All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

Epidemiology and outcomes of head trauma in rural and urban populations: A systematic review and meta-analysis

Julia Chequer de Souza MBBS(c)¹, Geoffrey P Dobson PhD FAHA¹, Celine J Lee MBBS(c)¹, and Hayley L Letson PhD¹*

¹College of Medicine & Dentistry, James Cook University, 1 James Cook Drive, Townsville, Queensland, 4811, Australia

Short Title: Rural and Urban Head Trauma

 Email Addresses:
 julia.desouza@my.jcu.edu.au

 geoffrey.dobson@jcu.edu.au
 celine.lee@my.jcu.edu.au

Abstract

Objective: To identify and describe differences in demographics, injury characteristics, and outcomes between rural and urban head injury patients.

Data Sources: CINAHL, Emcare, MEDLINE, and Scopus.

Review Methods: A systematic review and meta-analysis of studies comparing epidemiology and outcomes of rural and urban head trauma was conducted in accordance with PRISMA and MOOSE guidelines.

Results: 36 studies with ~2.5-million patients were included. Incidence of head injury was higher in males, regardless of location. Rates of transport-related head injuries, particularly involving motorized vehicles other than cars, were significantly higher in rural populations (OR:3.63, 95% CI[1.58,8.35], p=0.002), whereas urban residents had more fall-induced head trauma (OR:0.73, 95% CI[0.66,0.81], p<0.00001). Rural patients were 28% more likely to suffer severe injury, indicated by Glasgow Coma Scale (GCS) ≤ 8 (OR:1.28, 95% CI[1.04,1.58], p=0.02). There was no difference in mortality (OR:1.09, 95% CI[0.73,1.61], p=0.067), however, urban patients were twice as likely to be discharged with a good outcome (OR:0.52, 95% CI[0.41,0.67], p<0.00001).

Conclusions: Rurality is associated with greater severity and poorer outcomes of traumatic head injury. Transport accidents disproportionally affect those travelling on rural roads. Future research recommendations include addition of prehospital data, adequate follow-up, standardized measures, and sub-group analyses of high-risk groups, e.g., Indigenous populations.

Keywords: Trauma, head, injury, rural, urban NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

perpetuity. All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

Introduction

Head trauma is a leading cause of morbidity and mortality worldwide and is associated with significant healthcare costs (1, 2, 3, 4). The etiology of head trauma is varied, with vehicle accidents, falls and assaults the most common causes. Patients with traumatic head injury are at increased risk of both short- and long-term mortality and morbidity including cognitive and psychiatric disturbances, reduced quality of life, and permanent disability (5, 6, 7, 8). Several high-risk populations have been identified, including young males and Indigenous people (5, 9, 10, 11, 12).

Another important risk factor is rurality. Within Australia, one-third of the population live in rural areas, and head injuries are the most common injury requiring medical transfer (13). Similarly, an increased incidence of head trauma has been reported in rural populations in North America (14), Asia (15), Europe (16), and Africa (17). What is less clear, however, is differences in outcomes after head trauma for rural and urban patients. While some studies have reported increased mortality in rural areas compared to urban areas (18, 19), others have reported no difference (16, 20), or reduced mortality (21, 22).

Understanding the burden of head trauma and key rural/urban differences is essential to improve patient outcomes, for example, through targeted prevention strategies. The aim of this systematic review and meta-analysis is to identify and describe the differences in demographic and injury characteristics, clinical features, and outcome trends between rural and urban traumatic head injury patients worldwide.

Materials and Methods

Systematic review

This systematic review was conducted and is reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Appendix 1) (23). The protocol was registered and published with PROSPERO, an international register for systematic reviews (CRD42022336874).

Search strategy

All studies that reported epidemiology and outcomes of traumatic head injuries with rural and urban comparisons were included. An independent literature search was conducted in CINAHL, Emcare, MEDLINE and Scopus for publications available up to February 7, 2022. The search strategy is outlined in Appendix 2. Reference lists of studies that were retrieved in full text were hand-searched to identify additional studies, and where necessary, authors of identified studies were contacted for access to full-text articles or additional data. There were no limitations placed on study size or data of publication. Studies published in a language other than English, review articles or commentaries, case studies, conference abstracts, Letters to the Editor, and animal studies were excluded. Studies were not eligible if only one mechanism of injury was analyzed, if no epidemiological data other than outcome was reported, if there was no rural and urban comparison, or if other traumatic injuries, such as cranio-facial or spinal injuries, were not reported separately from head injuries.

Study selection

Following removal of duplicate studies, two investigators independently performed title and abstract screening to identify eligible articles. Full texts of eligible studies were retrieved and

All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

reviewed by the investigators, and a third investigator was consulted in the case of disagreement.

Data extraction

Data were extracted for general characteristics (authors, year, title, journal, publication type), study characteristics (design, follow-up, sample size, patient source, location, definition of rurality, eligible patient identification), patient characteristics (age, sex), injury characteristics (mechanism of injury, injury severity, confirmed pathology, clinical symptoms) and outcome data (mortality, length of hospital stay, discharge status).

Quality assessment

A modified Newcastle-Ottawa tool for quantitative research was used for quality assessment (Appendix 3). The tool included assessments for the following characteristics: representativeness of the study cohort, reporting of demographic data for both rural and urban populations, reporting of incidence/prevalence as well as outcome data, statistical methodology, inclusions of method used for determining injury severity and rural classification, and duration of follow-up. Each study was assessed as low, moderate, or high quality.

Meta-analysis

The meta-analysis was conducted in accordance with the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines (Appendix 4) (24), using Review Manager software (V5.4.1) and a random-effects model. Medians and interquartile ranges (IQR) were converted to means and standard deviations (SD) using the methods and calculator of Wan *et al* (25). Statistical significance was defined as p<0.05. Heterogeneity was determined by a significant Chi² and the I² statistic (I² <25% low, I² = 25-50% moderate, and I² >50% substantial heterogeneity).

Ethics approval

No ethical approval is required because data retrieved and analyzed was from previously published studies in which informed consent or a waiver of consent was obtained by the primary investigators.

Results

Study characteristics and quality assessment

A total of 1,310 studies were evaluated for rural/urban differences in head trauma patients (Fig 1). After title and abstract screening, 90 full-text articles were reviewed. No additional articles were obtained through reference list searching. Six articles were unable to be retrieved despite requests submitted to the authors. Based on our eligibility criteria, a total of 36 studies were included in the meta-analysis, representing 35 different study populations across 14 countries (Fig 1, Table 1). Most of the studies were population-based retrospective cohort studies of \geq 1 year in duration. Of the 36 studies, 15 were conducted in North America (14, 18, 20, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37) and nine in Australia and New Zealand (5, 6, 21, 22, 38, 39, 40, 41, 42). Additional information on study data sources, inclusion/exclusion criteria, and rural/urban classifications, can be found in Appendices 5-7. As per the quality assessment, 17 studies were identified as high quality (6, 14, 16, 19, 20, 29, 30, 32, 34, 37, 38, 39, 40, 41, 42, 43, 44), with the remainder determined to be of moderate quality.

All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

Patient cohort

Seventeen studies included patients of all ages, while 12 reported on pediatric, adolescent, and/or young adult patients only (Table 2) (5, 26, 30, 32, 34, 35, 37, 40, 43, 44, 45, 46). Nine studies, comprising a total of 5,241 patients, included comparisons of patient age between rural and urban populations (6, 11, 16, 17, 31, 35, 37, 39, 43). As demonstrated in Figure 2, there was no significant difference in age at time of head injury between rural and urban patients (MD: 1.10, 95% CI [-3.17, 5.37, p=0.61). Males were over-represented in all cohorts, comprising 62-80% of head injury patients, with no difference between rural and urban areas (OR: 1.02, 95% CI [1.00, 1.04], p=0.11) (Table 2, Fig 3). A subgroup analysis also showed no statistically significant difference between the number of male patients in pediatric/adolescent or adult age groups between rural and urban populations (OR: 1.01, 95% CI [1.00, 1.03], p=0.13; and OR 1.16, 95% CI [0.82, 1.63], p=0.40, respectively) (Fig 3). Injuries of all severities were reported in 22 studies (5, 6, 14, 15, 18, 19, 20, 21, 26, 28, 29, 32, 33, 34, 36, 38, 40, 41, 44, 45, 46, 47), with the remaining studies reporting on either mild or severe traumatic head injury only (Table 2).

Population-adjusted overall incidence rate of traumatic head injury was reported in 12 studies (Table 3) (14, 16, 19, 22, 32, 34, 36, 37, 38, 40, 44, 48). The incidence rate per 100,000 was reported to be higher in rural populations in seven out of the 12 studies (14, 16, 19, 22, 32, 38, 40), with a trend for higher rates in more remote areas (Table 3) (14, 40).

Cause of injury

Transport-related head trauma: Traumatic head injuries caused by transport accidents were 1.3-fold more likely to occur in rural populations than in urban environments (p=0.001) (Fig 4). A subgroup analysis by age groups of 15 studies and 79,558 patients revealed that transport-related head injuries were significantly more common in rural pediatric and adolescent residents compared with their urban counterparts (OR: 1.27, 95% CI [1.10, 1.47], p<0.00001). Four studies reported on different vehicle types, which enabled a further analysis of the types of transport accidents across 10,526 patients (6, 19, 37, 43). The analysis revealed that there was no difference in car or bicycle accidents causing head injury between rural and urban groups (OR: 1.32, 95% CI [0.82, 2.07], p=0.026; and OR: 0.70, 95% CI [0.37, 1.30, p=0.26, respectively) (Fig 5AD). However, patients residing in urban locations were 64% more likely to suffer an injury as a pedestrian than those living rurally (OR: 0.36, 95% CI [0.17, 0.77], p=0.008) (Fig 5B), while head trauma resulting from accidents involving other motorized vehicles, such as all-terrain vehicles (ATVs) and motorcycles, was over 3.5 times more likely to have occurred in a rural setting (OR: 3.63, 95% CI [1.58, 8.35], p=0.002) (Fig 5C).

Other causes of head trauma: A total of 79,478 patients from 15 studies were analyzed for fall-related head injury (5, 6, 16, 19, 22, 32, 37, 38, 39, 40, 41, 42, 43, 46, 49). Urban residents were 27% more likely to sustain head injury following a fall when compared to those from rural areas (OR: 0.73, 95% CI [0.66, 0.81], p<0.00001) (Fig 6). Subgroup analysis by age group shows a particularly high burden of fall-related head trauma in children and adolescents in urban settings (OR: 0.65, 95% CI [0.52, 0.81], p=0.0002).

Assault was investigated as a cause of head trauma in rural and urban populations in 11 studies, representing a total 73,699 patients (5, 6, 16, 17, 19, 22, 38, 39, 40, 42, 43, 49). As shown in Figure 7, no difference was found between urban and rural patients (OR: 0.84, 95% CI [0.59, 1.18], p=0.30). However, when accounting for injury severity, assault-related mild head injury was approximately half as likely to occur rurally (OR: 0.52, 95% CI [0.29, 0.94], p=0.03) (Fig 7). There was no difference in sports injuries or other causes of injury such as work accidents,

All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

exposure to animate and inanimate mechanical forces, or use of firearms, between rural and urban populations (OR: 0.99, 95% CI [0.59, 1.65], p=0.97; and OR: 1.18, 95% CI [0.77, 1.81], p=0.44, respectively) (Fig 8AB).

Injury severity

Rates of severe traumatic head injury between rural and urban populations were reported by five studies, together representing 14,399 patients (19, 21, 32, 34, 46). Rural patients were 28% more likely to have obtained a severe traumatic head injury than urban patients (OR: 1.28, 95% CI [1.04, 1.58], p=0.02) (Fig 9A). However, the mean Glasgow Coma Scale (GCS), which was measured in 1,879 patients from four studies (6, 16, 35, 39), did not show a statistically significant difference between rural and urban populations (MD: -0.25, 95% CI [-0.82, 0.34], p=0.39) (Fig 9B). Rural patients were almost half as likely to have a normal CT following traumatic head injury when compared to urban patients (OR: 0.52, 95% CI [0.41, 0.67], p<0.00001) (Fig 9C). In contrast, the presence of skull fractures and intracranial hemorrhage was comparable across both populations (OR: 0.71, 95% CI [0.17, 2.96], p=0.64; and OR: 1.05, 95% CI [0.68, 1.63], p=0.82, respectively) (Fig 9DE).

Clinical symptoms

Various signs and symptoms associated with traumatic head injury were investigated by these studies. A total of 607 rural and urban patients were reported to have experienced loss of consciousness (LOC) and/or altered level of consciousness (ALOC) across three different studies (17, 37, 43). Meta-analysis revealed a significant disparity between rural and urban patients, with a 5-fold increased risk in the rural population (OR: 5.04, 95% CI [1.08, 23.62], p=0.04) (Fig 10A). Other clinical symptoms, including headache, seizures, and nausea and vomiting, did not differ between rural and urban patients (Fig 10B-D).

Outcomes

Mortality: Mortality was the major outcome measure reported in 16 studies (14, 15, 16, 18, 19, 20, 21, 22, 27, 32, 33, 34, 35, 41, 46, 49). Population-adjusted mortality rates and rate ratios were significantly higher in all rural cohorts, with further increases as level of rurality increased (Table 4) (14, 32, 33). However, meta-analysis of 11 studies including 32,984 patients which reported mortality events, failed to show a statistical difference between rural and urban populations (OR: 1.09, 95% CI [0.73, 1.61], p=0.67) (Fig 11A). Sensitivity analysis involving removal of the Woodward *et al* (22) and Pozzato *et al* (21) cohorts significantly reduced heterogeneity (I² 86% to 29%), and supported the mortality rate and rate ratio data (Table 4), with a 1.5-fold increased risk of mortality in rural patients (OR: 1.49, 95% CI [1.21, 1.84), p=0.00002). There was no evidence of significant publication bias as indicated by the largely symmetrical funnel plot (Fig 11B).

Other outcomes: Discharge status of head trauma patients was reported in three studies, comprising 22,103 patients (Fig 12A) (19, 22, 46). The odds of rural patients suffering severe disability or being in a vegetative state on hospital discharge was not significantly greater when compared to urban patients (OR: 1.42, 95% CI [0.44, 4.62], p=0.56). However, having a good recovery following traumatic head injury was significantly more likely in urban compared with rural residents (OR: 0.53, 95% CI [0.35, 0.81], p=0.003) (Fig 12B). The average length of hospital stay (LOS) for head trauma care was several days shorter for urban patients, however this difference did not reach statistical significance (MD -3.23, 95% CI [-10.08, 3.63], p=0.36) (Fig 12C). Finally, there were no differences in the likelihood of post-injury employment between rural and urban residents (OR: 1.06, 95% CI [0.59, 1.89], p=0.85) (Fig 12D).

All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

Discussion

Head trauma is a global healthcare problem affecting up to 69 million people annually (1). It is a leading cause of morbidity and mortality, and successful treatment requires a time-critical approach (2, 50). Patients in rural areas may be disadvantaged by limited access to acute trauma care, complicated by longer transport times and distances to definitive care (51, 52). We conducted a systematic review and meta-analysis of 36 studies with approximately 2.5 million head trauma patients to address this question and report the following: First, the incidence of traumatic head injury was higher in males, regardless of location. Second, overall prevalence of head trauma was significantly higher in rural populations and involved more transport accidents compared to urban environments. Third, urban traumatic head injury patients were twice as likely to be discharged with a good outcome. These results will now be discussed.

Head trauma is more prevalent in males regardless of geographical location

Our systematic review and meta-analysis showed a higher prevalence of head trauma in males than in females in both rural and urban environments (Table 2). We found males represented 62-80% of head injury patients in all cohorts, and there was no significant difference among pediatric/adolescent or adult age groups (Table 2, Fig 3). Similar to other types of traumatic injury, a higher incidence of head trauma in males is most likely related to an increased likelihood of involvement in high-risk activities, physical altercations, military service and contact sports (11, 17, 53).

The incidence and severity of traumatic head injury is higher in rural areas

This meta-analysis confirmed a higher incidence of head trauma in rural settings compared to urban environments, and further showed that head injuries sustained in rural communities were more severe, indicated by the significantly higher proportion of rural patients with a GCS of 3-8 (Table 3, Fig 9A). Interestingly, a higher severity of injury in rural patients was not reflected in the mean GCS value, which did not significantly differ between rural and urban cohorts (Fig 9B). There are several possible reasons for this disparity. First is the fluctuating nature of GCS observed early after injury (54). Second are factors unrelated to the primary injury, such as the presence of alcohol, drugs, sedation and other medications (55, 56), and third, the challenge of accurate measurement of GCS in children, linguistically diverse people, and people with disabilities or cognitive deficits (38, 44, 54, 55). Furthermore, most of the published studies examined in the present analysis did not include prehospital data, and relied on the hospital admission GCS, which may not be an accurate representation of the true injury severity, particularly in patients with prolonged prehospital transport times.

An alternative to GCS and a more objective assessment of injury severity is non-invasive diagnostic imaging, such as CT. We found non-pathological (normal) CT was significantly more common amongst urban patients (Fig 9C), supporting our previous finding of fewer severe injuries in urban settings. However, this interpretation may be influenced by the greater availability and access to imaging modalities in urban hospitals. Rural hospitals may only perform imaging on more severely injured patients, reducing the number of CTs performed, and therefore the number of normal CT findings recorded (17).

A higher incidence of severe head trauma in rural locations was also supported by the proportion of patients experiencing loss of, or altered, consciousness after head injury, which was five times more prevalent in the rural patients (Fig 10A). Occurrence of other clinical symptoms, such as headache, nausea and vomiting, and seizures, was similar between rural and urban patients, however these are all non-specific and highly subjective, and susceptible to

perpetuity. All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

variable reporting by both patients and healthcare providers. They may also be influenced by medications, comorbidities, transport, and stress. Therefore, these symptoms may be significant when targeting supportive management on scene but provide minimal insight when determining severity.

Head trauma due to transport accidents disproportionately affects young rural residents

Another major finding of our meta-analysis was that transport-related traumatic head injuries were 27% more likely to occur in rural locations (Fig 4). This risk more than doubled for children and adolescents. Head trauma resulting from motorized vehicle accidents (e.g., motorcycles and ATVs) was significantly more common in rural areas (Fig 5C). Several behavioural factors have been proposed as potential contributors to these findings. Cheng et al (2017) (27), Karwat et al (49) and Tesfaw et al (47) suggested lower rates of law-abiding behaviour and higher rates of risk-taking behaviour, including driving under the influence of alcohol, rurally. Greater occupational and recreational ATV use associated with rural farming regions may also account for the higher rate of head injuries resulting from motorized vehicle accidents in rural areas. However, there has been minimal discussion on the environmental factors associated with rural roads. The Centre for Accident Research and Road Safety Queensland have stated that the risk of sustaining a road crash injury increases with the degree of remoteness, with lower rates of safe driving practices contributing to this (57). However, rural areas also have several unique characteristics that predispose drivers to accidents, including lower road quality, unpredictable weather conditions, livestock and wildlife (58). These environmental factors, in addition to human factors, are likely somewhat responsible for the increased risk of transport-related head trauma in rural environments.

Fall-related head trauma is more common in urban populations

Another interesting finding of our meta-analysis was the 2.7-fold greater odds of sustaining a traumatic head injury after a fall in urban populations, with children and adolescents from these areas having almost double the risk of their rural counterparts (Fig 6). Similarly, urban cohorts were twice as likely to sustain a mild head injury due to an assault, despite rural residents being more likely to experience intimate partner violence, which is a common cause of head trauma (59). The increased incidence of both fall-related head trauma, and assault-related mild head injury, may reflect greater health-seeking behaviours and access to healthcare in urban areas, and thereby increased reporting of these injuries.

Mortality from head trauma is similar, but good recoveries are more likely in urban patients Despite showing population-adjusted mortality rates and rate ratios were significantly higher in all rural cohorts, with further increases as level of rurality increased (Table 4, Fig 9A), our meta-analysis involving 11 studies including 32,984 patients showed no statistically significant difference in mortality incidence between rural and urban populations (Fig 11A). Importantly of the studies examined, Gabella *et al* (14) and Reid *et al* (34) were the only studies that specifically reported prehospital mortality. Previous research has established that shorter prehospital times are associated with improved head trauma survival (22, 60), and since rural patients have longer travel times and distances, it is possible they experienced greater prehospital mortality. However, unfortunately these prehospital statistics were not documented in the majority of studies of our meta-analysis. In addition, mortality due to head trauma can occur after hospital discharge and the follow-up time in some studies may not have been sufficient to capture all potential deaths and other complications (30).

Consistent with reduced severity and more normal CT findings, urban patients were 47% more likely to be discharged with a good outcome compared to their rural counterparts (Fig 12B).

All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

The initial analysis revealed no significant difference in severe disability or vegetative states between the two populations, however, a sensitivity analysis involving the exclusion of the Woodward *et al* study (22) revealed that rural residents were more than twice as likely to be discharged from hospital in a vegetative state or with severe disability (Fig 12A). This difference might be related to the standard of prehospital care when the study was conducted in 1984, reducing the chance of traumatic head injury patients even surviving to hospital discharge to be accounted for in this analysis. Moreover, the Woodward *et al* data (22) includes patients discharged to nursing homes, and admission to this type of facility may not accurately reflect the presence of severe head trauma as much as it reflects the multifactorial need for round-the-clock care.

Strengths and limitations

To the best of our knowledge, this is the first time that a quantitative meta-analysis has been conducted to investigate epidemiological and outcome differences between rural and urban traumatic head injury patients. This comprehensive meta-analysis has included 36 studies from 14 countries with data spanning over 40 years. Most of these studies are population-based, which is considered the ideal approach to obtain objective measures and to understand disease patterns (21). Nevertheless, there are a number of limitations inherent in all head trauma research that must be considered. Studies of head injuries typically have considerable heterogeneity due to differences in defining and classifying head trauma, its severity and outcomes (21, 38). Of the 25 analyses performed in this study, 21 (84%) demonstrated substantial heterogeneity, indicated by high I² values. In addition, the studies also varied in their classification of rurality, with some using population measurements whilst others used distance to a specific healthcare facility (Table 1, Appendix 7). Inclusion and exclusion criteria also differed across studies (Appendix 6). We mitigated the impact of heterogeneity as best as possible by using a random effects model in our meta-analysis.

Another limitation of all head trauma research is that mild injuries are frequently underreported. Traumatic head injury is referred to as a silent epidemic because mild injuries can present with few symptoms or sequelae and consequently, patients may not present to a healthcare facility, or are exclusively treated in outpatient settings (26, 30, 38). Therefore, research sourcing patients exclusively from hospitals or death registries, which was the case for 95% of the studies included in this meta-analysis, will potentially underreport mild cases. This issue is amplified when considering the barriers to accessing healthcare in rural areas. Therefore, it is likely that the true incidence of traumatic head injury, particularly in rural areas, is underestimated and skewed to higher severities.

Lastly, we have found that rural head trauma research lacks Indigenous representation in its datasets, preventing important subgroup analysis. Only five studies reported on Indigenous status in their patient cohorts (21, 26, 32, 38, 42), however, none evaluated rural/urban differences in this specific population. This is a concern because not only do Indigenous Peoples often represent a greater proportion of rural communities than urban, but they also experience significant health disparities as a result. In Australia, First Nations people have, on average, a life expectancy 10 years shorter than non-Indigenous Australians, and 15 years less if they live in remote or very remote areas (51, 61). Previous studies have shown Indigenous Australians and Americans are disproportionately affected by head trauma (9, 12, 62), however, the specific contribution of rurality has not been assessed. Therefore, it is critical to define the impact that ethnicity may have as a risk factor for traumatic head injury, particularly to develop acute care guidelines and preventative interventions.

All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

Recommendations for future research

Despite these limitations, ongoing epidemiological head trauma research is vital for identifying potential targets for all levels of prevention and management. We encourage the trauma research community to utilise standard definitions and classifications for head injury diagnosis, severity, and outcomes. Mortality alone should not be the only outcome measure reported because it does not consider the significant disability burden among survivors. Additionally, we recommend the inclusion of community, primary care, and other prehospital data, with adequate follow-up data. Finally, we strongly recommend the identification and subgroup analysis of Indigenous patients in datasets, and the use of population-based classifications for rurality. This will more accurately define rural/urban disparities associated with traumatic head injury and facilitate the development of evidence-based targeted interventions.

Conclusions

Rurality is associated with greater incidence, severity, and poorer outcomes of traumatic head injury. Transport accidents are a significant cause of head trauma in rural environments. Future research should include primary care and prehospital data, as well as adequate follow-up for accurate incidence and mortality rates. The use of standardized severity and rural classifications, as well as the inclusion of Indigenous subgroup analyses are highly encouraged in future head trauma studies.

Disclosure of Interest: The authors report there are no competing interests to declare.

Funding: This research received no funding from public, commercial, or not-for-profit sectors.

Data Availability Statement: This systematic review and meta-analysis is a synthesis of existing published data, openly available in cited references.

All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

References

1. Dewan MC, Mummareddy N, Wellons JC, 3rd, Bonfield CM. Epidemiology of global pediatric traumatic brain injury: qualitative review. *World Neurosurg*. 2016;91:497-509.

2. Lystad RP, Cameron CM, Mitchell RJ. Excess mortality among adults hospitalized with traumatic brain injury in Australia: a population-based matched cohort study. *J Head Trauma Rehabil.* 2019;34(3):E1-E9.

3. Blaya MO, Raval AP, Bramlett HM. Traumatic brain injury in women across lifespan. *Neurobiol Dis.* 2022:105613.

4. Ponsford JL, Spitz G, Cromarty F, Gifford D, Attwood D. Costs of care after traumatic brain injury. *J Neurotrauma*. 2013;30(17):1498-505.

5. Berry JG, Jamieson LM, Harrison JE. Head and traumatic brain injuries among Australian children, July 2000–June 2006. *Inj Prevention*. 2010;16(3):198-202.

6. Ponsford J, Olver J, Ponsford M, Schönberger M. Two-Year Outcome following traumatic brain injury and rehabilitation: a comparison of patients from metropolitan Melbourne and those residing in regional Victoria. *Brain Impair*. 2012;11(3):253-61.

7. Zhang J, Zhang Y, Zou J, Cao F. A meta-analysis of cohort studies: traumatic brain injury and risk of Alzheimer's Disease. *PloS one*. 2021;16(6):e0253206.

8. Downing MG, Hicks AJ, Braaf S, Myles DB, Gabbe BJ, Ponsford J. "It's been a long hard road": challenges faced in the first three years following traumatic brain injury. *Disabil Rehabil*. 2022: 44(24):7439-7448.

9. Esterman A, Thompson F, Fitts M, Gilroy J, Fleming J, Maruff P, Clough A, Bohanna I. Incidence of emergency department presentations for traumatic brain injury in Indigenous and non-Indigenous residents aged 15-64 over the 9-year period 2007-2015 in North Queensland, Australia. *Inj Epidemiol.* 2018;5(1):40.

10. Katzenellenbogen JM, Atkins E, Thompson SC, Hersh D, Coffin J, Flicker L, Hayward C, Ciccone N, Woods D, et al. Missing voices: Profile, extent, and 12-month outcomes of nonfatal traumatic brain injury in Aboriginal and non-Aboriginal adults in Western Australia using linked administrative records. *J Head Trauma Rehabil*. 2018;33(6):412-23.

11. Karwat ID, Gorczyca R, Krupa S. Causes and consequences of head injuries among rural population hospitalized in the Ward for Multi-Organ Injuries. I. demographic and social structure. *Ann Agric Environ Med.* 2009;16(1):15-22.

12. Rutland-Brown W, Wallace LJD, Faul MD, Langlois JA. Traumatic brain injury hospitalizations among American Indians/Alaska Natives. *J Head Trauma Rehab*. 2005;20:205–14.

13. Gupta R, Rao S. Major trauma transfer in Western Australia. ANZ J Surg. 2003;73(6):372-5.

14. Gabella B, Hoffman RE, Marine WW, Stallones L. Urban and rural traumatic brain injuries in Colorado. *Ann Epidemiol.* 1997;7(3):207-12.

15. Agrawal A, Munivenkatappa A, Rustagi N, Mohan P, Subrahmanyan BV. Epidemiological characteristics affecting outcome in traumatic brain injury. *J Med Soc.* 2017;31(1).

16. Andelic N, Anke A, Skandsen T, Sigurdardottir S, Sandhaug M, Ader T, Roe C. Incidence of hospital-admitted severe traumatic brain injury and in-hospital fatality in Norway: a national cohort study. *Neuroepidemiology*. 2012;38(4):259-67.

17. Maier D, Njoku I, Jr., Schmutzhard E, Dharsee J, Doppler M, Hartl R, Winkler AS. Traumatic brain injury in a rural and an urban Tanzanian hospital: a comparative, retrospective analysis based on computed tomography. *World Neurosurg*. 2014;81(3-4):478-82.

Author's Own Manuscript

18. Brown JB, Kheng M, Carney NA, Rubiano AM, Puyana JC. Geographical disparity and traumatic brain injury in America: rural areas suffer poorer outcomes. *J Neurosci Rural Pract.* 2019;10(1):10-5.

19. Chiu W-T, Huang S-J, Tsai S-H, Lin J-W, Tsai M-D, Lin T-J, Huanh WCW. The impact of time, legislation, and geography on the epidemiology of traumatic brain injury. *J Clin Neurosci.* 2007;14(10):930-5.

20. Chapital AD, Harrigan RC, Davis J, Easa D, Withy K, Yu M, et al. Traumatic brain injury: outcomes from rural and urban locations over a 5-year period (Part 1). *Hawaii Med J*. 2007;66(12):318-21.

21. Pozzato I, Tate RL, Rosenkoetter U, Cameron ID. Epidemiology of hospitalised traumatic brain injury in the state of New South Wales, Australia: a population-based study. *Aust N Z J Public Health*. 2019;43(4):382-8.

22. Woodward A, Dorsch MM, Simpson D. Head injuries in country and city. *Med J Aust*. 1984;141(1):13-7.

23. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71.

24. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA*. 2000;283(15):2008-12.

25. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol*. 2014;14:135.

26. Asemota AO, George BP, Bowman SM, Haider AH, Schneider EB. Causes and trends in traumatic brain injury for United States adolescents. *J Neurotrauma*. 2013;30(2):67-75.

27. Cheng P, Yin P, Ning P, Wang L, Cheng X, Liu Y, Schwebel DC, Liu J, Qi J, Hu G, et al. Trends in traumatic brain injury mortality in China, 2006-2013: a population-based longitudinal study. *PLoS Med.* 2017;14(7):e1002332.

28. Daugherty J, Zhou H, Sarmiento K, Waltzman D. Differences in state traumatic brain injury-related deaths, by principal mechanism of injury, intent, and percentage of population living in rural areas - United States, 2016-2018. *MMWR Morb Mortal Wkly Rep.* 2021;70(41):1447-52.

29. Gontkovsky ST, Sherer M, Nick TG, Nakase-Thompson R, Yablon SA. Effect of urbanicity of residence on TBI outcome at one year post-injury. *Brain Inj.* 2006;20(7):701-9.

30. Graves JM, Mackelprang JL, Moore M, Abshire DA, Rivara FP, Jimenez N, Fuentes M, Vavilava MS. Rural-urban disparities in health care costs and health service utilization following pediatric mild traumatic brain injury. *Health Serv Res.* 2019;54(2):337-45.

31. Johnstone B, Price T, Bounds T, Schopp LH, Schootman M, Schumate D. Rural/urban differences in vocational outcomes for state vocational rehabilitation clients with TBI. *NeuroRehabilitation*. 2003;18(3):197-203.

32. Leonhard MJ, Wright DA, Fu R, Lehrfeld DP, Carlson KF. Urban/rural disparities in Oregon pediatric traumatic brain injury. *Inj Epidemiol*. 2015;2:32.

33. Ratliff H, Korst G, Moth J, Jupiter D. Geographical variation in traumatic brain injury mortality by proximity to the nearest neurosurgeon. *J Surg Res.* 2021;259:480-6.

34. Reid SR, Roesler JS, Gaichas AM, Tsai AK. The epidemiology of pediatric traumatic brain injury in Minnesota. *Arch Pediatr Adolesc Med*. 2001;155(7):784-9.

35. Robertson BD, McConnel CE. Town-level comparisons may be an effective alternative in comparing rural and urban differences: a look at accidental traumatic brain injuries in North Texas children. *Rural Remote Health*. 2011;11(1):1521.

Author's Own Manuscript

36. Schootman M, Fuortes LJ. Ambulatory care for traumatic brain injuries in the US, 1995-1997. *Brain Inj.* 2000;14(4):373-81.

37. Stewart TC, Gilliland J, Fraser DD. An epidemiologic profile of pediatric concussions: identifying urban and rural differences. *J Trauma Acute Care Surg.* 2014;76(3):736-42.

38. Feigin VL, Theadom A, Barker-Collo S, Starkey NJ, McPherson K, Kahan M, Dowell A, Brown P, Parag V, Kydd J, et al. Incidence of traumatic brain injury in New Zealand: a population-based study. *Lancet Neurol*. 2013;12(1):53-64.

39. Harradine PG, Winstanley JB, Tate R, Cameron ID, Baguley IJ, Harris RD. Severe traumatic brain injury in New South Wales: comparable outcomes for rural and urban residents. *Med J Aust*. 2004;181(3):130-4.

40. Harrison JE, Berry JG, Jamieson LM. Head and traumatic brain injuries among Australian youth and young adults, July 2000-June 2006. *Brain Inj.* 2012;26(7-8):996-1004.

41. Ring IT, Berry G, Dan NG, Kwok B, Mandryk JA, North JB, Selecki BI, Sewell MF, Simpson DA, Stening WA, et al. Epidemiology and clinical outcomes of neurotrauma in New South Wales. *Aust N Z J Surg.* 1986;56(7):557-66.

42. Simpson GK, Daher M, Hodgkinson A, Strettles B. Comparing the injury profile, service use, outcomes, and comorbidities of people with severe TBI across urban, regional, and remote populations in New South Wales: a multicentre study. *J Head Trauma Rehabil*. 2016;31(2):E26-38.

43. Chan HC, Aasim WA, Abdullah NM, Naing NN, Abdullah JM, Saffari MH, Osman A. Characteristics and clinical predictors of minor head injury in children presenting to two Malaysian accident and emergency departments. *Singapore Med J.* 2005;46(5):219-23.

44. Halldorsson JG, Flekkoy KM, Gudmundsson KR, Arnkelsson GB, Arnarson EO. Urban-rural differences in pediatric traumatic head injuries: a prospective nationwide study. *Neuropsychiatr Dis Treat*. 2007;3(6):935-41.

45. Cheng P, Li R, Schwebel DC, Zhu M, Hu G. Traumatic brain injury mortality among U.S. children and adolescents ages 0-19years, 1999-2017. *J Safety Res.* 2020;72:93-100.

46. Chiang M-F, Chiu W-T, Chao HJ, Chen W-L, Chu S-F, Chen S-J, Hung C-C, Tsai S-H. Head injuries in adolescents in Taiwan: a comparison between urban and rural groups. *Surg Neurol.* 2006;66:S14-S9.

47. Tesfaw A, Eshetu M, Teshome F, Fenta E, Gelaw M, Mihret G, Atiklt G, Yosef T. Prevalence of head injury among trauma patients at Debre Tabor Comprehensive Specialized Hospital, North Central Ethiopia. *Open Access Surg.* 2021;Volume 14:47-54.

48. Yates PJ, Williams WH, Harris A, Round A, Jenkins R. An epidemiological study of head injuries in a UK population attending an emergency department. *J Neurol Neurosurg Psychiatr.* 2006;77(5):699-701.

49. Karwat ID, Krupa S, Gorczyca R. Causes and consequences of head injuries among rural inhabitants hospitalised in a Multi-organ Injury Ward. II. circumstances, types and consequences of head injuries. *Ann Agri Environ Med*. 2009;16(1):23-9.

50. Fatovich DM, Phillips M, Jacobs IG, Langford SA. Major trauma patients transferred from rural and remote Western Australia by the Royal Flying Doctor Service. *J Trauma*. 2011;71(6):1816-20.

51. Dobson GP, Gibbs C, Poole L, Butson B, Lawton LD, Morris JL, Letson HL. Trauma care in the tropics: addressing gaps in treating injury in rural and remote Australia. *Rural Remote Health*. 2022;22(1):6928.

52. Fatovich DM, Jacobs IG. The relationship between remoteness and trauma deaths in Western Australia. *J Trauma*. 2009;67(5):910-4.

53. Frost RB, Farrer TJ, Primosch M, Hedges DW. Prevalence of traumatic brain injury in the general adult population: a meta-analysis. *Neuroepidemiology*. 2013;40(3):154-9.

Author's Own Manuscript

54. Kornbluth J, Bhardwaj A. Evaluation of coma: a critical appraisal of popular scoring systems. *Neurocrit Care*. 2011;14(1):134-43.

55. Hawryluk GW, Manley GT. Classification of traumatic brain injury: past, present, and future. *Handb Clin Neurol*. 2015;127:15-21.

56. Rundhaug NP, Moen KG, Skandsen T, Schirmer-Mikalsen K, Lund SB, Hara S, Vik A. Moderate and severe traumatic brain injury: effect of blood alcohol concentration on Glasgow Coma Scale score and relation to computed tomography findings. *J Neurosurg*. 2015;122(1):211-8.

57. Centre for Accident Research & Road Safety Queensland. Rural and remote road safety [Internet]. Brisbane: Queensland University of Technology; 2021 Apr [cited 2022 Sep 1]. Available from https://research.gut.edu.au/carrsq/publications/.

58. Peiris S, Berecki-Gisolf J, Chen B, Fildes B. Road trauma in regional and remote Australia and New Zealand in preparedness for ADAS technologies and autonomous vehicles. *Sustainability*. 2020;12(11):4347.

59. Edwards KM. Intimate partner violence and the rural-urban-suburban divide: myth or reality? A critical review of the literature. *Trauma Violence Abuse*. 2015;16(3):359-73.

60. Dinh MM, Bein K, Roncal S, Byrne CM, Petchell J, Brennan J. Redefining the golden hour for severe head injury in an urban setting: the effect of prehospital arrival times on patient outcomes. *Injury*. 2013;44(5):606-10.

61. Carson E, Sharmin S, Maier AB, Meij JJ. Comparing indigenous mortality across urban, rural and very remote areas: a systematic review and meta-analysis. *Int Health*. 2018;10(4):219-27.

62. Lukaszyk C, Harvey LA, Sherrington C, Close JC, Coombes J, Mitchell RJ, Moore R, Ivers R. Fall-related hospitalisations of older Aboriginal and Torres Strait Islander people and other Australians. *Med J Aust*. 2017;207(1):31-5.

63. Goodall CR, Kafadar K, Tukey JW. Computing and using rural versus urban measures in statistical applications. I. 1998;52(2):101-11.

64. Goldsmith HF, Puskin D, Stiles DJ, editors. Improving the operational definition of "rural areas" for Federal programs1997.

65. Barell V, Aharonson-Daniel L, Fingerhut LA, Mackenzie EJ, Ziv A, Boyko V, Abargel A, Avitzour M, Heruti R. An introduction to the Barell body region by nature of injury diagnosis matrix. *Inj Prev*. 2002;8(2):91-6.

APPENDIX 1: PRISMA Checklist

Section/topic	#	# Checklist item			
		TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1		
		ABSTRACT			
Structured summary	2 participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.		2-3		
	-	INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4		
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4		
	_	METHODS			
Protocol and registration	5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.		5		
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6		
Information sources	on sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.		5		
Search	8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.		Supplementary Table 2		
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6, Fig 1		
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining nd confirming data from investigators.			
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.			
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6, Supplementary Table 3		

Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6			
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	6-7			
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6, Supplementary Table 3			
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	6-7			
		RESULTS				
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8, Fig 1			
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.				
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).				
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.				
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-12, Fig 2-12			
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8, 12, Table 1, Fig 11B			
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-10, 12, Fig 3, 4, 6, 7			
	_	DISCUSSION				
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13-17			
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	17-19			
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19			
		FUNDING				
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	1			

Author's Own Manuscript

Database Searched	Search Strategy	
CINAHL		
<1982 to February 07, 2022>		
Ovid Emcare	1 exp head injury/	
<1995 to 2022 Week 4>	2 exp rural health/ or exp rural population/	
	3 1 and 2	
	4 limit 3 to (human and English language)	
Ovid MEDLINE [®] and Epub Ahead of	1 exp Craniocerebral Trauma/	
Print, In-Process, In-Data-Review & Other	2 exp Rural Health/ or exp Rural Population/	
Non-Indexed Citations, Daily and	3 1 and 2	
Versions <1946 to February 04, 2022>	4 limit 3 to (English language and humans)	
Scopus	("head injur*" OR "head trauma" OR "traumatic brai	n
<1788 to February 07, 2022>	injur*" OR tbi) AND (rural OR remote) AND (I	.IMIT-
	TO (DOCTYPE, "ar")) AND (LIMIT-TO (SUBJA	AREA
	"MEDI") OR LIMIT-TO (SUBJAREA, "NEUR"))	AND
	(LIMIT-TO(LANGUAGE, "English")) AND (LI	MIT-
	TO (EXACTKEYWORD, "Human") OR LIMIT-TO) (
	EXACTKEYWORD, "Humans"))	

CINAHL, Cumulative Index of Nursing and Allied Health; EBSCO, Elton B. Stephens Company; TBI, traumatic brain injury.

Author's Own Manuscript

APPENDIX 3: Modified Newcastle-Ottawa Quality Assessment Scale

Sele	ction	
1	Is the study population likely to be representative of the whole population?	
2	Was the non-exposed cohort (urban population) sourced from the same state/country or database?	
3	Was the exposure ascertained through secure records, i.e., confirmed medical record?	
4	Does the study specify the source of data?	
5	Was the sample size appropriate for each cohort for statistical comparison of rural and urban populations?	
6	Are inclusion and exclusion criteria clearly outlined?	
7	Is the study population specifically sought for the purpose of the study i.e., not part of a larger shared database?	
8	Is the date range of the data set clearly stated?	
Con	nparability	
9	Is the research methodology clearly stated?	
10	Is the data collection methodology clearly stated?	
11	Is the statistical methodology appropriate?	
12	Does the study report demographics for both rural and urban populations to enable comparison?	
13	Does the study report incidence/prevalence as well as mortality/other outcome measure?	
14	Does the study state the method of determining head injury severity?	
15	Does the study state the method of determining urban and rural classifications?	
Out	come	
16	Are the outcomes clearly stated and discussed in relation to the data collection?	
17	Does the study report findings in relation to original aims?	
18	Was follow-up long enough for outcomes to occur without missing data (e.g., mortality, length of stay)?	
19	Were the differences between groups clinically meaningful? (i.e., was the clinical significance reported in addition to statistical significance)	
20	Does the study account for cofounding factors and is it considered in the analysis?	

Score	/20
Low quality Moderate quality High quality	<10 10-15 >15

Author's Own Manuscript

APPENDIX 4: MOOSE Checklist for Meta-analyses of Observational Studies

Item	Recommendation	Reported on Page No
Reportin	g of background should include	
1	Problem definition	4
2	Hypothesis statement	Not applicable
3	Description of study outcome(s)	4
4	Type of exposure or intervention used	Not applicable
5	Type of study designs used	Table 1
6	Study population	Table 1-2
Reportin	g of search strategy should include	
7	Qualifications of searchers (eg, librarians and investigators)	1 (Title page)
8	Search strategy, including time period included in the synthesis and key words	5, Appendix 2
9	Effort to include all available studies, including contact with authors	5
10	Databases and registries searched	5, Appendix 2
11	Search software used, name and version, including special features used	5, Appendix 2
12	Use of hand searching (eg, reference lists of obtained articles)	5
13	List of citations located and those excluded, including justification	8, Fig 1
14	Method of addressing articles published in languages other than English	5
15	Method of handling abstracts and unpublished studies	5
16	Description of any contact with authors	5, 8, Fig 1
Reportin	g of methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	5
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	5-6
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	Table 3-4
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	6, Appendix 3
22	Assessment of heterogeneity	6-7
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta- analysis) in sufficient detail to be replicated	6-7
24	Provision of appropriate tables and graphics	Table 1-4 Fig 1-12 Appendices 5-7
Reportin	g of results should include	
25	Graphic summarizing individual study estimates and overall estimate	Fig 2-12
26	Table giving descriptive information for each study included	Table 1-2
27	Results of sensitivity testing (eg, subgroup analysis)	8-10, 12, Fig 3, 4, 6, 7

perpetuity. All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

28	Indication of statistical uncertainty of findings	8-12				
Reporting	Reporting of discussion should include					
29	29Quantitative assessment of bias (eg, publication bias)8, 12, Table 1, Fig 11E					
30	Justification for exclusion (eg, exclusion of non-English language citations) 5, Fi					
31	Assessment of quality of included studies	8, Table 1				
Reporting	Reporting of conclusions should include					
32	Consideration of alternative explanations for observed results	13-19				
33	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	17-19				
34	Guidelines for future research	19				
35	Disclosure of funding source	1				

From: Stroup DF, Berlin JA, Morton SC, et al, for the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. Meta-analysis of Observational Studies in Epidemiology. A Proposal for Reporting. *JAMA*. 2000;283(15):2008-2012. doi: 10.1001/jama.283.15.2008.

Author	Year	Data Source(s)
Agrawal et al (14)	2017	Prospective collection (single tertiary hospital)
Andelic et al (16)	2012	Analysis of data from prospective population-based multicentre study
Asemota et al (26)	2013	HCUP-NIS
Berry et al (5)	2010	AIHW NHMD
Brown et al (18)	2019	CDC WISQARS TM
Chan et al (43)	2005	Prospective collection (2 hospitals)
Chapital et al (20)	2007	Queen's Medical Center trauma database
Cheng et al (27)	2017	CDC WONDER
Cheng et al (45)	2020	China DSP
Chiang et al (46)	2006	Taiwan Head Injury Registry + hospital records (24 hospitals)
Chiu et al (19)	2007	Prospective collection (26 hospitals)
Daugherty et al (28)	2021	CDC NVSS
Feigin et al (38)	2013	CT/MRI records, hospital discharge registers, private hospitals, GP practices, rehabilitation centres, outpatient clinics, coroner/autopsy records, rest homes, community health services, schools, sports centres, ambulance services, prison, ACC database, death certificates, hospital separation data
Gabella et al (15)	1997	Colorado surveillance system (hospital discharge data + death certificate data)
Gontkovsky et al (29)	2006	NIDRR TBI Model System + participant/family member interviews
Graves et al (30)	2019	MarketScan CCAE
Halldorsson et al (44)	2007	Icelandic hospitals + EDs + healthcare centres + death register
Harradine et al (39)	2004	Prospective collection (11 rehabilitation units)
Harrison et al (40)	2012	AIHW NHMD
Johnstone et al (31)	2003	Missouri Division of Vocational Rehabilitation
Karwat et al ^{\dagger} (11, 49)	2009	Lublin Regional Specialist Hospital records
Leonhard et al (32)	2015	Oregon Trauma registry
Maier et al (17)	2014	CT/MRI records (2 hospitals)
Ponsford et al (6)	2012	Prospective collection (single rehabilitation centre)
Pozzato et al (21)	2019	NSW Department of Health hospital data
Ratliff et al (33)	2021	CDC WISQARS TM
Reid et al (34)	2001	MDH TBI Registry + death certificates
Ring et al (41)	1986	NSW Hospital Morbidity Statistics + hospital indices (133 hospitals) + death certificates
Robertson & McConnel (35)	2011	Children's Medical Center Dallas trauma census
Schootman & Fuortes (36)	2000	NAMCS & NHAMCS
Simpson et al (42)	2016	Prospective collection (11 rehabilitation units) + NSW electronic database
Stewart et al (37)	2014	NACRS
Tesfaw et al (47)	2021	Prospective collection (single tertiary hospital)
Woodward et al (22)	1984	South Australian Health Commission hospital separation discharges/transfers/deaths
Yates et al (48)	2006	Royal Devon and Exeter Hospital ED database

[†] Karwat et al (2009A and 2009B) report different outcomes on the same patient population, and are therefore considered as one study. HCUP-NIS, Healthcare Cost and Utilization Project Nationwide Inpatient Sample; AIHW NHMD, Australian Institute of Health and Welfare National Hospital Morbidity Database; CDC, Centers for Disease Control and Prevention; WISQARSTM, Web-based Injury Statistics Query and Reporting; WONDER, Wide-ranging Online Data for Epidemiological Research; DSP, Disease Surveillance Points; NVSS, National Vital Statistics System; CT, computed tomography; MRI, magnetic resonance imaging; GP, General Practitioner; ACC, Accident Compensation Corporation; NIDRR, National Institute in Disability and Rehabilitation Research; TBI, traumatic brain injury; CCAE, Commercial Claims and Encounters database; ED, emergency department; NSW, New South Wales; MDH, Minnesota Department of Health; NAMCS, National Ambulatory Care Survey; NHAMCS, National Hospital Ambulatory Care Survey; NACRS, National Ambulatory Care Reporting System.

APPENDIX 6: Inclusion and Exclusion Criteria

Author	Year	Inclusion Criteria	Exclusion Criteria		
Agrawal et al (14)	2017	Consent provided	NR		
Andelic et al (16)	2012	≥16 yr; Norwegian resident; admitted within 72 h after injury; ICD-10 S06.0-S06.9; severe TBI	Injured abroad; progressive neurological diseases/injuries; severe psychiatric diseases; severe alcohol &/or narcotics abuse, homeless; no consent		
Asemota et al (26)	2013	10-19 yr; primary or secondary diagnosis of TBI; ICD-9-CM 800.00-804.09, 850.0-854.19	Interhospital transfers; discharged directly from ED; treated in outpatient settings		
Berry et al (5)	2010	0-14 yr; ICD-9-CM 800.0-801.9, 803.0-804.9, 850.0-854.1	Inward transfers from another acute care hospital		
Brown et al (18)	2019	CDC-recommended ICD-10 codes [¶]	NR		
		2-18 yr; Isolated closed HI, mechanism witnessed & reported to police, HI symptoms, initial GCS	History of bleeding diatheses or neurological disorders; multiple trauma;		
Chan et al (43)	2005	\geq 13 improving to 15, no abnormal or focal finding on neurological examination within 24 h of injury	intentional head trauma; speech disturbances; altered mental status before incident		
Chapital et al (20)	2007	ICD-9-CM 800.0-801.9, 803.0-804.9, 850.0-854.1, 959.01	Second admission during study period		
Cheng et al (27)	2017	CDC-recommended ICD-10 codes	NR		
Cheng et al (45)	2020	0-19 yr; CDC-recommended ICD-10 codes [¶]	NR		
Chiang et al (46)	2006	13-18 yr, CT-diagnosed HI	NR		
Chiu et al (19)	2007	Concussion, skull fracture, neurological & cognitive deficit, PTA, neurological sequelae, ICH	NR		
Daugherty et al (28)	2021	CDC-recommended ICD-10 codes	NR		
Feigin et al (38)	2013	WHO criteria: acute brain injury resulting from mechanical energy to head from external physical forces. Presence of 1/more of: confusion/disorientation, LOC, PTA, other neurological abnormalities	NR		
Gabella et al (15)	1997	Colorado resident; injury occurred in Colorado; ICD-9-CM 800.0-801.9, 803.0-804.9, 850.0-854.1	Brain injuries resulting from a disease process or decreased O ₂ supply to brain		
Gontkovsky et al (29)	2006	≥16 yr; in-patient rehabilitation patients with medically-documented TBI admitted to NIDRR TBI Model System centre within 72 h discharge from acute care; treatment at Level 1 trauma centre within 24 h injury	I Not contactable to 1-yr follow-up; missing data; residing out of state or in jail		
Graves et al (30)	2019	<18 yr; mTBI diagnosis; ICD-9-CM 800.0-801.9, 803.0-804.9, 850.0-854.1, 950.1-950.3, 995.55. Continuously enrolled for at least 180 days prior to and after index TBI diagnosis.	Cases missing region/MSA data; index TBI date coincident with a hospital admission (considered more severe injuries); cases with extremity AIS ≥3.		
Halldorsson et al (44)	2007	0-19 yr; ICD-9 850-854	NR		
Harradine et al (39)	2004	16-65 yr; >7 days PTA; de-novo TBI in previous 6 months; admitted to BIRP	No consent; previous TBI/acquired brain injury; past medical history likely to affect recovery		
Harrison et al (40)	2012	15-24 yr; received in-patient care at public & private hospitals; CDC-recommended ICD-10 codes	NR		
Johnstone et al (31)	2003	Qualified for VR services based on primary/secondary TBI diagnosis	Did not complete VR service		
Karwat et $al^{\dagger}(11, 49)$	2009	Medically-diagnosed HI; hospitalized >1 day	NR		
Leonhard et al (32)	2015	0-19 yr; ICD-9-CM [§] + 959.01; meets prehospital triage criteria, or requires surgeon's evaluation or treatment or activation of trauma team, or requires transfer to a trauma centre, or ISS >8, death, major operative procedure to head/chest/abdomen within 6 h or admitted to ICU within 24 h	Out-of-state location of injury; non-trauma hospitals; no transfer to trauma centre made; prehospital death		
Maier et al (17)	2014	Hospitalized with CT-confirmed TBI diagnosis	Cranial CT scanning performed for research purposes concerning epilepsy & neurocysticercosis.		
Ponsford et al (6)	2012	In-patient at Epworth Rehabilitation Centre; participated in 2-yr follow-up	Residing interstate or overseas		
Pozzato et al (21)	2019	NSW resident; 1st hospital admission of TBI; CDC-recommended ICD-10 codes (S01.0-S07.1 only) [¶]	Non-residents of NSW; non-acute episodes of care; subsequent admissions		
Ratliff et al (33)	2021	CDC-recommended ICD-10 codes [®]	Counties with 20 or fewer TBI deaths		
Reid et al (34)	2001	0-19 yr; Minnesota resident; TBI resulting in hospitalization/death; ICD-9-CM codes 800.0-801.9, 803.0-804.9, 850.0-854.1, 873.0-873.9	NR		
Ring et al (41)	1986	Neurotrauma patients hospitalized in NSW with EDH, ASDH, CSDH, or other HI leading to death; ICD-8 851-3 or 800-804, 850 or 854 and operation code 1-19, 84 or 888 or 430-438	Hospitals outside the boundaries of NSW		
Robertson & McConnel (35)	2011	0-18 yr; severe TBI; ICD-9 800, 801, 802, 804, 850-854, 959.01	Injury not accidental (abuse, assault, or injury through other purposeful means)		
Schootman & Fuortes	2000	ICD-9-CM 800-801, 803-804, 850-854	NR		
(36)					

Stewart et al (37)	2014	<18 yr; concussion; ICD-10-CA S06 & R40.29, R41.1-3, R41.8, S00-T98	Penetrating HI; return visits for re-evaluation of same concussion
Tesfaw et al (47)	2021	>18 yr; systematic random sampling of trauma patients admitted to DTTRH ED	NR
Woodward et al (22)	1984	Hospitalised; ICD-9-CM 800.0-804.9, 850.0-854.9	Direct admissions from another hospital
Yates et al (48)	2006	NHS Centre for Clinical Coding and Classification codes 18, 19	NR

[†] Karwat et al (2009A and 2009B) report different outcomes on the same patient population, and are therefore considered as one study. ¹ S01.0-S01.9, S02.0, S02.1, S02.3, S02.7-S02.9, S04.0, S06.0-S06.9, S07.0, S07.1, S07.8, S07.9, S09.7-S09.9, T01.0, T02.0, T04.0, T06.0, T90.1, T90.2, T90.4, T90.5, T90.8, T90.9; [§] Barell et al (65). NR, none reported; ICD, International Classification of Diseases; TBI, traumatic brain injury; CM, Clinical Modification; ED, emergency department; CDC, Centers for Disease Control and Prevention; HI, head injury; CT, computed tomography; PTA, post-traumatic amnesia; ICH, intracranial haemorrhage; WHO, World Health Organization; LOC, loss of consciousness; NIDRR, National Institute in Disability and Rehabilitation Research; mTBI, mild traumatic brain injury; MSA, Metropolitan Statistical Area; AIS, Abbreviated Injury Score; BIRP, Brain Injury Rehabilitation Program; VR, Vocational Rehabilitation; ISS, Injury Severity Score; ICU, intensive care unit; NSW, New South Wales; EDH, extradural haematoma; ASDH, acute and subacute subdural haematoma; CSDH, chronic subdural haematoma; CA, Canada; DTTRH, Debre Tabor Teaching and Referral Hospital; NHS, National Health Service.

APPENDIX 7: Rural/Urban Classifications

Author	Year	Data Source(s)
Agrawal et al (14)	2017	Not defined
Andelic et al (16)	2012	Rural = Northern & Central regions; Urban = Western and Southern regions
Asemota et al (26)	2013	Not defined
Berry et al (5)	2010	ABS ASGC: Rural = inner regional, outer regional, remote, very remote; Urban = major city
Brown et al (18)	2019	US Department of Agriculture UIC: Rural = ≥ 3 ; Urban = ≤ 2
Chan et al (43)	2005	Rural = Kota Bharu,;Urban = Ipoh
Chapital et al (20)	2007	US Census criteria: Rural = jurisdictions outside Honolulu County; Urban = Honolulu County
Cheng et al (27)	2017	Chinese CDC DSP: Rural = county; Urban = district
Cheng et al (45)	2020	US CDC NCHS Urban-Rural Classification Scheme: Rural = rural area; Urban = large city and suburbs or medium or small city
Chiang et al (46)	2006	Rural = Hualian County; Urban = Taipei
Chiu et al (19)	2007	Rural = Hualian County; Urban = Taipei
Daugherty et al (28)	2021	US Census Bureau: Rural = all non-urban population, housing, and territory; Urban = at least 2500 persons, at least 1500 live outside institutional group quarters
Feigin et al (38)	2013	Rural = Hamilton, Urban = Waikato District
Gabella et al (15)	1997	US Census Bureau: Rural = adjacent to MSA county or population of 2500, or not adjacent to MSA with population <2500; Urban = MSA or CMSA
Gontkovsky et al (29)	2006	Goodall et al (63): Urbanicity scores calculated based on populations of 3 largest cities in each county. Higher urbanicity scores = more urban (less rural) county
Graves et al (30)	2019	US Census Bureau: Rural = county with no MSA coding; Urban = MSA (metropolitan or micropolitan)
Halldorsson et al (44)	2007	Rural = rest of Iceland; Urban = Reykjavik
Harradine et al (39)	2004	ARIA RRMA: Rural = 3-7; Urban = 1-2
Harrison et al (40)	2012	ABS ASGC: Rural = inner regional, outer regional, remote, very remote; Urban = major city
Johnstone et al (31)	2003	US OMB: Rural = non-metropolitan; Urban = metropolitan
Karwat et al [†] (11,49)	2009	Not defined
Leonhard et al (32)	2015	US CDC NCHS Urban-Rural Classification Scheme: Rural = rural area; Urban = large city and suburbs or medium or small city
Maier et al (17)	2014	Rural = Haydom Lutheron Hospital; Urban = Aga Khan Hospital
Ponsford et al (6)	2012	Rural = Regional Victoria (>25 km from central business district); Urban = Metropolitan Melbourne
Pozzato et al (21)	2019	ABS ASGC: Rural = inner regional, outer regional, remote, very remote; Urban = major city
Ratliff et al (33)	2021	US Department of Agriculture Rural-Urban Continuum Codes: Rural = 4-9; Urban = 1-3
Reid et al (34)	2001	Goldsmith et al (64): Rural = non-metropolitan and parts of large metropolitan counties without easy geographical access to central areas; Urban = metropolitan
Ring et al (41)	1986	Rural = country base or small hospital; Urban = teaching and metropolitan surgical hospital or other private hospital
Robertson & McConnel (35)	2011	US Department of Agriculture RUCA2: Rural = small and isolated towns; Urban = urban and large towns
Schootman & Fuortes (36)	2000	US Census Bureau: Rural = county with no MSA coding; Urban = MSA (metropolitan or micropolitan)
Simpson et al (42)	2016	ABS ASGC: Rural = inner regional, outer regional, remote, very remote; Urban = major city
Stewart et al (37)	2014	Statistics Canada DA: Rural = non-urban DA; Urban = minimum population concentration of >1000 people & population density >400 people/km ²
Tesfaw et al (47)	2021	Not defined
Woodward et al (22)	1984	ABS: Rural = outside Adelaide Statistical Division; Urban = within Adelaide Statistical Division
Yates et al (48)	2006	Not defined

[†] Karwat et al (2009A and 2009B) report different outcomes on the same patient population, and are therefore considered as one study. ABS, Australian Bureau of Statistics; ASGC, Australian Standard Geographical Classification; US = United States; UIC, Urban Influence Code; CDC, Center for Disease Control and Prevention; DSP, Disease Surveillance Point; NCHS, National Center for Health Statistics; MSA, Metropolitan Statistical Area; CMSA, Consolidated Metropolitan Statistical Area; ARIA, Accessibility/Remoteness Index of Australia; RRMA, Rural, Remote and Metropolitan; OMB, Office of Management and Budget; RUCA2, Rural and Urban Commuting Area 2; DA, Dissemination Area.

TABLE 1: Study Characteristics and Quality Assessment

Author	Year	Study Design	Year Range	Sample	Region [¶]	Patient Source	Follow-up	Rural/Urban Classification	Quality
Agrawal et al (14)	2017	Prospective single- centre cohort	6 months	337	Asia	ED	Hospital Discharge	Not defined	Moderat
Andelic et al (16)	2012	Population-based prospective	2009 – 2010 (2 yr)	359	Europe	Hospital	Hospital Discharge	Region-specific [§]	High
Asemota et al (26)	2013	Population-based retrospective	2005 – 2009 (4 yr)	139,798	North America	Hospital	Hospital Discharge	Not defined	Moderat
Berry et al (5)	2010	Population-based retrospective	2000 – 2006 (6 yr)	95,485	Oceania	Hospital	None	Formal Classification [‡]	Moderat
Brown et al (18)	2019	Population-based retrospective	2008 – 2014 (7 yr)	NR	North America	Death registry	Death	Formal Classification	Modera
Chan et al (43)	2005	Prospective multi- centre cross-sectional	1998 – 2001 (4 yr)	165	Asia	ED	None	Region-specific	High
Chapital et al (20)	2007	Retrospective single- centre cohort	2000 –2004 (5 yr)	3,447	North America	Hospital	Hospital Discharge	Region-specific	High
Cheng et al (27)	2017	Population-based retrospective	2006 – 2013 (8 yr)	93,793	North America	Death registry	Death	Formal Classification	Modera
Cheng et al (45)	2020	Population-based retrospective	1999 – 2017 (19 yr)	99,796	Asia	Death registry	Death	Region-specific	Modera
Chiang et al (46)	2006	Population-based retrospective	2001 – 2004 (3 yr)	592	Asia	Hospital	Hospital Discharge	Region-specific	Modera
Chiu et al (19)	2007	Population-based retrospective	2001 (1 yr)	7,228	Asia	Hospital/death certificates	Hospital Discharge	Region-specific	High
Daugherty et al (28)	2021	Population-based retrospective	2016 – 2018 (3 yr)	181,227	North America	Death registry	Death	Formal Classification	Modera
Feigin et al (38)	2013	Population-based prospective and retrospective	2010 –2011 (1 yr)	1,369	Oceania	All Community	None	Region-specific	High
Gabella et al (15)	1997	Population-based retrospective	1991 – 1992 (2 yr)	7,056	North America	Hospital/death certificates	Hospital Discharge/Death	Formal Classification	High
Gontkovsky et al (29)	2006	Prospective single- centre cohort	1998 - 2002 (3.5 yr)	111	North America	Rehabilitation	1 yr	Goodall et al method ⁶³	High
Graves et al (30)	2019	Retrospective multi- centre cohort	2007 –2011 (5.5 yr)	387,846	North America	Hospital	180 days	Region-specific	High
falldorsson et al (44)	2007	Population-based prospective	1992 –1993 (1 yr)	550	Europe	Hospital/death registry	Death	Region-specific	High
Harradine et al (39)	2004	Prospective multi- centre longitudinal	1999 – 2001 (2 yr)	198	Oceania	Rehabilitation	18 mths	Formal Classification	High
Iarrison et al (40)	2012	Population-based retrospective	2000 –2006 (6 yr)	103,782	Oceania	Hospital	Hospital Discharge	Formal Classification	High
ohnstone et al (31)	2003	Prospective single- centre longitudinal	2 yr	78	North America	Rehabilitation	VR Completion	Formal Classification	Modera
Carwat et al [†] (11, 49)	2009	Population-based retrospective	1999 – 2002 (4 yr)	265	Europe	Hospital	Hospital Discharge/Death	Not defined	Modera
Leonhard et al (32)	2015	Population-based retrospective	2009 – 2012 (4 yr)	2,794	North America	Hospital	Death	Formal Classification	High

Maier et al (17)	2014	Retrospective multi- centre cross-sectional	2005 – 2008 (R) 2003 – 2007 (U) (3.5 yr)	680	Africa	Hospital	None	Region-specific	Moderate
Ponsford et al (6)	2012	Retrospective single- centre cohort	1984 – 2006 (24 yr)	959	Oceania	Rehabilitation	2 yr	Region-specific	High
Pozzato et al (21)	2019	Population-based retrospective	2007 (1 yr)	6,827	Oceania	Hospital	Hospital Discharge	Formal Classification	Moderate
Ratliff et al (33)	2021	Population-based retrospective	2008 – 2014 (7 yr)	3,180	North America	Death registry	Death	Formal Classification	Moderate
Reid et al (34)	2001	Population-based retrospective	1993 1 yr)	977	North America	Hospital/death certificates	Hospital Discharge/Death	Goldsmith et al method ⁶⁴	High
Ring et al (41)	1986	Retrospective multi- centre cohort	1997 – 1978 (2 yr)	991	Oceania	Hospital	Hospital Discharge/Death	Region-specific	High
Robertson & McConnel (35)	2011	Retrospective single- centre cohort	5 yr	444	North America	Hospital	Hospital Discharge	Formal Classification	Moderate
Schootman & Fuortes (36)	2000	Population-based retrospective	1995 – 1997 (3 yr)	4,300,000	North America	Ambulatory care	End of Care Episode	Region-specific	Moderate
Simpson et al (42)	2016	Prospective. multi- centre cross-sectional	2007 – 2008 (1 yr)	503	Oceania	Rehabilitation	6 mths (minimum)	Formal Classification	High
Stewart et al (37)	2014	Retrospective single- centre cross-sectional	2006 – 2011 (6 yr)	2,112	North America	ED	None	Region-specific	High
Tesfaw et al (47)	2021	Prospective single- centre cross-sectional	2019 (2 mths)	370	Africa	Hospital	Hospital Discharge	Not defined	Moderate
Woodward et al (22)	1984	Population-based retrospective	1980-1981 (2 yr)	12,201	Oceania	Hospital	Hospital Discharge	Formal Classification	Moderate
Yates et al (48)	2006	Retrospective single- centre cohort study	1997 – 2003 (6 yr)	11,700	Europe	ED	None	Not defined	Moderate

[†] Karwat et al (2009A and 2009B) report different outcomes on the same patient population, and are therefore considered as one study. [¶]Locations of Asian studies included India (14), Malaysia (43), China (45), and Taiwan (19, 46). European study locations were Norway (16), Iceland (44), Poland (11, 49), and the United Kingdom (48). Seven of the North American studies were national studies (18, 26-28, 30, 33, 36), with others state-based (Hawaii (20), Colorado (15), Mississippi (29), Missouri (31), Oregon (32), Minnesota (34), and Texas (35)), and one Canadian study (37). Oceania studies were all conducted in Australia with the exception of Feigin et al (38) which was a New Zealand study. The African studies were conducted in Tanzania (17) and Ethiopia (47). [§] Authors have designated a rural or urban label to a specific city, county or region based on its population, geographic or service provision characteristics. [‡] Authors have utilised a pre-existing nationally recognised method of classification. ED, emergency department; VR, Vocational Rehabilitation; R, rural; U, urban.

Author	Year	Age Group	Age Range (yr)	Male Sex (%)	Severity	Rural/Urban Ratio (%)
Agrawal et al (14)	2017	All	1-90	271 (80.4%)	All	274 (72.6%)/54 (27.4%)
Andelic et al (16)	2012	Adult	>16	214 (77%)	Severe	82 (29%)/196 (71%)
Asemota et al (26)	2013	Adolescent/Young Adult	10-19	99,047 (71%)	All	7,631 (5%)/132,167 (95%)
Berry et al (5)	2010	Pediatric	0-14	61,179 (64%)	All	11,160 (50.9%)/10,719 (50.0%)
Brown et al (18)	2019	All	NR	NR	All	NR
Chan et al (43)	2005	Pediatric/Adolescent	2-18	NR	Mild	112 (42%)/153 (58%)
Chapital et al (20)	2007	All	0-106	2573 (75%)	All	358 (10.4%)/3,089 (89.6%)
Cheng et al (27)	2017	All	0->75	NR	NR	NR
Cheng et al (45)	2020	Adolescent/Young Adult	0-19	NR	All	NR
Chiang et al (46)	2006	Adolescents	13-18	306 (65%)	All	131 (22%)/469 (78%)
Chiu et al (19)	2007	All	NR	4698 (65%)	All	1,474 (20.4%)/5,754 (79.6%)
Daugherty et al (28)	2021	All	NR	NR	All	NR
Feigin et al (38)	2013	All	0->65	856 (63%)	All	361 (26.4%)/1,008 (73.6%)
Gabella et al (15)	1997	All	0->65	4598 (67%)	All	1,338 (19%)/5,525 (81%)
Gontkovsky et al (29)	2006	Adult	>16	79 (71%)	All	NR
Graves et al (30)	2019	Pediatric/Adolescent	0-18	238,994 (62%)	Mild	49,643 (13%)/338,203 (87%)
Halldorsson et al (44)	2007	Pediatric/Adolescent	0-19	NR	All	141 (26%)/409 (74%)
Harradine et al (39)	2004	Adult	16-65	155 (78%)	Severe	51 (26%)/147 (74%)
Harrison et al (40)	2012	Adolescent/Young Adult	15-24	NR	All	13,146 (47.2%)/14,728 (52.8%)
Johnstone et al (31)	2003	Adult	NR	55 (71%)	NR	28 (35.9%)/50 (64.1%)
Karwat et al ^{\dagger} (11, 49)	2009	All	0->65	204 (77%)	NR	90 (34%)/175 (66%)
Leonhard et al (32)	2015	Pediatric/Adolescent	0-19	1879 (67%)	All	799 (28.6%)/1,995 (71.4%)
Maier et al (17)	2014	All	0.2-100	NR	NR	248 (36.5%)/432 (63.5%)
Ponsford et al (6)	2012	All	11-89	671 (70%)	All	314 (32.7%)/645 (67.3%)
Pozzato et al (21)	2019	All	0->70	2180 (74.5%)	All	2,240 (33.3%)/4,482 (66.7%)
Ratliff et al (33)	2021	All	NR	NR	All	NR
Reid et al (34)	2001	Pediatric/Adolescent	0-19	NR	All	343 (35.1%)/634 (64.9%)
Ring et al (41)	1986	All	0->75	721 (73%)	All	309 (31.2%)/682 (68.8%)
Robertson & McConnel (35)	2011	Pediatric/Adolescent	0-18	298 (67%)	Severe	38 (8.6%)/406 (91.4%)
Schootman & Fuortes (36)	2000	All	0->75	NR	All	NR
Simpson et al (42)	2016	Adult	18-65	389 (77%)	Severe	171 (34%)/332 (66%)
Stewart et al (37)	2014	Pediatric/Adolescent	0-18	1415 (67%)	Mild	387 (19%)/1,687 (81%)
Tesfaw et al (47)	2021	Adult	>18	265 (72%)	All	259 (70%)/111 (30%)
Woodward et al (22)	1984	All	0->75	NR	NR	3,971 (32.5%)/8,230 (67.5%)
Yates et al (48)	2006	All	0->85	NR	NR	NR

TABLE 2: Patient Characteristics

[†] Karwat et al (2009A and 2009B) report different outcomes on the same patient population, and are therefore considered as one study. NR, not reported.

Author's Own Manuscript

TABLE 3: Incidence Rate	of Head T	rauma (/100,000 persons) in Ru	ral and Urban Populations	
Author	Year	Rural	Urban	p Value
Andelic et al [†] (16)	2012	5.9 (North)	5.0 (West)	NR
Thidelie et al (10)	2012	4.3 (Central)	4.1 (Southeast)	111
Chiu et al (19)	2007	417	218	NR
Feigin et al [¶] (38)	2013	73	31	NR
Gabella et al [†] (15)	1997	123.9 (Rural non-remote)	97.8 (CMSA)	NR
Gabella et al ⁴ (13)	1997	172.1 (Rural remote)	94.7 (Other metro)	INK
Halldorsson et al (44)	2007	367	864	NR
Harrison et al (40)	2012	664.2 (Inner regional) 949.9 (Outer regional) 366.9 (Remote) 1680.2 (Very remote)	522.1 (Major city)	NR
Leonhard et al (32)	2015	107	71 (Large metropolitan) 59 (Small/medium metropolitan)	NR
Reid et al (34)	2001	76.1	72.4	0.046
Schootman & Fuortes (36)	2000	410	570	NR
Stewart et al (37)	2014	220	350	NR
Woodward et al (22)	1984	570	430	< 0.001
Yates et al (48)	2006	223.8 (All HI) 29.6 (MSHI)	826.9 (All HI) 55.6 (MSHI)	NR

[†] Age-adjusted. [¶] Moderate-severe head injury. NR, not reported; CMSA, Consolidated metropolitan statistical area; HI, head injury; MHSI, moderate-severe head injury.

Author's Own Manuscript

TABLE 4: Head Trauma Mortality Rate in Rural and Urban Populations

Author	Year	Rural	Urban	p Value
Brown et al (18)	2019	22.32	18.22	< 0.001
Cheng et al [†] (27)	2017	18.55	9.92	NR
Gabella et al [†] (15)	1997	25.5 (Rural, non-remote)	18.1 (CMSA)	NR
Gabella et al' (15)	1997	33.8 (Rural, remote)	18.6 (Other metro)	INK
Leonhard et al [¶] (32)	2015	2.5 [1.6-4.0]	1.00 (Large metro)	0.001
Leonnaid et al [*] (32)	2013	2.3 [1.0-4.0]	1.3 [0.6-2.8] (Small/medium metro)	0.001
Ratliff et al [¶] (33)	2021	1.75 (1.66-1.84)	1.00 (Metro)	< 0.001
Katilii et al [*] (55)	2021	1.73 (1.00-1.84)	1.33 [1.29-1.36] (Nonmetro counties)	<0.001
Reid et al (34)	2001	15.4	6.5	0.001

Data presented as Mortality/100,000 persons or Mortality Rate Ratio [95% CI][¶]. [†] Age-adjusted. NR, not reported; CMSA, consolidated metropolitan statistical area; CI, confidence interval.

All rights reserved. No reuse allowed without permission.

Author's Own Manuscript

Figure Captions

Figure 1: PRISMA Flow Diagram of the study selection process. A total of 1,310 studies were evaluated for rural/urban differences in head trauma patients. After title and abstract screening, 90 full-text articles were reviewed, 36 of which were included in the systematic review and meta-analysis after exclusions. CINAHL, Cumulative Index of Nursing and Allied Health; EBSCO, Elton B. Stephens Company; MOI, mechanism of injury.

Figure 2: Forest plot demonstrating the mean difference in age (years) calculated using the random effects model. There was no statistical difference in age between rural and urban head trauma patients (MD: 1.10; 95% CI -3.17, 5.37; p=0.61). Mean [SD] for Stewart 2014 (37) was calculated using the methodology of Wan *et al* (25). SD, standard deviation; CI, confidence interval; I^2 , test of heterogeneity; MD, mean difference.

Figure 3: Forest plot demonstrating the odds ratio of male sex in rural and urban head trauma populations with subgroup analysis of paediatric/adolescent cohorts, adult cohorts, and studies incorporating all ages. The proportion of males suffering head trauma was comparable across rural and urban areas, regardless of age. SD, standard deviation; CI, confidence interval; I², test of heterogeneity.

Figure 4: Forest plot demonstrating the odds ratio of transport being the cause of head trauma in rural and urban populations with subgroup analysis of pediatric/adolescent cohorts, adult cohorts, and studies incorporating all ages. Overall, rural residents were significantly more likely to suffer head trauma resulting from transport accidents, particularly those in pediatric and adolescent age groups (OR: 1.62; 95% CI 1.33, 1.98; p<0.00001). CI, confidence interval; I², test of heterogeneity; OR, odds ratio.

Figure 5: Forest plots showing types of transport accidents causing traumatic head injury in rural and urban populations. A, Car; B, Pedestrian; C, Other motorized vehicle; D, Bicycle. Pedestrian-related head injuries were 64% more likely in urban environments (p=0.008), whereas motorized vehicles such as all-terrain vehicles, quad bikes, and motorcycles, were responsible for more injuries in rural areas (OR: 3.63; 95% CI 1.58, 8.35; p=0.002). CI, confidence interval; I², test of heterogeneity; OR, odds ratio.

Figure 6: Forest plot demonstrating the odds ratio of falls being the cause of head trauma in rural and urban populations with subgroup analysis of pediatric/adolescent cohorts, adult cohorts, and studies incorporating all ages. Overall, urban residents were 27% more likely to suffer head trauma resulting from falls (p<0.00001). The odds of fall-induced head trauma was significantly less in rural children and adolescents (OR: 0.65; 95% CI 0.52, 0.81; p<0.0002). CI, confidence interval; I², test of heterogeneity; OR, odds ratio.

Figure 7: Forest plot demonstrating the odds ratio of assault being the cause of head trauma in rural and urban populations with subgroup analysis of mild, severe, and injury severities. Overall, assault-related head injury was comparable across rural and urban populations, except mild head injuries caused by assault which were ~50% less likely in rural areas (p=0.03). CI, confidence interval; I², test of heterogeneity.

Figure 8: Forest plots showing no difference in (A) sports-related and (B) other causes of head trauma in rural and urban populations. Other causes included exposure to animal and inanimate mechanical forces, work-related accidents, and use of firearms. CI, confidence interval; I², test of heterogeneity.

All rights reserved. No reuse allowed without permission.

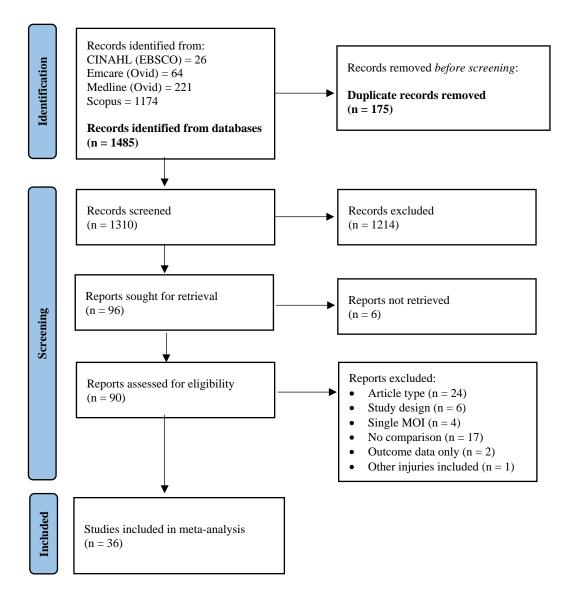

Author's Own Manuscript

Figure 9: Forest plots showing measures of head injury severity in rural and urban populations. A, Proportion of severe head injury (GCS 3-8); B, GCS (mean [SD); C, Normal CT findings; D, CT-diagnosed skull fracture; E, CT-diagnosed ICH. Rural residents were significantly more likely to suffer severe head trauma (OR: 1.28; 95% CI 1.04, 1.58; p=0.02), and less likely to have a normal CT (OR: 0.52; 95% CI 0.41, 0.67; p<0.00001). Mean [SD] GCS for Harradine 2004 (39) was calculated using the methodology of Wan *et al* (25). GCS, Glasgow Coma Scale; CT, computed tomography; ICH, intracranial hemorrhage; CI, confidence interval; I², test of heterogeneity; OR, odds ratio.

Figure 10: Forest plots showing clinical symptoms after head injury in rural and urban populations. A, LOC/ALOC; B, Headache; C, Seizures; D, Nausea/Vomiting. Rural residents were five-fold more likely to suffer loss of, or altered, consciousness (p=0.04). Incidence of headache, seizures, and nausea or vomiting was similar in rural and urban patients. LOC, loss of consciousness; ALOC, altered level of consciousness; CI, confidence interval; I², test of heterogeneity.

Figure 11: A, Forest plot showing mortality incidence in rural and urban head trauma populations calculated using the random effects model. Mortality was comparable across rural and urban areas. B, Funnel plot of publication bias. CI, confidence interval; I², test of heterogeneity.

Figure 12: Forest plots showing outcomes after head injury in rural and urban populations. A, Vegetative/severe disability; B, Good recovery; C, Length of hospital stay (days); D, Employed post-injury. Urban residents were more likely to have a good recovery (p=0.003), and reduced hospital stay, however this difference was not statistically significant (MD: -3.23; 95% CI -10.08, 3.63; p=0.36). Mean [SD] LOS for Harradine 2004 (39) and Reid 2001 (34) was calculated using the methodology of Wan *et al* (25). LOS, length of stay; CI, confidence interval; I², test of heterogeneity; MD, mean difference.

	1	Rural			Urban			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Andelic 2012	47.7	22	82	46.2	21.5	196	9.9%	1.50 [-4.13, 7.13]	
Chan 2005	15.7	1.7	112	6.1	3.4	153	11.9%	9.60 [8.98, 10.22]	
Harradine 2004	32.1	13.8	51	32.1	12.2	147	10.7%	0.00 [-4.27, 4.27]	
Johnstone 2003	37.1	10.1	28	36.1	11.9	50	10.3%	1.00 [-3.99, 5.99]	
Karwat 2009	46.37	18.7	90	39.07	17.93	175	10.5%	7.30 [2.61, 11.99]	
Maier 2014	33.7	19.8	248	40.5	19.7	432	11.3%	-6.80 [-9.89, -3.71]	
Ponsford 2012	30.3	14.1	314	34.8	16.8	645	11.7%	-4.50 [-6.53, -2.47]	
Roberston 2011	6.54	4.07	38	5.6	4.03	406	11.8%	0.94 [-0.41, 2.29]	-
Stewart 2014	14	8.93	387	13	8.9	1687	11.9%	1.00 [0.01, 1.99]	-
Total (95% CI)			1350			3891	100.0%	1.10 [-3.17, 5.37]	-
Heterogeneity: Tau ² =	= 39.58;	Chi ² =	= 455.4	1. df =	8 (P < 0	0.0000	1); $I^2 = 98$	3%	
Test for overall effect									-20 -10 0 10 20 Urban Rural

	Rur	al	Urb	an		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
30.2.1 Paediatric/Ad	lolescent						
Chan 2005	32	112	54	153	0.1%	0.73 [0.43, 1.24]	
Chiang 2006	78	131	306	496	0.2%	0.91 [0.62, 1.35]	
Graves 2019	30760	49643	208234	338203	96.3%	1.02 [1.00, 1.04]	
Leonhard 2015	537	799	1342	1995	1.2%	1.00 [0.84, 1.19]	
Roberston 2011	27	38	271	406	0.1%	1.22 [0.59, 2.54]	
Stewart 2014	250	387	1138	1687	0.7%	0.88 [0.70, 1.11]	
Subtotal (95% CI)		51110		342940	98.6%	1.01 [1.00, 1.03]	•
Total events	31684		211345				
Heterogeneity: Tau ² =				(P = 0.62)	; $I^2 = 0\%$		
Test for overall effect	Z = 1.51	(P = 0.	13)				
30.2.2 Adult							
Andelic 2012	64	82	150	196	0.1%	1.09 [0.59, 2.02]	
Harradine 2004	38	51	117	147	0.1%	0.75 [0.36, 1.58]	
Simpson 2016	139	171	250	332	0.2%	1.42 [0.90, 2.25]	
Subtotal (95% CI)		304		675	0.3%	1.16 [0.82, 1.63]	
Total events	241		517				
Heterogeneity: Tau ² =	= 0.01; Ch	$i^2 = 2.1$	3, df = 2	(P = 0.35)	; $I^2 = 6\%$		
Test for overall effect	z = 0.83	B (P = 0.)	40)				
30.2.3 All							
Feigin 2013	219	361	637	1008	0.6%	0.90 [0.70, 1.15]	
Karwat 2009	74	90	130	175	0.1%	1.60 [0.85, 3.03]	
Ponsford 2012	226	314	445	645	0.4%	1.15 [0.86, 1.55]	
Subtotal (95% CI)		765		1828	1.1%	1.08 [0.82, 1.41]	
Total events	519		1212				
Heterogeneity: Tau ² =	= 0.02; Ch	$i^2 = 3.5$	8, df = 2	(P = 0.17)	$I^2 = 449$	6	
Test for overall effect	Z = 0.54	P = 0.	59)				
Total (95% CI)		52179		345443	100.0%	1.02 [1.00, 1.04]	
Total events	32444		213074				[
Heterogeneity: Tau ² =		$i^2 = 9.9$	0, df = 13	1 (P = 0.54)	4); $I^2 = 09$	«	
Test for overall effect					1999 (N. 1997)		0.5 0.7 i 1.5 2
Test for subgroup dif				2 /2 0 /		201	Urban Rural

Figure 4

	Rur		Urb			Odds Ratio	Odds Ratio
Study or Subgroup			Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
3.3.1 Paediatrics/Ad	dolescent	s					
Berry 2010	3640	11160	2664	10719	9.7%	1.46 [1.38, 1.55]	
Chan 2005	100	112	65	153	3.1%	11.28 [5.72, 22.25]	· · · ·
Harrison 2012	6274	13146	6285	14728	9.7%	1.23 [1.17, 1.29]	
Leonhard 2015	298	799	617	1995	8.6%	1.33 [1.12, 1.58]	-
Stewart 2014	70	387	181		6.8%		
Subtotal (95% CI)		25604		29282	37.9%	1.62 [1.33, 1.98]	•
Total events	10382		9812				
Heterogeneity: Tau ²	= 0.04; Cl	$ni^2 = 63.$	87, df =	4 (P < 0	.00001);	$l^2 = 94\%$	
Test for overall effec	t: $Z = 4.76$	5 (P < 0.	00001)				
3.3.2 Adults							
Andelic 2012	35	82	76	196	4.3%	1.18 [0.70, 1.98]	
Harradine 2004	34	51	91	147	3.1%		
Simpson 2016	112	171	204	332	5.7%		
Subtotal (95% CI)		304	201	675	13.1%		•
Total events	181		371				
Heterogeneity: Tau ²		$ni^2 = 0.0$	1, $df = 2$	P = 0.9	(99): $I^2 = 0$	0%	
Test for overall effec							
3.3.3 All							
Chiu 2007	808	1474	2588	5754	9.2%	1.48 [1.32, 1.67]	-
Feigin 2013	90	361	187	1008	7.1%		
Karwat 2009	54	90	89	175	4.3%	1.45 [0.87, 2.43]	+
Maier 2014	63	248	200	432	6.3%	0.40 [0.28, 0.56]	
Ponsford 2012	270	314	587	645	5.4%	0.61 [0.40, 0.92]	
Ring 1986	183	309	346	682	7.3%	1.41 [1.07, 1.85]	
Woodward 1984	1247	3971	2625	8230	9.5%	0.98 [0.90, 1.06]	+
Subtotal (95% CI)		6767		16926	49.0%	1.02 [0.77, 1.36]	◆
Total events	2715		6622				
Heterogeneity: Tau ²	= 0.12; Cl	$ni^2 = 84.$	28, df =	6 (P < 0	.00001);	$I^2 = 93\%$	
Test for overall effec							
Total (95% CI)		32675		46883	100.0%	1.27 [1.10, 1.46]	•
Total events	13278		16805				
Heterogeneity: Tau ²		$ni^2 = 17$	5.25, df =	= 14 (P <	0.00001	1); $I^2 = 92\%$	
Test for overall effec							0.05 0.2 i 5 20
Test for subaroun di				= 2 (P = 1	0 02) 12 -	- 74 0%	Urban Rural

Test for subgroup differences: $Chi^2 = 7.69$, df = 2 (P = 0.02), $I^2 = 74.0\%$

Figure 5

A: Car	Rura	al	Urba	ın		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% C	1
Chan 2005	5	112	10	153	11.4%	0.67 [0.22, 2.01]			
Chiu 2007	87	1474	167	5754	29.3%	2.10 [1.61, 2.74]		-	
Ponsford 2012	195	314	335	645	29.1%	1.52 [1.15, 2.00]		-	
Stewart 2014	151	387	692	1687	30.1%	0.92 [0.73, 1.15]		4	
Total (95% CI)		2287		8239	100.0%	1.31 [0.82, 2.07]		•	
Total events	438		1204						
Heterogeneity: Tau ² =	= 0.17; Cl	$hi^2 = 23$	3.96, df	= 3 (P <	< 0.0001)	; $I^2 = 87\%$	0.01 0.3	1 1	10 100
Test for overall effect	Z = 1.13	3 (P = 0)).26)				0.01 0	Urban Rural	10 100

B: Pedestrian	Rura	al	Urba	n		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	М-Н,	Random, 95% C	3
Chan 2005	9	112	28	153	21.4%	0.39 [0.18, 0.86]		-	
Chiu 2007	63	1474	313	5754	27.1%	0.78 [0.59, 1.02]			
Ponsford 2012	35	314	174	645	26.2%	0.34 [0.23, 0.50]	-	-	
Stewart 2014	19	387	405	1687	25.3%	0.16 [0.10, 0.26]			
Total (95% CI)		2287		8239	100.0%	0.36 [0.17, 0.77]			
Total events	126		920						
Heterogeneity: Tau ² =	= 0.52; Cl	$hi^2 = 3!$	5.51, df	= 3 (P <	< 0.0000	1); $I^2 = 92\%$			10 100
Test for overall effect	: Z = 2.6	5 (P = 0)	0.008)				0.01 0.1 U	rban Rural	10 100

C: Other Motorized Vehicle

	Rur	al	Urba	an		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Chan 2005	80	112	10	153	22.0%	35.75 [16.70, 76.52]	_
Chiu 2007	601	1474	1849	5754	26.8%	1.45 [1.29, 1.64]	-
Ponsford 2012	35	314	52	645	25.0%	1.43 [0.91, 2.25]	
Stewart 2014	120	387	202	1687	26.2%	3.30 [2.55, 4.29]	+
Total (95% CI)		2287		8239	100.0%	3.63 [1.58, 8.35]	-
Total events	836		2113				
Heterogeneity: Tau ² :	= 0.67; C	$hi^2 = 93$	3.63, df =	= 3 (P <	< 0.00001	L); $I^2 = 97\%$	
Test for overall effect	z = 3.04	4 (P = 0)).002)				0.01 0.1 İ 10 100 Urban Rural

D: Bicycle	Rura	al	Urba	ın		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Chan 2005	6	112	17	153	19.6%	0.45 [0.17, 1.19]	
Chiu 2007	45	1474	133	5754	33.0%	1.33 [0.94, 1.88]	-
Ponsford 2012	6	314	26	645	20.9%	0.46 [0.19, 1.14]	
Stewart 2014	11	387	80	1687	26.5%	0.59 [0.31, 1.11]	
Total (95% CI)		2287		8239	100.0%	0.70 [0.37, 1.30]	•
Total events	68		256				
Heterogeneity: Tau ² :	= 0.28; Cl	$hi^2 = 1$	0.73, df	= 3 (P =	= 0.01); I ²	= 72%	
Test for overall effect	z = 1.12	3 (P = 0)	0.26)			l	0.001 0.1 1 10 100 Urban Rural

Figure 6

	Rur		Urb			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
5.3.1 Paediatric/Add	olescents						
Berry 2010	5112	11160	5897	10719	14.0%	0.69 [0.66, 0.73]	
Chan 2005	4	112	71	153	0.9%	0.04 [0.02, 0.12]	
Chiang 2006	8	131	81	469	1.7%	0.31 [0.15, 0.66]	
Harrison 2012	2180	13146	2796	14728	13.8%	0.85 [0.80, 0.90]	-
Ponsford 2012	9	314	19	645	1.5%	0.97 [0.43, 2.17]	
Stewart 2014	82	387	437	1687	7.5%	0.77 [0.59, 1.00]	-
Subtotal (95% CI)		25250		28401	39.6%	0.65 [0.52, 0.81]	◆
Total events	7395		9301				
Heterogeneity: Tau ² =	= 0.04; Cł	$ni^2 = 58.$	84, df =	5 (P < 0)	.00001);	$I^2 = 92\%$	
Test for overall effect	z = 3.74	4 (P = 0.	0002)				
5.3.2 Adult							
Andelic 2012	37	82	101	196	3.2%	0.77 [0.46, 1.30]	+
Harradine 2004	10	51	30	147	1.6%	0.95 [0.43, 2.12]	
Simpson 2016	21	171	58	332	3.0%	0.66 [0.39, 1.13]	
Subtotal (95% CI)		304		675	7.8%	0.75 [0.54, 1.06]	•
Total events	68		189				~
Heterogeneity: Tau ² =	= 0.00; Cł	$ni^2 = 0.5$	6, $df = 2$	P = 0.7	$(75); I^2 = 0$	0%	
Test for overall effect	t: $Z = 1.64$	4 (P = 0.	10)				
5.3.3 All							
Chiu 2007	405	1474	1966	5754	12.0%	0.73 [0.64, 0.83]	-
Feigin 2013	131	361	385	1008	8.0%	0.92 [0.72, 1.18]	-+
Karwat 2009	27	90	54	175	2.9%	0.96 [0.55, 1.67]	-+-
Leonhard 2015	227	799	713	1995	10.2%	0.71 [0.60, 0.85]	-
Ring 1986	66	309	200	682	6.3%	0.65 [0.48, 0.90]	
Woodward 1984	905	3971	2337	8230	13.2%		-
Subtotal (95% CI)		7004		17844	52.6%	0.75 [0.70, 0.79]	•
Total events	1761		5655				
Heterogeneity: Tau ² =	= 0.00; Cł	$ni^2 = 4.5$	6, $df = 5$	(P = 0.4)	$(17); I^2 = 0$	0%	
Test for overall effect	z = 9.12	1 (P < 0.	00001)				
Total (95% CI)		32558		46920	100.0%	0.73 [0.66, 0.81]	•
Total events	9224		15145				
Heterogeneity: Tau ² =	= 0.02; Cł	$ni^2 = 63.$	97, df =	14 (P <	0.00001)	$I^2 = 78\%$	
Test for overall effect				10000000000000		tan an the second	0.02 0.1 1 10 Urban Rural
Test for subgroup dif	ferences	$Chi^2 = 1$	33 df =	= 2 (P =)	(0.51) $I^2 =$	= 0%	Urban Kurai

Test for subgroup differences: $\text{Chi}^2 = 1.33$, df = 2 (P = 0.51), $\text{I}^2 = 0\%$

Figure 7

	Rur	al	Urb	an		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
4.2.1 Mild							
Chan 2005	8	112	17	153	6.7%	0.62 [0.26, 1.48]	
Harrison 2012	2214	13146	3301	14728	12.0%	0.70 [0.66, 0.74]	
Woodward 1984	191	3971	1029	8230	11.7%	0.35 [0.30, 0.41]	-
Subtotal (95% CI)		17229		23111	30.4%	0.52 [0.29, 0.94]	-
Total events	2413	.2	4347			2	
Heterogeneity: Tau ² =				2 (P < 0	.00001);	2 = 97%	
Test for overall effect	Z = 2.18	8 (P = 0.)	03)				
4.2.2 Severe							
Andelic 2012	2	82	13	196	3.6%	0.35 [0.08, 1.60]	
Harradine 2004	5	51	18	147		0.78 [0.27, 2.22]	
Simpson 2016	24	171	39	332	9.2%	1.23 [0.71, 2.12]	
Subtotal (95% CI)		304		675	18.4%	0.92 [0.50, 1.67]	
Total events	31		70				
Heterogeneity: Tau ² =	= 0.08; Cł	$ni^2 = 2.6$	2, df = 2	P = 0.2	27); $I^2 = 2$	4%	
Test for overall effect	Z = 0.28	B (P = 0.)	78)				
4.2.3 All							
Berry 2010	248	11160	266	10719	11.6%	0.89 [0.75, 1.06]	-
Chiu 2007	190	1474	632	5754	11.7%	1.20 [1.01, 1.43]	-
Feigin 2013	45	361	183	1008	10.7%	0.64 [0.45, 0.91]	
Karwat 2009	4	90	27	175	5.4%	0.25 [0.09, 0.75]	
Maier 2014	78	248	33	432	10.0%	5.55 [3.56, 8.66]	
Ponsford 2012	1	314	3	645	1.9%	0.68 [0.07, 6.60]	
Subtotal (95% CI)		13647		18733	51.3%	1.08 [0.63, 1.86]	•
Total events	566		1144				
Heterogeneity: Tau ² =	= 0.34; Cł	ni ² = 73.	33, df =	5 (P < 0	.00001);	$1^2 = 93\%$	
Test for overall effect	Z = 0.28	8 (P = 0.)	78)				
Total (95% CI)		31180		42519	100.0%	0.84 [0.59, 1.18]	•
10tul (33/0 Cl)			5561				
Total events	3010		2201				
, , ,		ni² = 206		= 11 (P <	< 0.00001); $I^2 = 95\%$	0.01 0.1 1 10 10

Test for subgroup differences: $Chi^2 = 3.43$, df = 2 (P = 0.18), $I^2 = 41.6\%$

Figure 8

A: Sports

	Rur	al	Urba	an		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	N	1-H, Random, 95%	6 CI	
Chiang 2006	3	131	26	469	13.0%	0.40 [0.12, 1.34]	-			
Ring 1986	16	309	19	682	26.1%	1.91 [0.97, 3.76]		-		
Simpson 2016	5	171	16	332	16.4%	0.59 [0.21, 1.65]				
Stewart 2014	190	387	804	1687	44.5%	1.06 [0.85, 1.32]		+		
Total (95% CI)		998		3170	100.0%	0.99 [0.59, 1.65]		•		
Total events	214		865							
Heterogeneity: Tau ² =	= 0.14; C	$hi^2 = 6.$	61, df =	3 (P =	0.09); I ² =	= 55%	0.01 0.1		10 1	100
Test for overall effect	: Z = 0.0	4 (P = 0)).97)				0.01 0.1	Urban Rural	10 1	.00

B: Other Causes

	Rur	Rural I				Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Andelic 2012	8	82	6	196	6.6%	3.42 [1.15, 10.20]	
Berry 2010	2160	11160	568	10719	11.7%	4.29 [3.89, 4.72]	
Chiu 2007	71	1474	568	5754	11.3%	0.46 [0.36, 0.60]	-
Harradine 2004	2	51	8	147	4.5%	0.71 [0.15, 3.45]	
Harrison 2012	2478	13146	2346	14728	11.8%	1.23 [1.15, 1.30]	•
Leonhard 2015	274	799	665	1995	11.6%	1.04 [0.88, 1.24]	+
Maier 2014	54	248	120	432	10.9%	0.72 [0.50, 1.05]	
Ponsford 2012	11	314	32	645	8.9%	0.70 [0.35, 1.40]	
Stewart 2014	39	387	193	1687	10.9%	0.87 [0.60, 1.25]	
Woodward 1984	1628	3971	2239	8230	11.8%	1.86 [1.72, 2.01]	•
Total (95% CI)		31632		44533	100.0%	1.18 [0.77, 1.81]	•
Total events	6725		6745				
Heterogeneity: Tau ² =	= 0.40; Ch	$ni^2 = 636$	5.24, df =	= 9 (P <	0.00001)	; I ² = 99%	
Test for overall effect						0.	.01 0.1 İ 10 100 Urban Rural

Figure 9

A: Severe TBI

	Rural Urban			an		Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl			
Chiang 2006	13	131	30	469	7.9%	1.61 [0.82, 3.19]				
Chiu 2007	125	1474	382	5754	33.1%	1.30 [1.06, 1.61]	-			
Leonhard 2015	29	799	76	1995	15.7%	0.95 [0.61, 1.47]	-			
Pozzato 2019	41	990	78	1889	18.4%	1.00 [0.68, 1.48]	+			
Reid 2001	116	302	162	596	25.0%	1.67 [1.25, 2.24]	-			
Total (95% CI)		3696		10703	100.0%	1.28 [1.04, 1.58]	◆			
Total events	324		728				1			
Heterogeneity: $Tau^2 =$	0.02; Cł	$ni^2 = 6.$	89, df =	4 (P = 0	$.14$); $I^2 =$	42% H				
Test for overall effect:	Z = 2.32	2 (P = 0)	0.02)			(0.01 0.1 İ 10 10 Urban Rural			
: GCS										

0.005	1	Rural		ι	Jrban			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Roberston 2011	5.31	3.16	38	5.25	3.03	406	17.5%	0.06 [-0.99, 1.11]	
Ponsford 2012	6.8	4.1	314	7.7	4.3	645	29.4%	-0.90 [-1.46, -0.34]	
Harradine 2004	7.5	2.67	51	7.75	2.28	147	22.5%	-0.25 [-1.07, 0.57]	
Andelic 2012	5.4	2	82	5.2	2.1	196	30.5%	0.20 [-0.32, 0.72]	
Total (95% CI)			485			1394	100.0%	-0.25 [-0.83, 0.33]	

-2

Ó Urban Rural

Total (95% CI)	485	1394	100.0%	-0.25 [-0.8
Heterogeneity: $Tau^2 = 0.22$;	$Chi^2 = 8.31, df = 3 (P =$	0.04); I ² =	64%	
Test for overall effect: $Z = 0$.	84 (P = 0.40)			

C: Normal CT

Rural		tural Urban				Odds Ratio		Odds Ratio				
Study or Subgroup	Events Total		Events	Total	Weight	M-H, Random, 95% CI		M-I	H, Rando	om, 95%	6 CI	
Maier 2014	89	248	229	432	59.3%	0.50 [0.36, 0.68]			-			
Stewart 2014	348	387	1586	1687	40.7%	0.57 [0.39, 0.84]			-			
Total (95% CI)		635		2119	100.0%	0.52 [0.41, 0.67]			•			
Total events	437		1815									
Heterogeneity: Tau ² =	0.00; Cl	$hi^2 = 0$	28, df =	1 (P =	0.60 ; $I^2 =$	- 0%	0.01	01			10	100
Test for overall effect:	Z = 5.12	2 (P < (0.00001)				0.01	0.1	Urban	Rural	10	100

D: Skull Fracture

	Rural Urban					Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Chan 2005	16	112	95	153	24.8%	0.10 [0.05, 0.19]	
Chiang 2006	18	131	75	469	25.0%	0.84 [0.48, 1.46]	
Karwat 2009	18	90	36	175	24.7%	0.97 [0.51, 1.82]	
Maier 2014	89	248	68	432	25.5%	3.00 [2.08, 4.32]	-
Total (95% CI)		581		1229	100.0%	0.71 [0.17, 2.96]	
Total events	141		274				
Heterogeneity: Tau ² =	= 2.03; Cl	$ni^2 = 8i$	7.04, df	= 3 (P <	< 0.00001	1); $I^2 = 97\%$	
Test for overall effect	z = 0.42	7 (P = 0)).64)				0.01 0.1 İ 10 100 Urban Rural
E: ICH	Rura	al	Urba	n		Odds Ratio	Odds Ratio
Study or Subgroup					Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl

Study or Subgroup	Events	Total	Events	Total	Weight	M–H, Random, 95% CI		M-H, Rando	m, 95% CI	
Chiang 2006	29	131	118	469	29.1%	0.85 [0.53, 1.34]			-	
Maier 2014	87	248	109	432	34.3%	1.60 [1.14, 2.25]		·		
Ring 1986	197	309	461	682	36.6%	0.84 [0.64, 1.12]		-		
Total (95% CI)		688		1583	100.0%	1.05 [0.68, 1.63]		-	•	
Total events	313		688							
Heterogeneity: Tau ² =	0.11; Cl	$ni^2 = 9.$	11, df =	2 (P =	0.01); I ² :	= 78%	0.01 0	1 1	10	100
Test for overall effect:	Z = 0.22	2 (P = 0)).82)				0.01 0	Urban	Rural	100

Figure 10

A: LOC/ALOC

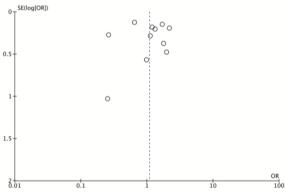
In LoomLoc	Rural		Urban			Odds Ratio	Odds Ratio					
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H	H, Random	1, 95%	CI	
Chan 2005	107	112	92	153	31.0%	14.19 [5.47, 36.81]				-	-	
Maier 2014	137	248	56	432	34.4%	8.29 [5.69, 12.07]				-	-	
Stewart 2014	46	387	169	1687	34.5%	1.21 [0.86, 1.71]			-			
Total (95% CI)		747		2272	100.0%	5.04 [1.08, 23.62]			-			
Total events	290		317									
Heterogeneity: Tau ² =	= 1.77; Cl	$hi^2 = 64$	4.38, df	= 2 (P <	< 0.0000	1); $I^2 = 97\%$	0.01	01			10	100
Test for overall effect	: Z = 2.0	5 (P = 0)	0.04)				0.01	0.1	Urban R	ural	10	100

B: Headache

B: Headache									
D. IItauaciit	Rura	al	Urba	n		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% CI	
Chan 2005	34	112	10	153	22.6%	6.23 [2.92, 13.29]			
Karwat 2009	17	90	41	175	24.1%	0.76 [0.40, 1.43]			
Maier 2014	39	248	42	432	25.9%	1.73 [1.09, 2.76]			
Ponsford 2012	114	314	273	645	27.5%	0.78 [0.59, 1.03]		-	
Total (95% CI)		764		1405	100.0%	1.52 [0.69, 3.37]		-	
Total events	204		366						
Heterogeneity: Tau ² =	= 0.58; Cł	ni ² = 32	1.15, df :	= 3 (P <	< 0.00001	L); $I^2 = 90\%$	0.01	0.1 1 10	
Test for overall effect:	Z = 1.04	4 (P = 0)).30)				0.01	Urban Rural	

100

C: Seizures


	Rur	Rural Url		an		Odds Ratio		Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H	l, Random, 95	% CI		
Chan 2005	2	112	5	153	6.0%	0.54 [0.10, 2.83]						
Karwat 2009	8	90	18	175	21.6%	0.85 [0.35, 2.04]						
Maier 2014	10	248	23	432	28.7%	0.75 [0.35, 1.60]						
Ponsford 2012	16	314	32	645	43.6%	1.03 [0.56, 1.90]			-			
Total (95% CI)		764		1405	100.0%	0.87 [0.58, 1.30]			•			
Total events	36		78									
Heterogeneity: Tau ² :	= 0.00; C	$hi^2 = 0.$	76, df =	3 (P =	0.86); I ² =	= 0%	0.01	01		10	100	
Test for overall effect	z = 0.6	9 ($P = 0$).49)				0.01	0.1	Urban Rural	10	100	

D: Nausea/Vomiting

	•	l Urban				Odds Ratio						
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-I	H, Random	n, 95% Cl	I	
Maier 2014	14	248	16	432	42.9%	1.56 [0.75, 3.24]				-		
Ponsford 2012	69	314	199	645	57.1%	0.63 [0.46, 0.86]			-			
Total (95% CI)		562		1077	100.0%	0.93 [0.39, 2.23]			-	-		
Total events	83		215									
Heterogeneity: Tau ² =	= 0.32; C	$hi^2 = 4.$	89, df =	1 (P =	0.03); I ² =	= 80%	0.01	0.1			10	100
Test for overall effect	Z = 0.1	6 (P = 0)).87)				0.01	0.1	Urban Ri	ural	10	100

Α							
	Rural Urban			an		Odds Ratio	Odds Ratio
Study or Subgroup	Events Total Events Total			Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
Agrawal 2017	20	274	4	54	6.1%	0.98 [0.32, 3.00]	
Andelic 2012	25	82	55	196	9.7%	1.12 [0.64, 1.98]	
Chapital 2007	38	358	277	3089	11.0%	1.21 [0.84, 1.72]	+
Chiang 2006	7	131	13	469	7.2%	1.98 [0.77, 5.07]	+
Chiu 2007	65	1474	152	5754	11.4%	1.70 [1.26, 2.29]	
Karwat 2009	16	79	18	146	8.5%	1.81 [0.86, 3.78]	
Pozzato 2019	88	2240	267	4482	11.6%	0.65 [0.50, 0.83]	-
Reid 2001	62	343	58	634	10.9%	2.19 [1.49, 3.22]	
Ring 1986	116	161	246	373	10.8%	1.33 [0.89, 2.00]	
Roberston 2011	1	38	39	406	2.9%	0.25 [0.03, 1.90]	
Woodward 1984	15	3971	116	8230	9.9%	0.27 [0.15, 0.45]	
Total (95% CI)		9151		23833	100.0%	1.09 [0.73, 1.61]	•
Total events	453		1245				
Heterogeneity: Tau ² =	= 0.33; C	$hi^2 = 72$	2.96, df =	= 10 (P <	< 0.00001	1); $I^2 = 86\%$	
Test for overall effect	Z = 0.42	2 (P = (0.67)				0.01 0.1 İ 10 100 Urban Rural
R			SE(log(OP))				

Figure 12

A: Vegetative/severe disability

8				an		Odds Ratio		Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% CI				
Chiang 2006	10	131	10	469	31.7%	3.79 [1.54, 9.32]				-		
Chiu 2007	142	1474	266	5754	38.5%	2.20 [1.78, 2.72]			-			
Woodward 1984	4	3971	29	8230	29.8%	0.29 [0.10, 0.81]						
Total (95% CI)		5576		14453	100.0%	1.42 [0.44, 4.62]						
Total events	156		305									
Heterogeneity: Tau ² =	= 0.93; Cl	$hi^2 = 10$	5.29, df :	= 2 (P =	0.0003);	$l^2 = 88\%$	0.01	01		10	100	
Test for overall effect	Z = 0.59	9 ($P = 0$	0.56)				0.01	0.1 Urban	Rural	10	100	

B: Good recovery

	- J												
	F	Rural		Urb	Irban			Odds Ratio			Odds Ratio		
Study or Subgroup	Ever	nts T	otal	Events	Total	Weigł	nt M-I	H, Random, 95% CI		М-Н,	Random, 95%	6 CI	
Chiang 2006	1	.06	131	421	469	20.1	%	0.48 [0.29, 0.82]		-			
Chiu 2007	12	23 1	1474	4991	5754	28.3	%	0.74 [0.64, 0.87]			=		
Stewart 2014	3	48	387	1586	1687	23.5	%	0.57 [0.39, 0.84]					
Woodward 1984	36	646 3	3971	7963	8230	28.1	%	0.38 [0.32, 0.44]			•		
Total (95% CI)		5	963		16140	100.0	%	0.53 [0.35, 0.81]			◆		
Total events	53	23		14961									
Heterogeneity: Tau ²	= 0.16	: Chi ²	$^{2} = 34$.73. df =	= 3 (P <	0.0000	1): $ ^2 =$	= 91%					
Test for overall effe		-		,	- (_,, .		0.01	0.1	1	10	100
rest for overall effet			. 0.	.005)						U	Irban Rural		
C: LOS													
. 105	1	Rural			Urban			Mean Difference		N	lean Differenc	e	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total \	Veight	IV, Random, 95% C	1	IV,	Random, 95%	CI	
Harradine 2004	30.5	17.1	51	36.75	22.61	147	34.6%	-6.25 [-12.20, -0.30]]		-		
Johnstone 2003	53.2	83.1	28	32.9	37.4	50	4.1%	20.30 [-12.18, 52.78]]				
Ponsford 2012	94	105	314	108.1	122	645	14.5%	-14.10 [-29.05, 0.85]]				
Reid 2001	2.67	2.98	342	2.33	2.23	635	46.8%	0.34 [-0.02, 0.70]]				
Total (95% CI)			735			1477 1	00.0%	-3.23 [-10.08, 3.63]			•		
Heterogeneity: Tau ² =	26.07;	Chi ² -	= 9.72	, df = 3	(P = 0.02)	2); $I^2 = 6$	9%		100	t o		r o	100
Test for overall effect	Z = 0.9	92 (P =	= 0.36)					-100	-50	Urban Rural	50	100
D: Employment													
1		Rural		Urba	an			Odds Ratio			Odds Ratio		
Study or Subgroup								I, Random, 95% CI			Random, 95%		

	Kural Orban					Odus Ratio	Ouus Ratio					
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	om, 95%	6 CI		
Harradine 2004	14	51	33	147	32.1%	1.31 [0.63, 2.70]			-			
Johnstone 2003	2	28	12	50	11.2%	0.24 [0.05, 1.18]	-	•	t			
Ponsford 2012	171	314	315	645	56.7%	1.25 [0.96, 1.64]						
Total (95% CI)		393		842	100.0%	1.06 [0.59, 1.89]		•				
Total events	187		360									
Heterogeneity: Tau ² =	0.14; Cl	$hi^2 = 4$.	09, df =	2 (P =	0.13); I ²	= 51%	0.01	0.1	-	10	100	
Test for overall effect:	Z = 0.19	9 (P = 0)).85)				0.01	000000000000000000000000000000000000000	Rural	10	100	