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Abstract

Predicting vaccine hesitancy at a fine spatial level assists lo-
cal policymakers in taking timely action. Vaccine hesitancy
is a heterogeneous phenomenon that has a spatial and tem-
poral aspect. This paper proposes a deep learning framework
that combines graph neural networks (GNNs) with sequence
module to forecast vaccine hesitancy at a higher spatial reso-
lution. This integrated framework only uses population demo-
graphic data with historical vaccine hesitancy data. The GNN
learns the spatial cross-regional demographic signals, and the
sequence module catches the temporal dynamics by leverag-
ing historical data. We formulate the problem on a weighted
graph, where nodes are zip codes and edges are generated
using three distinct mechanisms: 1) adjacent graph - if two
zip codes have a shared boundary, they will form an edge be-
tween them; 2) distance-based graph - every pair of zip codes
are connected with an edge having a weight that is a function
of centroid distances, and 3) mobility graph - edges represent
the number of contacts between any two zip codes, where the
contacts are derived from an activity-based social contact net-
work. Our framework effectively predicts the spatio-temporal
dynamics of vaccine hesitancy at the zip-code level when the
mobility network is used to formulate the graph. Experiments
on the real-world vaccine hesitancy data from the All-Payer
Claims Database (APCD) show that our framework can out-
perform a range of baselines.

1 Introduction

Highly contagious diseases, such as measles, are regarded
as vaccine-preventable (VPD) because of the availability of
the Measles, Mumps, and Rubella (MMR) vaccine, which
has a very high efficacy rate. Measles is preventable us-
ing high rates of immunization. The MMR vaccine is re-
quired by public schools in most parts of the world, includ-
ing the US, and measles was declared as “eliminated”” from
the US in 2000 (Centers for Disease Control 2020). Unfortu-
nately, immunization rates are declining for many childhood
vaccines, and outbreaks of measles and other VPDs have
been occurring regularly in recent years across the world.
For instance, there was a large outbreak in New York in
2019, which caused over 900 cases (Patel et al. 2019). In
2021, Nigeria had over 10,000 cases (Sato et al. 2022), and
there were 128,000 deaths due to measles worldwide (Or-
ganization 2023). The risk of measles, and other vaccine-
preventable diseases, has significantly been exacerbated due

to the COVID-19 pandemic (Thakur et al. 2022).

There are a number of reasons behind the drop in im-
munization rates, and hesitancy is the leading among them.
Even before the pandemic, though the MMR vaccine cov-
erage was quite high (~ 95%) for kindergarten children na-
tionally (Seither et al. 2023) (which is a high enough rate to
reach herd immunity), it was not evenly spread geograph-
ically, and there were significant pockets of undervaccina-
tion (Lieu et al. 2015; Cadena et al. 2019a; Gahr et al. 2014;
Gastafiaduy et al. 2016). During the pandemic, significant
drops in routine immunizations have been reported (Seither
et al. 2022; Causey et al. 2021; Tacobucci 2022) In 2020
and 2021, over 27 and 25 million children were estimated
to have missed their first dose of the measles vaccine, re-
spectively (Causey et al. 2021; Guglielmi 2022). Measles is
now viewed as an imminent global threat (Iacobucci 2022).

Vaccine hesitancy is a growing concern in public
health (McGregor and Goldman 2021), and predicting vac-
cine hesitancy at the higher spatial resolution is considered
a fundamental problem, as heterogeneous vaccine coverage
significantly increases the risk of outbreaks (Masters et al.
2020; Moon, Marathe, and Vullikanti 2023). One of the sig-
nificant challenges in understanding the extent of hesitancy
and how it is spreading is the limited availability of surveil-
lance data on declining immunization rates, especially at
finer spatial resolutions. Surveys on immunization rates are
often available at a coarse resolution (e.g., a state) (Sei-
ther et al. 2022; Causey et al. 2021), which does not help
identify specific under-immunized regions for intervention.
Many states provide School Immunization Survey (SIS) re-
ports (of Health 2021), which provide immunization rates
for schools. However, they only consider specific age groups
(e.g., 4-6 years) and miss a lot of children (e.g., those who
are home-schooled).

The focus of our paper is to develop methods to predict
vaccine hesitancy at the zip code level, we refer to this as
the VACCHESITANCY problem. In this work, we investi-
gate vaccine hesitancy among kids aged between 0-6 years.
Prior works have used this information as a reflection of
parental vaccine intention (Miiller, Tellier, and Kurschilgen
2022). Kids in this age range are expected to receive a set
of mandatory vaccines including MMR (Measles, Mumps,
and Rubella), HepB (Hepatitis B), and DTaP (Diphtheria,
Tetanus, and Pertussis). A novel aspect of our work is the



use of an extensive insurance claims dataset for Virginia that
includes all insurance claims for over 5 million individuals
over a five years period.

Analyzing vaccine hesitancy has been an active area of
research. Many works have focused on understanding hes-
itancy and identifying the responsible factors using social
media data (Nguyen et al. 2022). However, these data con-
tain notable biases from demographic variations in platform
preferences and the information individuals opt to share. On
the other hand, some recent data-driven approaches use de-
tailed individual-level data, making it harder to generalize.
We discuss the relevant works on vaccine hesitancy model-
ing in Section 2.

Our main contributions are as follows:

* We develop a novel approach, VH-GNN, for the VAC-
CHESITANCY problem by combining a GNN and a re-
current neural network (RNN) using demographic data
and historical hesitancy data, along with detailed popula-
tion mixing data in the state. The GNN captures the spa-
tial aspect of vaccine hesitancy by learning the impact
of neighboring zip codes with respect to population-level
mixing. The RNN learns temporal dynamics by lever-
aging historical hesitancy data. In the rest of the paper,
we refer to the combined framework as VH-GNN; Vac-
cine Hesitancy predicted Graph Neural Network. Figure
1 shows the VH-GNN architecture.

* We train and evaluate the VH-GNN using the large-scale
insurance claims data set for the state of Virginia, men-
tioned earlier, and show that our model outperforms a
number of baselines, leading to a substantial reduction in
prediction errors ranging from 18.40% to 43.4%.

e Through an ablation study, we demonstrate the effec-
tiveness of the combined framework in improving model
performance. In particular, we find that spatial structure
from the detailed population-level mixing is very signif-
icant in forecasting vaccine hesitancy. We explore other
kinds of connectivity and spatial structure too, but do not
find them to be as predictive.

* While the performance of VH-GNN is generally high,
we find there are some zip codes (denoted by set Vi)
where the prediction error is high. We identify several
features which characterize the zip codes in V7, such as,
Kids population, vaccine hesitancy percentage, medicaid
insurance percentage, hispanic population percentage.

¢ In order to understand the structure of the solution from
VH-GNN and the true hesitancy level datasets, we use
the Moran’s-I and isolation indices, which are metrics
for quantifying spatial clustering. We find that Moran’s-1
is high and the isolation index is low, indicating a simi-
lar clustering structure between the solution predicted by
VH-GNN and the actual claims dataset.

2 Related Work

Research on vaccine hesitancy prediction can be divided
into two major categories: data-driven studies and model-
based studies. Recent data-driven vaccine hesitancy studies
explore different machine learning models, such as neural

networks, random forest, logistic regression, recursive par-
titioning, and support vector machines, to find local vaccine
hesitancy hotspots or to predict individual decisions (Carri-
eri, Lagravinese, and Resce 2021; Chandir et al. 2018; Bell
et al. 2019). These studies do not consider the spatial aspect
of vaccine hesitancy. However, vaccine refusal has a spa-
tial clustering nature, and the immunization status of kids
shows correlations in the same neighborhood, schools, or
jurisdictions (Atwell et al. 2013; Lieu et al. 2015; Nsoesie
et al. 2013). In addition, these studies have used detailed
socio-economic data, including siblings’ vaccination history
and private medical history, which are inaccessible in many
cases due to privacy concerns. In this work, we only use fea-
tures developed at the zip code level, such as population size,
gender, race, and insurance type.

Spatial modeling of COVID-19 vaccine hesitancy ex-
plains variations in vaccination rates using multiscale geo-
graphically weighted regression (Mollalo and Tatar 2021). A
recent spatial mathematical model of opinion dynamics with
reinforcement explains the occurrence of vaccine hesitancy.
Mathematical models often do not consider heterogeneous
social connectivity.

To address the spatial neighbor impact and temporal dy-
namics of vaccine hesitancy, we use a graph-based deep
learning framework. It combines Graph Neural Network
(GNN) with a sequence module for a node-level predic-
tion task. GNN is a deep-learning tool specialized to han-
dle graph data (Xu et al. 2018). GNN is widely used in
different domains for graph-related prediction tasks, such
as node classification, link prediction, and graph classifica-
tion. GNNs have demonstrated good prediction capabilities
for spatial data, such as house price estimation, understand-
ing election results (Klemmer, Safir, and Neill 2023), and
weather forecasting. In this graph-based research, nodes rep-
resent zip codes, and edges represent the connectivity among
zip code pairs.

Patient refusal or vaccine hesitancy sentiment is changing
with time. To learn the temporal aspect of the vaccine hes-
itancy levels for a location, we propose a sequence module
to handle time series data for each zip code. Our framework
uses a recurrent neural network structure with Gated recur-
rent units (GRUs) (Cho et al. 2014) as the sequence module.

Spatio-temporal graph learning has been used in recent
times to forecast traffic flow (Li and Zhu 2021), disease
prevalence (Wang et al. 2022), etc. Prior works have used
different combinations of GNN, RNN, or Convolutional
Neural Networks (CNN) to perform spatio-temporal fore-
casting tasks (Yu, Yin, and Zhu 2017; Hu et al. 2022). Traf-
fic forecasting is an example of spatio-temporal modeling.
Yu et al. show the potential of graph-based learning frame-
works for timely and accurate traffic forecasts with compar-
isons between CNN and RNN. We extended these concepts
to predict vaccine hesitancy for a zip code in the next time
step. For spatio-temporal learning, we use a static network,
where nodes are zip codes, and edges are connections among
pairs of zip codes. Nodes have time-varying features as at-
tributes. Using demographic and historical vaccine hesitancy
data, we forecast the vaccine hesitancy percentage of a node
or a zip code.
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Figure 1: Architecture of the spatio-temporal graph-based node-level regression learning for the prediction of vaccine hesitancy.

3 Methods
3.1 Preliminary

Our goal is to learn vaccine hesitancy, measured by the per-
centage of patients refusing to take the vaccine within a zip
code. As inputs, we use historical vaccine hesitancy data
and demographic features of a zip code (which includes age,
gender, race, ethnicity, and insurance type), and spatial zip
code level connectivity information of several types.

Let G(V,E,A) denote a graph, where V' denotes the
set of N zip codes. We consider three types of connec-
tivity information in defining the edges: spatial adjacency,
the distance between zip codes, and mixing through an
activity-based network (described below in Section 3.3). Let
AN*N denote the weighted adjacency matrix. An entry of
A, a(i, j), represents the connection from node ¢ to j. A
node ¢ is associated with a feature vector z;(t), which is
time-dynamic. here, X7 XN ** is the feature matrix at time
t, and k is the number of features.

The VACCHESITANCY problem. Let 4, (t) denote the frac-
tion of patients indicating hesitancy in zip code ¢ at time ¢
(which will be specified later in Section 4); let h(t) denote
the vector of hesitancy levels. The VACCHESITANCY prob-
lem we involve learning h(T") using historic hesitancy levels
h(t'), demographic characteristics of zip codes in V, and the
connectivity network G.

3.2 Framework

An analysis of the hesitancy levels h(¢) over time from the
dataset reveals spatial heterogeneity and correlations (pre-
sented in the Appendix), which motivates our GNN ap-
proach based on spatial structure. Our VH-GNN framework
(Algorithm 1) has two major modules: 1) a spatial module,
and 2) a sequence module (Figure 1). The spatial module
consists of graph forming and graph-based spatial depen-
dency learning, described in Section 3.3.

3.3 Spatial Module

Graph Architecture. The graph G is a static graph with-
out self-loops. We propose three intuitive node connectivity
mechanisms to form three variants of G.

¢ Adjacent graph G,: If node ¢ and node j share a geo-
graphic boundary, they will form an edge in the network

G. The weights of edges in the adjacent graph G, are
always 1.

* Distance-based graph G4: We have a fully connected
graph, G4. A connection between two nodes ¢ and j has a
weight equal to the inverse of the distance between cen-
troids of zip codes i and j.

* Mobility graph G,,,: This graph represents population
movement. We form G, from an activity-based de-
tailed population-level social contact network G, (Eu-
bank et al. 2004; Barrett et al. 2009; Cadena et al. 2019b).
The nodes in G, represent individual people, and each
node is associated with a location. We aggregate this net-
work at the zip code level to get G,,,. If there is any con-
nection from the population of zip code ¢ to zip code 7,
we form an edge in the graph G,,. This edge has an as-
sociated weight equal to the total number of connections
from zip code ¢ to j in the graph G,,.

All edge weights are normalized using min-max normaliza-
tion.

Graph-based Spatial Dependency Learning. Learning
the spatial distribution of vaccine hesitancy with demo-
graphic characteristics is a major task. We leverage graph
neural network (GNN) (Hamilton, Ying, and Leskovec
2017) to learn spatial dependency for each time step through
message passing. In this work, node features change with
time, but the graph connectivity is static. For each time
step, we have one GNN module, which consists of stack-
ing multiple k-GNN layers (Morris et al. 2019) and a linear
layer to perform node-level vaccine hesitancy prediction. We
model it as a regression task. The k-GNN is a generaliza-
tion of graph neural networks based on the k-dimensional
Weisfeiler-Leman algorithm (k-WL). This variant of GNN
performs message passing directly between subgraphs in-
stead of individual nodes. The [*" layer of the first-order
GNN is

zl(it) = a(mll(i,t) W

+ ) a(z‘J)-x“(j,t)-Wéwl) )

JEN (@)



Here, [ > 0, o represents an activation function (e.g., sig-
moid or ReLU). Wy, Wy € R%-1%4 are weight matrices
parametrizing GNN layer [, b € R% is the parameters of
the 1-th layer, d; is the dimension, and A/ (%) is the neigh-
borhood of 7. The output of the graph embedding module is
an intermediate solution y™V*%° for each time point t. lo is
the final layer of the graph embedding module. For 7" time
steps, we merge the 4 matrix to form Y7 XN xdio

3.4 Sequence Module

To learn the temporal aspect of the vaccine hesitancy for
a node ¢, we use a sequence module. The input of this
module is matrix Y, which will predict vaccine hesitancy
at time 7'. This module can be built using any model that
can learn sequences; popular choices are moving average,
ARIMA, and recurrent neural networks. Recurrent neural
networks (RNN) are well-known for predicting sequence
data. In this work, we leverage a variant of RNN known
as Gated Recurrent Units (GRU) (Zhao et al. 2019). We
also experiment with LSTM (Long Short-Term Memory)
and moving average. The fundamental concepts underly-
ing LSTM and GRU models are quite similar. Both em-
ploy gated mechanisms to retain extensive long-term infor-
mation, making them equally proficient for diverse tasks.
We find that GRU performs better in the VH-GNN frame-
work. It trains faster with fewer parameters compared to the
LSTM variant. Hence, it has better potential to learn from
large multidimensional datasets.

3.5 Optimization

This framework optimizes two modules separately with op-
timizers opt; and opto. We use two loss functions to reduce
the error between predicted vaccine hesitancy H (T") and the
true vaccine hesitancy H (T'). The first loss function loss;
minimizes the error for the graph learning module at each
time step t = 0,1, .., 7T, and the second loss function [osss
reduces errors for the sequence learning module. We use the
mean absolute error (M AFE) metric to learn the model pa-
rameters.

loss1 = MAE(y(t) — y(t)) + AL, 2
lossy = MAE(H(T) — H(T)) + AL, 3)
lossy takes into account all time steps, and losso takes only
the final time step. In this research problem, for any time step
t, y(t) = H(t), as the graph learning module is predicting
vaccine hesitancy for that time step from z;(t). Here, A is
a hyper-parameter, and L, is the L2 regularization term to
prevent over-fitting. We optimize two modules separately as
we do not want to influence one module’s parameters due
to the other module’s performance. Algorithm 1 details the
steps taken.

4 Experiments and Results
4.1 Data

We use five years (2016-2020) of the All-Payer Claims
Database (APCD) to find the patient refusal levels for each
zip code in Virginia.

Algorithm 1: VH-GNN for Spatio-Temporal Vaccine Hesi-
tancy Learning

Input: Feature matrix X, graph G, GNN module M, se-
quence module M, A\, number of training steps trains,
hyper-parameters

1: Split the nodes into two sets randomly train, and test
2: Initialize model M, and M, with random weights and
hyper-parameters.
3: Set optimizer opt; and opty with hyper-parameters.
4: for number of training steps trains do
5. for for each time step ¢ do
if t < T then
y(t) + M,(G, X (1))
else
y(t) < My(G, X (t).train)
end if
compute loss; and update M, using Adam opti-
mizer
12:  end for
13:  Form Y from all y(¢)
4. H(T) + M(Y)
15:  compute [osss and update M using Adam optimizer
16: end for
17: return [osso
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The data is obtained from VHI (Virginia Health Informa-
tion). It contains information on paid medical and pharmacy
claims for roughly 5 million Virginia residents with com-
mercial, Medicaid, and Medicare coverage across all types
of healthcare services. Among other things, it provides infor-
mation on immunization rates over time, by spatial regions,
and by demographics.

International Classification of Disease ICD-10-CM code
728 is used to filter Patient refusal from medical data. Z28
means, “Immunization not carried out and underimmuniza-
tion status” (ICD10data 2023). We also analyze the immu-
nization rates as provided in the Virginia Department of
Health School Immunization Survey (VDH SIS) reports. We
find that vaccine hesitancy is changing in Virginia (Table 1).
However, we only use APCD for VACCHESITANCY, as our
targeted population is 0-6 years old, and VDH-SIS does not
contain this information. In this work, we use six months as
the time unit. We find that monthly data is sparse at the zip
code level. We explain more about the data in Appendix.

In this paper, ‘zip code’ refers to a ZIP Code Tabulation
Area (ZCTA). A ZCTA corresponds to a geographical repre-
sentation of a service area for a United States Postal Service
(USPS) ZIP Code. This delineation is made publicly avail-
able by the US Census Bureau (U.S. Census Bureau 2021).
We use 615 zip codes of Virginia (N = 615) out of 1241.
Among them, only about 52% zip codes have a population
size of more than 1000. We discard zip codes that do not
have any entry for kids (aged 0-6) in the APCD data or have
a very small population size.



Vaccine Hesitancy Year Source
2016 | 2017 [ 2018 [ 2019 [ 2020

Patient Refusal 1.55% | 3.31% | 4.01% | 4.08% | 3.83% | APCD

State Public School Unimmunized | 3.6% | 3.9% | 3.7% | 3.6% | 11.9% | VDH SIS

or not Adequately Immunized

State Private School Unimmunized | 5.8% | 6.7% | 6.7% | 4.8% | 7.6% | VDH SIS

or not Adequately Immunized

Table 1: Yearly patient refusal percentage in Virginia in the APCD data and in the VDH SIS reports.

4.2 Data Preprocessing

From the APCD data, we filter all patients’ entries of chil-
dren aged six or below. Then we prepare a data set for each
time ¢ for N nodes, which keeps a record of the number
of unique kids, the number of unique kids in different gen-
ders, the number of unique kids in different races, the num-
ber of unique kids in two different medical insurance types
(commercial and Medicaid), and the percentage of kids who
refuse to take any vaccine at least once. We use “medical
insurance type” as a proxy for the income level. We assume
that patient refusal at this age represents parental vaccine in-
tention.

At each time step ¢, the last column of the data set is the

target value; vaccine hesitancy H (t), other columns are fea-
tures of nodes. A node ¢ has ten features at a time step ¢,
including male population, female population, Asian pop-
ulation, Black population, White population, and Hispanic
population. We use min-max normalization to normalize all
columns for each time step ¢ as we update our M module.
Then, we find the principal components of the features by
using Principal Component Analysis (PCA).

4.3 Experimental Setup

This study uses the GNN version of Morris et al. (Morris
etal. 2019). We also explored other strategies, such as Graph
Convolutional Network (GCN) (Kipf and Welling 2016),
which can handle weighted static graphs. However, we find
that the GNN of Morris et al. performs better in predicting
vaccine hesitancy.

We manually adjust the hyper-parameters of the frame-
work, such as the learning rate, the regularization term, the
training epoch, and the number of hidden units. We use
a learning rate of 0.0005, a training epoch of more than
10,000, and a learning rate of 10~*. We find that using more
than two GNN layers overfits the training data while using
less than two introduces bias in the system. For module M|,
we experiment on hidden units [64,128,256,512]. For mod-
ule M, we experiment on hidden units [8,16,32,64]. The
setup for M, with 128 hidden units and M, with 16 hidden
units performs better for the VH-GNN. For all GNN layers
and GRU layers, we implement 50% dropout to avoid over-
fitting.

We use Python 3.8 to implement the framework. We uti-
lize the open-source deep-learning framework PyTorch ver-
sion 2.0.0 and NVIDIA CUDA 11.4.2 in a Simple Linux
Utility for Resource Management (SLURM) system.

4.4 Evaluation Metrics

We use the following two metrics to evaluate the perfor-
mance of the VH-GNN framework in predicting spatio-
temporal vaccine hesitancy levels for the test data set.

* Root Mean Squared Error (RMSE):

1 ~
= R — 2
RMSE \/ ost > (Hiest(T) = Hiest(T))? (4)
¢ Mean Absolute Error (MAE):
1 ~
MAEzi Hes T _H/eS/T
|test|z‘ test(T) = Hyest(T)| (5

M AF is only used during model training. For the test data
set, RMSE and M AE metrics are utilized to gauge the
model’s predictive performance. Smaller values of RMSE
and M AF indicate better prediction accuracy.

4.5 Baseline Methods

The performance of our combined graph framework is com-
pared with the following baseline methods:

* Linear Regression with Neighbors (LRN): We first
evaluate our model’s performance against the Linear Re-
gression approach, where this baseline method is used
to predict the dependent variable H(T') using input fea-
tures. Linear regression fits a linear model to mini-
mize the residual sum of squared differences between
true and predicted values using linear approximation. To
make a fair comparison, we provide an extra feature,
neighbor’s information, for each node ¢, we calculate
ZjeN(i) hj(t)a(i, j).

* Multi-layer Perceptron (MLP): We also experiment
with this second benchmark method, Multi-layer Percep-
tron (MLP), to assess our model’s effectiveness. This
feedforward neural network architecture is capable of
capturing complex non-linear relationships within data.

* Graph Convolutional Network (GCN): GCN is our
third benchmark method. It uses convolutional archi-
tecture to capture both local and global patterns within
graph-structured data for semi-supervised learning.

* Graph Convolutional Network & Gated Recurrent
Units (GCN-GRU): In this fourth benchmark, we re-
place My module with the GCN in the VH-GNN.

Figure 2 shows the mean output performances of all the
baselines compared to the VH-GNN framework for the tar-
get years 2019 and 2020. The same train and test data
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Figure 2: A comparative analysis between our VH-GNN
and the baseline methods across 2019 and 2020. Figure 2a
and 2b show that our method outperforms alternative ap-
proaches, as evident in both the RMSE and MAE metrics.

sets were used for all models. We always use a batch gra-
dient process to update the model parameters. We employ
model-specific hyperparameters to unlock their full poten-
tial. Results indicate that VH-GNN outperforms all base-
lines in both evaluation metrics. It is also evident that the
VH-GNN performed better for the year 2019 compared to
2020.

The results are also affected by the choice of node connec-
tivity mechanisms. Table 2 shows the performance of VH-
GNN using three G variants for 2019. The VH-GNN per-
forms the best when mobility graph G,,, is used. Hence, the
remaining set of results in this paper for VH-GNN is pro-
duced using G,,.

Figure 3 shows predicted values vs true values for 2019.

| Graph | RMSE | MAE |
Adjacent Graph G, 0.2047 | 0.1487
Distance-based Graph G4 0.1816 | 0.1342
Mobility Graph G, 0.1554 | 0.1019

Table 2: Prediction performance of VH-GNN across three
graphs connectivity mechanisms for the year 2019.

Predicted Value

True Value

Figure 3: Predicted vaccine hesitancy and the true vaccine
hesitancy in the test set for year 2019.

| Ablation Study Setting | RMSE | MAE |
VH-GNN w/o M, module 0.2054 | 0.1434
VH-GNN w/o M, module 0.4557 | 0.3820

Table 3: Ablation study on two setups for the year 2019, 1)
VH-GNN w/o M, module, and 2) VH-GNN w/o M, mod-
ule.

The R? value is 0.61.

4.6 Ablation Study

We conduct an ablation study to understand the role of two
modules of the VH-GNN.

* VH-GNN w/o M, module: In this setup, we only train
the spatial learning module M, with the loss; function
and evaluate the prediction performance only using M.

* VH-GNN w/o M, module: In this setup, we only keep
the sequence learning module, which is the GRU model.
Here, we train M, by using H[est fort=0tot=T—1
and Ht;m»n fort = 0tot = T. It does not consider any
graph structure.

Table 3 shows the prediction performance of the two mod-
ules. Ablation study shows the importance of spatial learn-
ing for node-level vaccine hesitancy forecasting. Although
our combined framework performs better than either of
these configurations, the VH-GNN w/o M, outperforms
VH-GNN w/o M. This indicates the importance of the spa-
tial component in explaining vaccine hesitancy.

4.7 Performance Analysis at the Node Level

The properties of nodes were investigated where VH-GNN
performed poorly. For a comparative analysis, the nodes are
divided into two sets, one where VH-GNN performs poorly
and the other where it performs well. The test nodes are
sorted according to the absolute error between predicted and
true vaccine hesitancy values, and the nodes were divided
into two sets:

¢ Nodes with Large Error, V;: Top 25% nodes, nodes
with large error, where VH-GNN did not perform well.

* Nodes with Small Error, Vg: Rest of the test nodes,
where VH-GNN performs well.



Features | VL | Vs ]
Kids Population 311.62 | 873.24
Vaccine Hesitancy Percentage 0.026 0.033
Population Percentage with Medi- | 0.647 | 0.609
caid
Hispanic Population Percentage 0.006 | 0.016

Table 4: Average values of significant features in the set V7,
(nodes with large errors) and Vg (nodes with small errors).

Vaccine Hesitancy
O = N W s UV O N

Vi Vs

Figure 4: Vaccine hesitancy percentage in two sets, V7, and
Vs.

We investigated features of two sets: V7, and Vg, to see why
the VH-GNN framework does not predict well. We find that
population sizes, vaccine hesitancy percentages, population
percentages with Medicaid insurance, and Hispanic popula-
tions differ between these two sets. Table 4 reports the aver-
age of these features for V7, and Vg sets. Table 4 shows that
the kids’ population sizes are significantly different across
V1, and Vg. The VH-GNN is prone to have large predictive
errors for nodes that have a small population with a high vac-
cine hesitancy level. Further investigation in Figure 4 shows
that VH-GNN also performs well when the vaccine hesi-
tancy percentage is high.

4.8 Forecasting Performance

We test the VH-GNN as a vaccine hesitancy forecasting tool.
For this purpose, we train the VH-GNN until the 7" — 1 time
step, then we use VH-GNN to forecast vaccine hesitancy
percentages for all zip codes at time 7. Figure 5 shows the
forecast vaccine hesitancy percentage. The mean RMSE and
MAE value for this case is 0.1602 and 0.1115.

4.9 Evaluation Metrics to Understand Spatial
Structure

Understanding spatial structure is essential for the VACCH-
ESITANCY problem. We evaluate the performance of the
VH-GNN in capturing spatial structure by using two follow-
ing clustering measures:

e Moran’s-I: It is the measure of global spatial autocorre-
lation. This value ranges from —1 to 1, with O indicat-
ing no autocorrelation; —1 indicating perfect clustering
with dissimilar values, such as clustering of high vac-
cine hesitancy location with the low vaccine hesitancy
location; and 1 indicating perfect clustering with similar
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Figure 5: Vaccine hesitancy forecast for all the zip codes
of Virginia in the first half of 2019. Here, colors represent
vaccine hesitancy percentages.

values, such as clustering of high vaccine hesitancy loca-
tions with high vaccine hesitancy locations. The equation
for the Moran’s-I for a time ¢ is

N 225 225 a0, 5)(hi — H)(h; — H)

Zi Zj a(imj) Zl(hz - H)Q (6)

* Isolation Index: It indicates the level of segregation
within a specific group or cluster compared to the larger
population, with values ranging from 0 (no segregation)
to 1 (full segregation). The equation for the isolation in-
dex for a time ¢ is

N hips
(= )hil (7)
; Sy hips
Our predicted value from the VACCHESITANCY produces

a Moran’s I value of 0.8488 for the year 2019, and the ac-

tual true value results in a value of 0.4580. The predicted

value and the true value both finds that individuals exhibit-
ing higher levels of vaccine hesitancy are more likely to be

situated closely in G,,.

The calculated isolation index from the predicted value

and the true value is 0.0466 and 0.0480 for the year 2019,

both indicates almost no segregation.

5 Conclusions

The VH-GNN framework is able to predict the spatio-
temporal aspects of vaccine hesitancy with a combined GNN
and RNN structure. Our method crucially uses a very large
all payers insurance dataset, and a detailed activity-based
synthetic contact network. Our method outperforms several
baseline methods in predicting vaccine hesitancy at a zip
code level, in terms of the RMSE and MAE evaluation met-
rics.

We also demonstrate the model’s effectiveness at the
node-level data, highlighting the challenges in learning vac-
cine hesitancy for smaller populations. Although GRU is
well-known to handle sequential data, they are computation-
ally expensive and require a lot of data to train. We find that
GRU or neural network alone cannot predict vaccine hesi-
tancy at a zip code level. However, a combination of GNN
and GRU can learn the spatial and temporal aspects of vac-
cine hesitancy and can predict patient refusal at a higher spa-
tial resolution.
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