 

collection. This research was reviewed and approved by the Icahn School of Medicine at 

Mount Sinai Program for the Protection of Human Subjects (PPHS) under study number 20-

00341. Data for the analysis including the clinical covariates are available in Synapse 

syn35874390.14 Access to the data and steps to process the clinical information to create the 

cohort are detailed on the site.14 All clinical experimentation methods pursued in this study are 

in adherence with the Declaration of Helsinki. 

 

Definition of Acute Kidney Injury  

 We defined AKI per Kidney Disease Improving Global Outcomes (KDIGO)20 criteria: an 

increase in serum creatinine by an absolute value of 0.3 mg/dL in a period of 48h or by at least 

1.5 times the baseline creatinine (historical measurement) within a period of 7 days. For 
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patients with previous serum creatinine measurements available in the 365 days before 

admission, we considered the minimum value as the baseline creatinine. For patients without 

baseline creatinine in this period, a baseline reference value was used based on an estimated 

glomerular filtration rate (eGFR) of 75 ml/min per 1.73m2 was implemented from the MDRD 

equation, as per the KDIGO AKI guidelines.21,22   

 

Sample Collection, Sequencing, and RNA-seq count data processing. 

We extracted patient demographic and laboratory data from an institutional electronic 

health records (EHR) database14,19. Further processing of the whole blood and PBMC samples, 

RNA sequencing, and quantification were carried out according to previously standardized 

protocols (Supplementary Information).14 We normalized the raw counts for the gene 

expressions using the edgeR package and log2 transformed to log counts per million (CPM). 

We then normalized raw count data (58920) using the calcNormFactors function and then 

transformed to normalized log2 CPM with weights computed by voom from the limma (R v4.3) 

package23. We included genes with more than 1 count per million (CPM) in at least 10% of the 

samples (28 samples) in the analysis (n=18553).23   

 

Dimensionality Reduction and Linear Model Development 

 We performed principal component analysis (PCA) (Supplementary Figure 1) using 

voom-transformed normalized log2 CPM of the genes in the input matrix using prComp 

function (R v4.0.3) to plot the top 4 principal components (PCs). We then computed canonical 

correlation among the technical, biological and clinical covariates using CanCorrPairs24 from 

the variancePartition R package and visualized the associations using the plotCorrMatrix 
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function (Supplementary Information). The workflow to compute canonical correlations and 

visualize them was applied in a previously published workflow on samples that were part of the 

same biobank for a different study (Supplementary Information).14 Following this step, we 

undertook a data-driven approach to identify a series of non-redundant technical and biological 

covariates that accounted for a substantial fraction of unwanted variation in gene expression. 

We iteratively identified a covariate (biological, clinical, or technical) whose effect was the 

strongest observed driver of unwanted variance in the cohort. The identified variable, thus 

being tagged as a driver of unwanted variance, was then added to the linear model. We 

repeated this procedure iteratively until no further confounding variables were observed to be 

strong drivers of variance in the data, as shown in Supplementary Figure 1B. We adjusted for 

the selected variables in all subsequent linear modeling. The contribution of each of the 

covariates to the overall variance in the data was visualized by conducting a variance partition 

analysis using variancePartition R package24.  

 

Differential expression and analysis 

We carried out differential expression analysis between cases and controls using limma 

(R v4.3) and adjusted the model for the following clinical covariates: presence or absence of 

mechanical ventilation, sex, age, and chronic kidney disease (CKD) (as documented 

comorbidity in the EHR). We used cell-type deconvolution using CIBERSORTX23,24 to estimate 

cell type proportions in each sample using LM22 PBMCs as reference following a previously 

published workflow14 and then iteratively adjusted the linear model for neutrophils, plasma 

cells, macrophages, and CD4+ memory activated T-cells25 (Supplementary Information). 

After multiple testing correction on the p-values of the genes (Bonferroni-adjusted 
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FDR�<�0.05), we plotted the statistically significant genes in a volcano plot to depict the 

separation between the expression of genes with increased and decreased transcription 

abundances through log fold change (logFC).  

 

Comparison with Sepsis associated AKI. 

To account for differences between sepsis-associated and COVID- AKI, we compared 

the statistically significant (FDR <0.05) list of differentially expressed genes and canonical 

pathways enriched for these genes to a previously published dataset (including differential 

gene expression results, pathways and normalized gene expression) from participants with 

sepsis and AKI before the COVID-19 pandemic.25 We downloaded expression data from GEO 

for project GSE6740125 and obtained the associated clinical phenotypes. We performed 

differential expression analysis using the DESeq226 package following the protocol as 

described in the original manuscript25 and identified differentially expressed genes (FDR <0.05) 

between the cases and controls in the sepsis-AKI cohort. After Bonferroni adjustment, we 

performed a one-sided Fisher’s exact test to identify enrichment and analyze overlap between 

the genes. We also extracted the published pathways from the manuscript25 and performed an 

overlap analysis to identify common pathways enriched in both datasets. 

 

Characterization of long-term kidney function using markers of AKI 

We used post-discharge creatinine values measured for returning patients to compute 

estimated glomerular filtration rate (eGFR) values using the CKD-EPI equation.27 Clinical data 

pertinent to returning patients within this cohort including protein measurements were 

extracted from the EHR starting from the day after discharge with follow-up care through 
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12/2/2021. Outpatient eGFR measurements from repeated serum creatinine measurements 

from patients contained at least one outpatient post-discharge eGFR measurement. We 

included 115 patients who returned for post-discharge clinical care in this cohort. To determine 

association of overall expression of markers for AKI with long-term post-discharge kidney 

function, we modeled the association of the differential gene signatures of AKI in COVID-19 to 

the overall changes in post-discharge eGFR using a mixed-effects linear regression model 

(lme428 package in R v4.0.3). We adjusted the model for baseline creatinine, number of days 

since RNA-seq sample was extracted, presence of AKI during hospitalization, and the 

individual gene expressions as the fixed effect and patient ID as random effect accounting for 

the correlation among eGFR values from the same individuals. We evaluated significance of 

the β coefficient for the expression of each of the independent gene expressions using a t-test 

with Satterthwaite degrees of freedom implemented in the lmerTest R package.28 We adjusted 

p-values using the Benjamini-Hochberg procedure (FDR < 0.05).29 We then plotted the post-

discharge eGFR values over time for individuals clustered by gene expression tertiles (bottom 

33rd percentile, middle 33rd percentile, and top 33rd percentile) for AKI cases and controls 

separately (Supplementary Figure S5).  

 

Functional association and statistical analysis 

Pathway enrichment analysis was performed for the differentially expressed genes through 

Ingenuity Pathway Analysis (IPA)26 to uncover functional associations and causal networks 

enriched (Fishers exact test p-value < 0.05) for differentially expressed genes in the COVID-

associated AKI cohort. IPA canonical pathway analysis also included calculated z-scores that 

represented activation (positive z-score) or inhibition state (negative z-score). We selected for 
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the top canonical pathways at a p-value cut-off of 0.05. Further, top regulatory genes, disease 

functions, and curated toxicity functions were investigated within IPA for both, up, and 

downregulated genes.   
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RESULTS 

Description of the study population 

Of 283 patients in the COVID-AKI cohort, 106 (37%) had AKI.  Patients with COVID-

associated AKI were on average older than those without (67 years vs 60 years, p=0.014) with 

a similar distribution of race (36% White and 21% Black versus 32% White and 24% Black 

patients, p-value not significant). Sequential Organ Failure Assessment (SOFA) scores30 were 

also significantly greater in those with COVID-associated AKI compared with controls (5.7 vs 

1.2, p<0.001). Laboratory parameters including blood urea nitrogen levels (52.2 mmol/L vs 

16.9 mmol/L, p < 0.001), leukocyte counts (12.8x109/L vs 7.8x109/L, p<0.001), and ferritin 

(1650 ug/L vs 932 ug/L, p 0.027) were significantly higher in patients with AKI.  Patients with 

COVID-associated AKI had a greater prevalence of atrial fibrillation (20% vs 10%, p 0.018), 

type 2 diabetes (37% vs 20%, p<0.001), and comorbid CKD (20% vs 5%, p<0.001) and were 

also more likely to have been on any vasopressors (52% vs 7%, p <0.001) during their 

hospitalization.  

The post-discharge eGFR cohort comprised 115 with follow up data (Table 1B). 34 had 

AKI and were part of the COVID-AKI case cohort. Median age was 62 years, 50% were male 

and 24.3% white. 11% of the patients had CKD stage 3 or higher and 30% had type 2 

diabetes. The median duration of follow-up was 162 days with a median of 4 eGFR 

measurements (Table 1C). 

 

Differential Expression Analysis  
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Differential expression analysis yielded 2635 genes which were differentially expressed 

in cases: 1223 higher expression and 1412 genes with lower expression in AKI versus control 

(FDR<0.05) (Figure 2A, Supplementary Table 2A & 2B).  

Functional analysis of the differentially expressed genes revealed a subset of genes 

involved in upstream regulation of transcription targets (regulatory genes) were also 

significantly differentially expressed. Master regulators, namely, mir-21, KLF6, MEG3, KIT, 

PRL and TGFβ1 were overexpressed (~1.5x fold increase), while IFN-gamma (IFNγ or IFN-g), 

mir-15, mir-19, CAB39L and EIF3E had significantly lower levels of gene expression than 

controls (~0.5x fold decrease). Of the known biomarkers for AKI progression and renal tubular 

injury HIF1A, KLF6, IL1-R1 and mir-21 showed significantly increased expression 

(Supplementary Table 2C). 

 

Functional analysis of differentially expressed genes. 

Functional enrichment analysis identified several enriched pathways associated via an 

overlap with the expressed genes in the dataset (right-tailed Fisher’s exact test P-value < 0.05, 

Benjamini Hochberg correction) (Figure 3 and Supplementary Information Figure S2A-C). 

‘Canonical pathways’ are identified as well-characterized and hand-curated signaling and 

metabolic pathways that have been extracted from literature, textbooks, and the HumanCyc 

database, maintained in IPA. The top pathways were EIF2 signaling/regulation of eif4 and 

p70S6K signaling, coronavirus pathogenesis pathway, oxidative phosphorylation, 

mitochondrial dysfunction, and endoplasmic reticulum (ER) stress (Figure 3A). Pathway 

overrepresentation analysis also interrogated the differentially expressed genes in IPA-curated 

pathways (Supplementary Information Figure S2B). Among them, ‘mitochondrial 
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dysfunction’ and ‘NF-κB signaling’ had large percentages of downregulated genes, while 

pathways that impacted cardiac hypertrophy, increased renal damage, and PPAR/RXR 

activation had higher percentages of upregulated genes.  

 

Comparison with sepsis associated AKI. 

Of the published canonical pathways in the s-AKI dataset, more than 50% of the 

pathways overlapped with the enriched canonical pathways in the COVID-AKI dataset 

(Supplementary Table 2.C.). Cellular processes associated with mitochondrial dysfunction, 

oxidative phosphorylation, and cellular stress (see Supplementary Fig S4) were some of the 

top common pathways. Of the 630 significant differentially expressed genes generated from 

the s-AKI cohort, 111 of them were also found in the COVID-AKI dataset. The Fisher exact test 

statistical significance for enrichment of sepsis-AKI genes in COVID-AKI cohort was < 0.00001 

(Supplementary Information).  

 

Characterization of post-acute kidney dysfunction 

COVID-19 is associated with long-term eGFR decline.13,15 Of the ~2619 differentially 

expressed genes for COVID-AKI, we also found 164 genes (Figure 4) were associated with 

overall change in eGFR (Supplementary Table 2D & 2E). Those with the highest ranked 

association (ranks determined by the strength of the association (Figure 5) of the gene 

expressions against overall rate of eGFR) are CALCOCO2, SIK3, mir29, KDM8, and MEF2C 

(Supplementary Table 2F). Pathway over-representation analysis in IPA revealed an 

enrichment for ABRA signaling pathway with MEF2C and TAGLN as key regulators in the 

pathway (Supplementary Table 2G). Significant functional and diseases associations in IPA 
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included regulation of actin cytoskeleton, cellular adhesion and proliferation, and 

cardiovascular system development and function (IPA Content Version: 101138820, Release 

Date: 2023-08-24). 
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DISCUSSION:  

 To our knowledge, this is the largest peripheral transcriptomics study in hospitalized 

COVID-19 patients who develop AKI. Our results show that COVID-AKI is associated with 

molecular perturbations within the regulatory markers of endoplasmic reticulum (ER) stress,31 

tubular injury, mitochondrial dysfunction, and oxidative phosphorylation. Some pathways are 

also found to be common to those with sepsis-AKI including Hypoxia Signaling in the 

Cardiovascular System, ERK/MAPK Signaling, Unfolded protein response, and IL-1 

signaling.32-34 In addition, we uncover associations between a subset of these acute-phase, 

COVID-19 molecular markers and long-term kidney function dysfunction, including markers of 

autophagy, renal impairment via fibrosis, and cardiac structure/function.   

 We utilized peripheral blood mononuclear cells (PBMCs) as a model system to 

understand the underlying peripheral molecular mechanisms of AKI in COVID-19. One 

example of the mononuclear cell system is circulating monocytes, influenced by the cytokines 

or other molecular interactions to be recruited into injured tissues to differentiate into specific 

macrophage phenotypes.35 Thus, PBMCs serve as surrogates for systemic physiological 

changes,36,37 and their bioenergetic profiles have gained substantial attention38 in recent 

investigations of various diseases.39 

The eiF2 pathway was inhibited, and mTOR was activated in our cohort (Figure 3A). 

These pathways have previously been implicated in AKI development both in ischemia-

reperfusion and in sepsis-associated AKI. Coronaviruses induce cellular stress by disrupting 

cellular homeostasis and triggering ER stress40,41 and cellular stress induced activation of eiF2-

α kinases and phosphorylation of the α subunit of eIF2 to inhibit eIF-2 signaling.42 Additionally, 

viral infection acts via the eIF2α pathway to cause global inhibition of translation while 
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upregulating proinflammatory cytokines.31,42 The mTOR pathway is intertwined with the 

activation of ER stress response via eukaryotic initiation factor (eIF2/4 complex).43,44 As a 

viable target for therapeutic intervention, rapamycin, an inhibitor of mTOR signaling, has been 

shown to offer a protective effect against progression in rodent models of CKD.45 Other mTOR 

inhibitors (everolimus and sirolimus) used in immunosuppression in transplant patients have 

alternatively been shown to contribute to AKI progression and tubular injury.46 This suggests 

that mTOR may initially play a role in AKI pathogenesis but inhibition of the appropriate targets 

within the signaling pathway might prevent the progression of AKI to CKD. We also find that 

most mitochondrial genes are downregulated in COVID-19 patients with AKI. Mitochondrial 

oxidative phosphorylation pathways play a key role in the production of ATP and adaptive 

response to systemic inflammation, oxidative stress, and prevention of tubular injury.47 

Inhibition or downregulation of these pathways would likely contribute to maladaptive stress 

response and extended ischemia. Therapies targeting mitochondrial dysfunction, including 

pharmacological (SS-31,48 mitoQ49), cellular, and even mitochondrial transplantation, have 

potentially been considered for the treatment of ischemia-reperfusion injury. Given that 

mitochondrial dysfunction and downregulation of oxidative phosphorylation are key in 

mediating COVID-associated AKI50 and CKD,51 one should consider repurposing therapies 

targeting mitochondria for the mitigation of kidney failure. In addition to inflammation and 

cellular stress responses/renal tubular injury, some of the molecular biomarkers have also 

previously been implicated in the worsening of renal damage in COVID-AKI patients. 

Specifically, genes such as mir-21 and HIF-1 alpha (HIF-1a) have been known to play a 

significant role in the pathogenesis and progression of AKI to chronic renal disease. 

MicroRNAs are known to be critical in the activation of the innate immune system and the 
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regulation of the adaptive immune response.52 Mir-21 is a known regulator of apoptosis and 

involved in inflammatory and signaling pathways that may lead to hypoxia and tubular damage 

in patients with AKI.52 In another study, in PBMCs, mir-21 were shown to contribute to the 

underlying atherosclerosis by participating in the inflammatory processes  governing 

angiogenesis in coronary artery disease.53 HIF-1 alpha (HIF-1a or HIF1a) is also known as a 

master regulator of adaptive immune responses to hypoxia, a common condition in 

macrophage-driven inflammation due to a condition such as COVID-19.54 In addition, HIF-1a 

and its alternate isoform, HIF-2a exert mutually antagonistic effects on the hypoxic states of 

the cell and the inflammatory pathways, which causes a reduction of Sirt-1 thus leading to 

chronic heart failure in the long term.55 Furthermore, EIF2 and mTOR pathways are also 

known to play a role in both autophagy and fibrosis, making them ideal therapeutic targets for 

the prevention of COVID-associated AKI progression or PASC.42,56 These instances of 

cardiorenal crosstalk play a common role in COVID-19 AKI and drive the progression to CKD 

in the long-term.57  

Previous studies have shown through histopathology and gene expression studies that 

there are significant similarities in the morphological and molecular profiles of patients with 

COVID-19-AKI and sepsis-associated AKI.58,12 In comparing our data from a pre-COVID-19 

sepsis-associated AKI cohort,25 we found that of the 55 reported pathways, 50% were common 

to both COVID-associated AKI and sepsis-associated AKI. The chief pathways that overlapped 

(Supplementary Table 2C and Supplementary Figure 4A) included pathways involved in 

inflammation, kidney injury, and mitochondrial response, namely ‘Treg signaling’, ‘ERK/MAPK 

signaling’, ‘IL-1 signaling’, ‘hypoxia signaling in the cardiovascular system’, ‘unfolded protein 

response’, and ‘RAR activation’. Pathways related to renal inflammation, tubular injury, and 
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oxidative phosphorylation were implicated in the pathogenesis of AKI and progression to CKD 

in both this transcriptomic analysis and in our previously published proteomic analyses.17 Our 

results indicate that therapies that target the immune system in sepsis-associated AKI could be 

of potential therapeutic advantage in COVID-AKI. 

COVID-19 is associated with long-term kidney dysfunction, especially after AKI13,16. Our 

analysis showed that 164 genes (Table 2D-E) from the 2635 DE genes implicated in the acute 

phase are associated with the overall trend of post-discharge progressive loss of renal function 

(Table 2F). We highlight the top 6 genes (ranked by strength of association and fold change) 

(Figure 4) as potential markers that may enable early risk stratification. Gene expression 

levels of CALCOCO2, SIK3, and mir-29 were inversely correlated with overall trend of long-

term eGFR, while gene expression levels of KDM8, and MEF2C were positively correlated with 

the overall trend of long-term eGFR. Calcium binding and coiled-coil domain-containing protein 

2 (CALCOCO2, commonly known as NDP52) is an autophagy-related gene. In PBMCs 

interferon-signaling factor tetherin regulates mitophagy59 via activation of NDP52. In patients 

with dilated cardiomyopathy, NDP52 expression associated with autophagy-related reduced 

left ventricular function60. SIK3, a regulator of pro-inflammatory cytokines such as TNF-α,61 

also polarizes macrophages leading to fibrosis and scarring35,61 in smooth muscle tissues.62 

Mir-29 is a master regulator of the adaptive immune system and contributes to the 

pathophysiology of CKD63,64 via a reno-protective effect.65 In addition, mir-29 plays a role in 

cardiac remodeling and hypertrophy66 and is viewed as a potential biomarker for early 

detection and progression of CKD.64 Loss of MEF2C in B-cells67 causes defects in b-cell 

proliferation and survival via p38/MAPK pathway68 and is prognostic of CKD progression in 

elderly patients.69 KDM8 (JMJD5), a critical regulator of DNA replication70 under DNA damage 
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stress,71 is shown to epigenetically modulate cardiac metabolism via the p53/NFKB 

activation.72 In patients with diabetes, downregulation of KDM8 was associated with the risk of 

dilated cardiomyopathy (DCM).73 In addition, pathway overrepresentation analysis also 

highlighted the Actin-binding Rho activating (ABRA) signaling pathway (Supplementary Table 

2G) in and the association of Rho GTPases with cardiac structure and function74 and 

regulation of renal physiology and nephropathies.75 

A unique aspect of our study is the diversity of our patient cohort. The patient cohort for 

the COVID-19 AKI study also reflects the distribution of race and ethnicity76 of the NYC 

catchment area.77 The overall racial and ethnic distribution improves the generalizability and 

application of our findings to diverse populations.  

It is important to interpret our results in the context of certain limitations. First, samples 

were collected during the hospital course of patients with confirmed COVID-19. However, 

logistical challenges during the pandemic resulted in the samples that were not collected at the 

exact same number of days post-hospitalization and were not standardized between patients. 

In addition, the time since the start of the SARS-CoV2 infection is unknown. This scenario is 

true across all COVID datasets and is not unique to ours. It is also important to note that while 

the samples were collected at multiple time points, our analysis was conducted using gene 

expression measurements from a single time point, after the patients had their last instance of 

AKI during hospitalization. Second, all patients enrolled in our study were collected in 2020, 

while our sepsis-associated AKI cohort was derived from a study in 2015 with different sample 

processing and library preparation methodologies before RNA-seq. While variability in 

processing strategies may reduce signal-to-noise when comparing the two cohorts, the 

different time periods of collection ensured that neither cohort has any confounding from 
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possible SARS-CoV2 infection/hospital-acquired SARS-CoV2 infections. Third, our current 

cohort was enrolled in the early pandemic between March-August of 2020. Given the large 

sample size of our study complicated by SARS-COV2 strain evolution via dynamic positive 

selection of mutations within the spike protein rather than mutations in the core,78,79 these 

results likely generalize across different variants. It would be remiss to not mention the 

subjective nature of interpretation of peripheral blood RNASeq results as a heterogenous 

population can be affected by changes in the percentage of cell types. Future directions 

necessitate the need for single-cell RNASeq studies to disentangle these effects effectively 

and clearly.   

In conclusion, we present a whole blood transcriptomic comparison of COVID-19 

patients with and without AKI and long-term kidney dysfunction in the largest sample size to 

date. These results may have clinical utility in risk stratification of long-term kidney dysfunction 

after COVID-19 and for therapeutic repurposing.    
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Table 1A Summary statistics for the COVID-AKI cohort. 

Cohort Characteristics 

Developed AKI 
(Stage 1/2/3) 

during 
hospitalization 

No AKI during 
hospitalization p-value 

  N=106 N=177   
Age, mean (SD) 66.5 (15.4) 61.4 (16.6) 0.01409 

Male, n (%) 63 (59%) 99 (56%) 0.62006 
Race, n (%)       

White 38(36%) 57 (32%)   
Black or African American 22 (21%) 43 (24%)   

Other 46 (42%) 77 (44%)   
Ethnicity, n (%)       

Hispanic or Latino 50 (47%) 62 (35%) 0.03523 
Not Hispanic or Latino 55 (53%) 110 (62%) 0.03523 

Unknown / Not Reported 1 (0%) 5 (3%)   
Vitals & Lab Parameters during 

Hospitalization, n (SD)       

SOFA 5.79 (4.35) 1.2 (1.65) <0.001 
Modified SOFA 4.56 (4.03) 1.09 (1.52) <0.001 

Baseline Creatinine (mg/dL) 1.07 (0.592) 0.929 (0.27) 0.34942 
Maximum Lactate (mmol/L) 1.88 (1.32) 1.3 (0.43) 0.35154 

Minimum Systolic Blood Pressure (mmHg) 106 (17.2) 111 (13) 0.00409 
Maximum Systolic Blood Pressure (mmHg) 142 (20.9) 137 (20.5) 0.02945 

Maximum Pulse (bpm) 103 (18.5) 90.5 (17.9) <0.001 
Maximum Blood Urea Nitrogen (mmol/L) 52.2 (34.6) 16.9 (10.4) <0.001 

Maximum White Blood Cell Count  (109/L) 12.8 (7.19) 7.8 (3.46) <0.001 

Minimum Platelet Count  (109/L) 270 (144) 318 (140) 0.00664 

Minimum Lymphocyte count  (109/L) 2.03 (3.17) 2.31 (3.71) 0.00862 

Maximum Creatinine (mg/dL) 2.71 (2.6) 0.862 (0.365) <0.001 
Maximum Ferritin (ug/L) 1650 (2140) 932 (1240) 0.02712 
Maximum IL1-β (pg/mL) 0.4 (NA) 0.6 (0.216) 0.46816 
Comorbidities, n (%)       

Atrial Fibrillation 21 (20%) 17 (10%) 0.01893 

Coronary Artery Disease 19 (18%) 26 (15%) 0.50390 

Arterial Hypertension 48 (45%) 71 (40%) 0.45556 

Diabetes 39 (37%) 32 (18%) 0.00063 

Chronic Kidney Disease 21 (20%) 8 (5%) <0.001 
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Highest Respiratory support n(%)       
Intubation 49 (46%) 9 (5%) <0.001 

Non-Invasive Ventilation 9 (8%) 8 (5%) 0.20040 
Nasal Cannula 34 (32%) 91 (51%) 0.00194 
No Ventilation 14 (13%) 69 (39%) <0.001 

Vasopressor Use during Hospitalization 
n (%)       

Any vasopressor 55 (52%) 12 (7%) <0.001 
Norepinephrine 49 (46%) 10 (6%) <0.001 

Vasopressin 18 (17%) 2 (1%) <0.001 
Phenylephrine 15 (14%) 1 (1%) <0.001 
Epinephrine 3 (3%) 2 (1%) 0.36667 

Milrinone 3 (3%) 1 (1%) 0.14950 
Dopamine 1 (1%) 0 (0%) 0.37456 

 

Table 1B Patient cohort summary statistics for the post-discharge follow-up cohort for long-

term eGFR analysis. 

Cohort Characteristics  

Developed 
AKI (Stage 

1/2/3) during 
hospitalization 

No AKI during 
hospitalization 

p-value Total 
(Category %) 

  N=31 N=84   115 

Age, mean (SD) 60 (15.9) 59 (15.76)     
Male, n (%) 16 (52%) 44 (52.3%)   60 (52.17%) 
Race, n (%)         

White 7(22.5%) 21 (25%)   28 (24.34%) 
Black or African American 7 (22.5%) 25 (29.76%)   32 (27.82%) 

Other 17 (54.83%) 38 (45.23%)   55 (47.82%) 
Ethnicity, n (%)         

Hispanic or Latino 14 (45.16%) 27 (32.14%)   41 (35.65%) 
Not Hispanic or Latino 16 (51.61%) 50 (59.52%)   66 (57.39%) 

Unknown / Not Reported 1 (0%) 7 (1%)   8 (7%) 
Vitals & Lab Parameters 
During Hospitalization, n         
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(SD) 
SOFA 3.84 (2.72) 1.17 (1.82) p < 0.001   

Modified SOFA 2.84 (2.78) 1.05 (1.66) p < 0.001   
Baseline Creatinine 

(mg/dL) 
1.17 (0.6) 0.968 (0.211)     

Maximum Lactate (mmol/L) 1.65 (1.19) 1.7 (0.283)     
Minimum Systolic Blood 

Pressure (mmHg) 109 (16.4) 112 (12.9)     

Maximum Systolic Blood 
Pressure (mmHg) 

137 (17.2) 138 (20.8)     

Maximum Pulse (bpm) 98.8 (16.3) 89.5 (14.2) p = 0.0023   
Maximum Blood Urea 

Nitrogen (mmol/L) 41.9 (28.2) 16.3 (9.41) p < 0.001   

Maximum White Blood Cell 
count (109/L) 9.46 (5.16) 7.62 (3.25)     

Minimum Platelet count 
(109/L) 252 (150) 328 (151) p = 0.00823   

Minimum Lymphocyte 
count (109/L) 

2.97 (4.06) 2.59 (4.45)     

Maximum Creatinine 
(mg/dL) 

2.27 (2.11) 0.894 (0.408) p < 0.001   

Maximum Ferritin (ug/L) 1900 (2810) 981 (1380)     
Maximum IL-1β (pg/mL) 0.4 (NA) 0.7 (0.283)     
Comorbidities, n (%)         

Atrial Fibrillation 8 (26%) 11 (13%)   19 (16.52%) 

Coronary Artery Disease 8 (26%) 13 (15%)   21 (18.26%) 

Arterial Hypertension 15 (48%) 40 (48%)   55 (47.82%) 
Diabetes 14 (45%) 21 (25%) p = 0.043 35 (30.43%) 

Chronic Kidney Disease 8 (26%) 5 (6%) p = 0.00587 13 (11.3%) 
Vasopressor use during 

hospitalization. n (%)         

Any Vasopressor 15 (48%) 7 (8%)  p < 0.001 22 (19.13%) 
Norepinephrine 12 (39%) 6 (7%) p < 0.001 28 (24.34%) 

Vasopressin 7 (23%) 1 (1%) p < 0.001 8 (7%) 
Phenylephrine 2 (6%) 1 (1%)   3 (3%) 
Epinephrine 0 (0%) 2 (2%)   2 (1.7%) 

Milrinone 2 (6%) 1 (1%)   3 (3%) 
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Table 1C Additional summary statistics for the long-term eGFR patient cohort in Table 1B. 

Cohort features Min Max Median Mean SD 

Age 20 90 62 59 15.75 

Number of eGFR Measurements 1 58 4 10 169 
Mean eGFR Values 4.5 140.22 76.41 74.93 29.51 

eGFR Measurement 0.0258 2014.68 46.62 157.7   

Least Number of Days between Discharge 
and Follow-Up eGFR Measurement 1 520 34 78.83 33 

Highest Number of Days between Discharge 
and Follow-Up eGFR Measurement 13 536 375 326.1 30 
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FIGURE TITLES and LEGENDS 

Figure 1a. Flowchart of patients included in the current study. 

Figure 1b. Timeline of sample collection for current study 

Figure 1 Legend. Figure 1a shows the patients and samples included in the current 

study, and Figure 1b shows a visualization of the sample collection timeline. 

Figure 2a. Heatmap showing the differential expression of 2635 genes between cases 

(COVID-AKI) and controls (COVID with no AKI). 

Figure 2b. Volcano plot of the differentially expressed genes showing large numbers of 

significantly downregulated mitochondrial toxicity and endoplasmic reticulum genes. 

Figure 3a. Canonical pathways identified in IPA during the functional characterization of 

the differentially expressed genes. The top pathways resulting from the analysis include 

EiF2 signaling, eIF4/p70S6K signaling, oxidative phosphorylation and mitochondrial 

dysfunction.   

Figure. 3b. Curated list from Ingenuity Pathway Analysis 

Figure 3 Legend. Figure 3b shows a majority of downregulated genes in ‘mitochondrial 

dysfunction’ and ‘NF-ΚB signaling’. Additionally large number of upregulated genes are 

involved in the pathways involved in ‘cardiac hypertrophy’, ‘increased renal dysfunction’ 

(PPARα activation) and damage. 

Figure 4. Association of differentially expressed gene signatures in AKI in the COVID-

AKI cohort and overall decline in eGFR in the long-term cohort 1-year post-discharge. 

Figure 4 Legend. Figure 4 shows a plot of the expression of 2635 genes associated 

with AKI in the COVID-AKI cohort against the β estimates of the linear mixed model that 

analyzes the effect of these expressions over the long-term decline of eGFR. The gene 
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expressions are plotted by fold change on the x-axis (log2 fold change). The y-axis is 

the beta estimate of the overall change in long-term eGFR from the linear mixed model 

analysis. A negative beta(β) estimate for overall change in long-term eGFR, signals that 

genes that show a higher positive expression are negatively correlated with overall 

decrease in post-discharge eGFR while genes with a higher negative expression are 

directly correlated with overall decrease in post-discharge eGFR.  
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Fig 1.A. Mount Sinai COVID-AKI Cohort
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