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Abstract 

Metastatic breast cancer is one of the leading causes of cancer mortality. While there has been 
progress in developing deep learning-driven diagnostic system for metastatic breast cancer based 
on histopathological images, it faces a major challenge in real-world application, i.e., how to 
improve generalizability of the diagnostic models for diverse patient populations and variations 
in sample and image processing across different geographic regions.  Multi-institutional 
collaborative learning, which trains a single model using data from multiple institutions, can 
address the challenges of data inadequacy, lack of data diversity, and data quality. However, the 
current practice of direct medical data transfer among institutions faces increasing restrictions 
including patient privacy, intellectual property, data ownership and legal obligations. To enable 
multi-institutional collaborative learning for cancer diagnosis, we developed a federated 
learning-driven collaborative diagnostic system for metastatic breast cancer. This system 
preserves patient privacy by decoupling model training from the need for direct medical data 
transfer between institutions. Further, this study has demonstrated that the federate learning-
driven system can improve diagnostic model accuracy and generalizability by leveraging 
information derived from diverse data sources across multiple institutions. This study has also 
shown that this collaborative diagnostic system has a strong potential of improving local 
diagnosis performance on lower quality images at a resource constrained institution. Our 
research indicated that federated learning-driven diagnostic system is a feasible and robust 
framework for multi-institutional collaborative development of diagnostic models for metastatic 
breast cancer. In addition to the benefits of improving diagnostic model generalizability for 
diverse patient populations, the collaborative diagnostic system presents a new opportunity to 
enable under-resourced healthcare institutions to leverage external data resources to improve 
local diagnosis performance while preserving patient privacy.   
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1. Introduction 

Advances in Artificial Intelligence, especially in the field of deep learning, presents new 
opportunities for innovations in cancer diagnosis and treatment [1]. However, real-world 
application of deep learning-based diagnostic system requires that such a system can perform 
diagnosis with high accuracy for a broad population with diverse demographic characteristics, 
accounting for regional differences in diagnostic practice and quality. A diagnostic model trained 
from the data of a specific institution tends to overfit its data at home institution and has a limited 
ability to be generalized to the new data from other institutions [2].  Due to lack of 
generalizability to be applied to diverse patient populations, model training based on diverse data 
from multiple institutions becomes crucial for building accurate, precise, and generalizable 
diagnostic models for broader patient populations.  
 
Although significant progress has been made to develop machine learning-based image analysis 
methods for metastatic breast cancer diagnosis [3, 4, 5, 6], real-world clinical application of these 
methods remains a major challenge. Particularly, lack of access to adequate, diverse, and high-
quality data for model building is exacerbated in under-resourced healthcare institutions in many 
developing countries. First, these institutions face severe shortages of trained pathologists. For 
instance, the average number of pathologists per head of population is 1 to 1,000,000 in sub-
Saharan regions, compared with the ratio of 1 pathologist to 15,000–20,000 in the US and UK [7]. 
Second, many of the under-resourced healthcare institutions serve sparsely populated and remote 
regions. Third, diagnostic quality may be impacted by lack of resources and training [8]. 
Therefore, for under-resourced healthcare institutions, internal data may be inadequate in size 
and quality for diagnostic model building. These institutions are in critical need to access and use 
high-quality external data for improving diagnostic model performance.  
 
Multi-institutional collaborative learning, which trains a single model using data from multiple 
institutions, is a robust way to address the challenges of data inadequacy, lack of data diversity, 
and data quality.  The current paradigm for multi-institutional collaboration is that the 
participating institutions physically transferred their data to a centralized location for model 
training and testing [9]. While the centralized data sharing approach can increase the size of 
dataset for model training, the direct data transfer among healthcare institutions faces restrictions 
from multiple fronts, including patient privacy, intellectual property, data ownership.  Among 
many countries, the United States Health Insurance Portability and Accountability Act (HIPAA) 
and the European General Data Protection Regulation (GDPR) regulate storage and exchange of 
personally identifiable data and health data [10, 11].  Medical image data often cannot be shared 
outside the institutions of their origin due to patient privacy and confidentiality. Therefore, the 
centralized data sharing approach faces insurmountable difficulties in real-world applications, 
and therefore it is not feasible to scale this approach to international or global level. 
 
Federated learning presents an innovative collaborative learning paradigm which enables models 
to be trained across multiple medical institutions without direct data transfer among them. 
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Federated learning decouples model training from the need for direct access to the raw training 
data, which significantly reduces the privacy and security risks [12. 13]. Federated learning makes 
it possible to build global collaborative AI-driven systems for medical diagnosis, treatment, and 
disease monitoring [14]. Further, such systems provide a crucial opportunity to help improve 
efficiency and quality of healthcare in remote, resource-constrained, or sparsely populated areas. 
Breast cancer patients in developing countries, especially sub-Saharan Africa, suffer from the 
highest mortality rates in the world due to lack of trained pathologists and consequent long 
diagnosis delays [15]. While progress has been made to design AI-driven diagnostic systems for a 
single institution, the systems are limited to the data generated by the institution. However, a 
major challenge for under-resourced institutions is severe shortage of high-quality medical image 
data for building high-performing diagnostic models. This is further complicated by different 
patient populations and varying degrees of image quality. The diagnostic models trained on 
datasets procured from a single institution or institutions in a specific region may not perform as 
expected when applied to data from other institutions serving different patient populations.  
Federated learning provides an innovative framework for leveraging external demographically 
and geographically diverse data sources as well as incorporating local data to improve model 
accuracy and generalizability. The objective of this research is to develop a federated learning-
driven collaborative diagnostic system for metastatic breast cancer by integrating knowledge 
from multiple institutions while preserving patient privacy.   
 
 
2. Methods 
2.1. Overall framework of federated learning-driven diagnostic system  
Direct data sharing is the current approach for aggregating medical image data for diagnostic 
model training, which requires healthcare institutions to directly transfer their medical image 
data to a central server (Figure 1A). However, this approach is restricted by the laws and 
regulations on patient privacy, confidentiality, and data security [10, 11]. To address this challenge, 
we propose a federated learning-driven collaborative diagnostic system for metastatic breast 
cancer. As shown in Figure 1B, the collaborating healthcare institutions do not directly transfer 
their medical image data to a central server. Instead, each institution trains a local copy of a 
diagnostic model and sends updates of model parameters to the central server without disclosing 
local medical data. The central server then aggregates the updates for the federated model and 
sends the newly updated model parameters to each of the collaborating institutions for further 
training or application. The federated learning-driven system substantially reduces the risk for 
patient privacy and confidentiality as compared with direct data transfer. Additionally, the 
communication cost of the federated learning-driven system is substantially lower than direct 
data transfer. As shown in Figure 1, the communication cost of the federated system of four 
institutions was 1280Mb for 10 iterations; in comparison, the cost for direct transfer of a set of 
220 images was 306Gb.  
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                    A: Direct Data Transfer                            B: Federated Learning-Driven System 
Figure 1. Overall framework of the federated learning-driven collaborative diagnostic system (B) 
for metastatic breast cancer, in comparison with the direct data sharing approach (A)  
 
2.2. Histopathological image processing 
Deep learning -based diagnosis for metastatic breast cancer is based on histopathological whole 
slide images (WSIs) of sentinel lymph nodes with a pathologist’s delineation of regions of 
metastatic cancer. The image normalization was conducted with the WSI Color Standardization 
procedure [16] to minimize potential variations in the color and intensity of H&E staining.  Tissue 
areas within the normalized WSIs were identified and extracted using a threshold-based 
segmentation method [17]. The mask images were generated for model training from the HSV 
representation transformed from the original RGB images. The WSIs were segmented into small 
patches which enable the deep learning model to be trained to recognize cancerous cells on a 
small scale, improving data volume and model training efficiency [18, 19]. In the segmentation 
process, a large number of patches were extracted from each WSI and categorized as a positive 
tumor, negative tumor, and negative normal. A positive tumor patch was extracted from a tumor 
slide, containing cancerous regions; a negative tumor patch was from a tumor slide but did not 
contain a cancerous region; a negative normal patch was extracted from a noncancerous/normal 
slide. During patch extraction, masks were created using a lower and upper bound of pixel color. 
After reducing mask noise with the “opening” and “closing” morphology processes, the pixel 
values of each mask were used to categorize the patch.  
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2.3. Convolutional neural network (CNN) for single-institution diagnostic system 
The local CNN-based diagnostic systems at individual institutions constitute the basic units of 
the federated learning-driven collaborative diagnostic system. MobileNetV2 was used for the 
single-institution diagnostic system. Mobilenetv2 is a CNN architecture that aims to perform 
computer vision tasks efficiently on mobile devices, by incorporating the Inverted Residual 
Structure and the Depthwise Separable Convolution to significantly reduce the model size and 
complexity [20]. 
 
The local CNN-based diagnostic system consists of two components: (1) training to build CNN-
based diagnostic models; (2) testing for prediction on unseen WSIs (Figure 2).  The training 
samples were WSIs with the corresponding ground truth image annotation indicating the 
delineation of regions of metastatic cancer. The diagnostic models were trained to discriminate 
between cancerous and noncancerous patches using a large number of small positive and 
negative patches randomly extracted from the set of training WSIs. We used five-fold cross-
validation to evaluate classification performance. For an individual fold, each model ran through 
ten iterations or “epochs”. Each epoch allowed the model to reevaluate its weights to determine a 
more effective set of values. With a stochastic gradient descent (SGD) optimizer, the weights 
were retrained or optimized for the data with a 0.01 learning curve. Model accuracy was assessed 
for the training and validation set at each epoch. The model performance was assessed with 
independent (unseen) WSI image data. The unseen WSIs were pre-processed and segmented as 
described above. The diagnostic models were used to discriminate the cancerous vs. non-
cancerous patches. With the patch-level classification, a tumor probability heatmap was 
generated for each WSI to indicate the probability of each pixel being cancerous.  
 

 
 

Figure 2. The Workflow of Deep Learning-Based Metastatic Breast Cancer Prediction 
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2.4. Federation of single-institution diagnostic systems 

The federated learning-based system was implemented with the FederatedAveraging (FedAvg) 
algorithm [12] (Figure 3).  

 
Figure 3. Pseudo-code of FederatedAveraging (FedAvg) algorithm [12] 
 
Where 𝜂 is the learning rate, 𝑛! is the sample size of the training data set in kth institute, and N is 
the total sample size combining all institutions. The federated averaging algorithm was 
integrated with the stochastic gradient descent (SGD) optimization at individual local 
institutions. In the federated collaborative diagnostic system, each collaborating institution k 
trained a diagnostic model of the same neural network architecture with learning rate η for one 
epoch and computed the average gradient ∇𝑓!(𝜔") on its local data at the current model 𝑤" . The 
central server aggregated the local gradients updated in this round of communication and applied 
the updates.   

𝑤"#$ ← 𝑤" − 𝜂+
𝑛!
𝑁 ∇𝑓!(𝜔")

%

!&$
 

Computationally, this is equivalent to the central server taking a weighted average of the local 
models trained at all individual institutions. Each local model’s contribution was weighted based 
on its sample size. The FedAvg algorithm was implemented with the TensorFlow Federated API 
framework. Additionally, Mime Lite was explored to leverage a momentum parameter to 
decrease client drift and increase convergence rates. Hyperparameters were tuned for each 
model. The learning rate was adjusted to fine-tune convergence time and model performance. 
The batch size, number of clients, and client data volume were also adjusted for performance 
assessment. The number of training rounds (or epochs) was assessed in relation to convergence 
time.  

 

FederatedAveraging Algorithm. The K institutions are indexed by k, 
B is the size of local minibatch b, E is the number of local epochs in  
each round of institution update, η is the learning rate, and ℓ(𝜔, 𝑏) is  
the local loss function. 
 
Central Server executes: 
     initialize 𝜔0   
     for each round t = 1, 2, … do 
         for each institution 𝑘 = 1, 2, … , 𝐾 in parallel do 
              𝜔𝑡+1𝑘 ← 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑈𝑝𝑑𝑎𝑡𝑒(𝑘, 𝜔𝑡) 
         𝜔𝑡+1 ← ∑ 𝑛𝑘

𝑁
𝐾
𝑘=1 𝜔𝑡+1𝑘  

 
InstitutionUpdate(𝑘, 𝜔): 
      for each local epoch i from 1 to E do 
            for each minibatch 𝑏 do 
                 𝜔 ← 𝜔 − 𝜂∇ℓ(𝜔; 𝑏) 
      return 𝜔 to central server 
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2.5. Design of Simulation Experiments  
We used simulation experiment to evaluate diagnostic performance of the federated collaborative 
diagnostic system for metastatic breast cancer.  
 
We first assessed the ability of the federated learning-driven system in leveraging data from 
multiple institutions to improve diagnostic performance. This experiment simulated a scenario 
where the FL-based diagnostic system consisted of 4 simulated institutions (Figure 1B). For each 
training round, local models were trained at individual institutions, and the gradients from the 
local models were communicated to inform and update a federated model at a central server. The 
federated and local models were tested using an independent test set. Receiver operating 
characteristics (ROC) curve was used to evaluate diagnostic performance of the local models vs. 
the federated model.  
 
We then explored whether the federated collaborative diagnostic system could improve accuracy 
of local diagnosis on lower-quality histopathological images. The lower image quality issue is a 
critical challenge for resource-constrained healthcare facilities in their effort of building high-
performing models for diagnosis. We also used this experiment to further evaluate whether 
federated learning can improve model generalizability when data from multiple institutions are 
more heterogeneous in image quality. In this experiment, we simulated a scenario of 3 
institutions, with institution C1 and C2 being healthcare facilities with adequate resources but 
institution C3 being an under-resourced facility. The experiment design is illustrated in Figure 
4A. The image data at institutions C1 and C2 were of normal quality; the images at C3 were of 
lower quality (Figure 4B). The institution C3 images of lower quality were simulated by 
adjusting jpeg image quality to a random value between 6 and 9.  A local model trained at a 
institution was tested on its own test dataset as well as the test sets at the other institutions. The 
federated model was also tested on the respective test set at each institution. The ROC curve was 
used for diagnostic performance assessment. 
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A 

 
B 

Figure 4. Experiment design to evaluate performance of federated model in improving 
diagnostic performance on lower quality images at a local site.  
 
2.6. Datasets 
The data consists of 222 whole slide images retrieved from the 2016 Camelyon ISBM challenge. 
The slides contain sentinel lymph node tissues extracted by the Radboud University Medical 
Center (Nijmegen, the Netherlands), as well as the University Medical Center Utrecht (Utrecht, 
the Netherlands). 
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3. Results 
 
3.1. Federated Model Outperforms Local Models in Metastatic Breast Cancer Diagnosis 
We evaluated diagnostic performance of federated model vs. local models for metastatic breast 
cancer diagnosis in a simulated scenario where a FL-based collaborative diagnostic system 
consisted of 4 local institutions (Figure 1B).  The local models were trained, respectively, on the 
training dataset at each of the 4 institutions, and the gradients from the local models were 
communicated to inform and update a federated consensus model. Using an independent test set 
that was different than the training sets used at the 4 institutions, the federated model was 
evaluated against each of the four local models in diagnostic performance based on receiver 
operating characteristics (ROC) curve. As shown in Figure 5, the ROC AUC of the federated 
model (0.982) was higher than those of the local models (ROC AUC ranging from 0.831 to 
0.940). The results suggest that the federated model can improve diagnostic performance for 
metastatic breast cancer by integrating local models from multiple institutions. 
 

 
Figure 5. Receiver Operating Characteristics (ROC) curves of the federated model as compared 
with the local models from 4 collaborating sites. 
 
3.2. Federated Learning Improves Diagnostic Model Generalizability 
In the real-world scenarios, there exist variations in histopathological images among healthcare 
institutions due to differences in patient population, biopsy tissue processing, and 
histopathological slide preparation. Model generalizability is crucial for a diagnostic model to 
perform well for diverse patient populations and different tissue/image processing procedures. 
To evaluate generalizability of federated model, we conducted a simulation experiment on a 
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federated collaborative diagnostic system that consisted of three institutions producing 
histopathological images of different quality. Among the three institutions in this experiment, the 
images generated at institution C3 were simulated to be of lower quality (Figure 4B). The dataset 
size of institution C3 was also reduced to reflect a shortage of image data at an under-resourced 
institution. The local models were trained and tested on the respective data at their own 
institutions. Further, the local models were tested on the test set at other institutions for 
generalizability assessment. Through the federated learning algorithm, the local models were 
aggregated to form a federated diagnostic model, which was then tested on the respective test set 
at each institution.  

 
Figure 6. Diagnostic performance of the local models and federated model (average ROC AUC 
± Standard Deviation): testing on respective test sets at individual institutions. * For institution 3, 
the histopathological images for training and testing were augmented to simulate images of 
lower quality. 
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As shown in Figure 6, the federated model performed well for the test sets at all three 
institutions, with ROC AUC of 0.976, 0.980, and 0.985 for the test sets at institutions C1, C2, 
and C3, respectively. In comparison, all the local models showed a lower ROC AUC when 
applied to the test sets at other institutions. The result suggests that the federated model can 
improve model generalizability as compared with the local models.  
 
3.3. Federated Model Improves Local Diagnostic Performance on Lower Quality Data 
Lower-quality images hinder the effort in building high-performing diagnostic models in 
resource-constrained healthcare facilities. We used the experiment described above to evaluate 
whether a federated system can improve local diagnostic performance on lower-quality images. 
The local model trained at institution C3 had an ROC AUC of 0.861 on the test set at C3. Since 
both training and testing sets at C3 were of lower quality, the C3 model showed relatively lower 
diagnostic performance. Although the local C1 model had ROC AUC of 0.921 on the test set at 
C2 and the local C2 model had ROC AUC of 0.930 on the C1 test dataset, both local C1 and C2 
models did not perform well on the C3 test set, with ROC AUC of 0.536 and 0.667 respectively. 
The results suggest that, while local models trained on normal quality data can perform well on 
test set with similar quality at a different institution, the local models might not be able to 
perform as well on the test set of lower quality because of limited model generalizability. 
However, the federated model achieved an ROC AUC of 0.985 on the test set at institution C3, 
which was a substantial increase of 12% as compared with the local model C3. The results 
demonstrate that the federated model can improve local diagnostic performance on lower quality 
images at an under-resourced institution.   
 
3.4. Federated Model Improves Predictive Diagnosis on Unseen Whole Slide Images 
To further evaluate federated model’s diagnostic performance on unseen whole slide images, 
visual comparison was conducted to examine diagnostic performance between the local models 
and the federated model on the unseen test set of WSIs, with the pathologist’s diagnosis as 
ground truth. As described in the previous section, the images at C3 were simulated to be of 
lower quality. Figure 7 shows the comparison for tumor case A. The boundaries of the cancerous 
regions predicted by the local model were not clearly defined. In comparison, the cancerous 
regions predicted by the federated model were better defined and more consistent with the 
pathologists’ diagnosis.  
 
Figure 8 shows the comparison for a more challenging tumor case B.  In this case, the cancerous 
regions were very small and embedded in a large area of normal cells. The local model cannot 
identify the small cancerous regions. In comparison, the federated model was able to identify the 
small cancerous regions. The boundaries were clearly defined and is consistent with the 
pathologists’ diagnosis. This comparison suggests that the federated model has a strong 
generalization and the ability to improve the identification of small cancerous regions on images 
of lower quality.  
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Figure 7. Tumor case A: comparison between the local model prediction and the federated 
model prediction on cancerous regions on WSI, with the pathologist’s diagnosis as ground truth 
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Figure 8. Tumor case B: comparison between the local model prediction and the federated 
model prediction on cancerous regions on WSI, with the pathologist’s diagnosis as ground truth 
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4. Discussion 
 
In the development of deep learning methods for computer-aided image analysis for cancer 
diagnosis, it has been recognized that diagnostic model generalizability is largely dependent on 
size and diversity of training data. It was observed that diagnostical models trained from one 
healthcare institution may not perform equally well on the unseen data from different institutions 
[2]. We also observed this issue in this study: the diagnostic models trained with normal data from 
institutions C1 and C2 did not perform equally well on the test set of lower quality images at 
institution C3 due to the local models’ limited generalizability. Therefore, building a 
generalizable diagnostic model requires access to rich and diverse sources of medical image data 
from multiple medical institutions. The current way for data aggregation is through direct 
transfer of medical data from multiple healthcare institutions, which is considered to be 
practically infeasible for real-world applications due to patient privacy, confidentiality, and legal 
obligations [10, 11].  This challenge becomes more evident and severe for healthcare facilities in 
resource-constrained regions.  
 
We propose a federated learning-driven collaborative diagnostic system for metastatic breast 
cancer in this study. Federated learning decouples model training from the need for direct 
medical data transfer, mitigating the potential risk for patient privacy and confidentiality. 
Further, this system can improve diagnostic accuracy and generalizability by leveraging 
knowledge derived from diverse data sources across multiple institutions. This study 
demonstrated that the federated diagnostic models performed consistently and substantially 
better than the local models. The improvement of model generalizability by federated learning 
may be a result of greater exposure of a federated model to data variations due to differences in 
biopsy sample acquisition, processing, equipment configuration, etc. among multiple institutions. 
The advantages of the federated learning-driven system can empower regional, national, and 
international healthcare institutions to collaborate on training and testing diagnostic models for 
metastatic breast cancer (Figure 9A). While the conceptual framework of such a collaborative 
diagnostic system is valid and technically feasible, more technical issues such as more robust 
privacy preserving solutions, client-server communication efficiency, etc. remain to be further 
explored.        
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                                                    A                                                                                B 
Figure 9.  A: Federated learning-driven collaborative diagnostic system can be applied on a 
global scale to connect many healthcare institutions to improve diagnostic models while 
preserving patient privacy. B: Application of the system to connect all tiers (Tier 1 – 4) 
healthcare facilities (B) [21] to reduce the diagnosis delay in Sub-Saharan regions with high breast 
cancer cases and high mortality rates (A) [15]. 
 
The federated learning-driven collaborative diagnostic system provides an innovative approach 
to leveraging global data resources to address the public health challenges in metastatic breast 
cancer diagnosis faced by the developing countries. Breast cancer patients in sub-Saharan Africa, 
South Asia, and South America, suffer from the highest mortality rates in the world due to long 
diagnosis delays [8, 15, 22]. In Northern sub-Saharan Africa, breast cancer has been the most 
common cause of cancer death, and healthcare resources are severely limited in this region [15, 21] 
(Figure 9B). A deep learning-based diagnostic system has been developed to address the 
disparity in breast cancer diagnosis, focusing on resource efficiency and mobile readiness [6]. 
However, its real-world application in the under-resourced regions still face a major challenge of 
severe shortages of high-quality medical image data needed for building high-performing 
diagnostic models. This study showed a dilemma in diagnostic model training under such a 
circumstance. At the simulated under-resourced institution C3, accuracy of the locally trained 
model was suboptimal because of the limited data volume and quality. On the other hand, the 
diagnostic model trained with a larger training set of normal quality images at other institutions 
(sites C1 and C2) underperformed on the unseen images at C3, suggesting limitations of 
deployment of an externally trained model for a local population. Federated learning provided an 
innovative solution to this problem. This study showed that the federated model achieved a ROC 
AUC of 0.985 on the test set at C3, an increase of 12% as compared with the local C3 model and 
an increase of about 30% as compared with the externally trained C1 and C2 models. The 
improvement of diagnostic performance by the federated model may be attributed to its ability in 
leveraging external information as well as adapting to local data. 
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Further, this study explored the potential of using federated learning to improve local diagnostic 
performance in an under-resourced healthcare institution through a collaborative diagnostic 
network. The under-resourced healthcare institutions are often located in remote, geographically 
isolated, and sparsely populated areas, e.g., northern sub-Saharan region (Figure 9B). Typically, 
these institutions face a severe shortage of trained pathologists. For instance, the average number 
of pathologists per head of population is 1 to 1,000,000 in sub-Saharan regions, compared with 
the ratio of 1 pathologist to 15,000–20,000 in the US and UK [7]. This is further complicated by 
image quality issues due to lack of resources and training. In this study, the federated model 
substantially improved local diagnostic performance (measured by ROC AUC) by 12% on the 
lower quality images at C3. The visual comparisons have shown that the federated model can 
perform better than the local model on identifying cancerous regions, including the very small 
cancerous areas embedded in a large area of normal cells (Figure 7 and 8). This collaborative 
system presents a new opportunity to address the long delays in breast cancer diagnosis and 
consequent disparity in patient survival outcomes in developing countries.    
 
5. Conclusion 
 
In summary, this research has developed a federated learning-driven collaborative diagnostic 
system for metastatic breast cancer. This system preserves patient privacy by decoupling model 
training from the need for direct transfer of medical image data between healthcare institutions. 
Further, this system improves diagnostic model accuracy and generalizability by leveraging 
information derived from diverse data sources across multiple institutions. This study has 
demonstrated that this system has a great potential of improving local diagnostic performance on 
lower quality images at a resource-constrained institution. This research provides a new 
paradigm for metastatic breast cancer diagnosis – collaborative diagnostic model building and 
testing among multiple institutions around the world – to improve diagnostic accuracy and 
generalizability.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 21, 2023. ; https://doi.org/10.1101/2023.10.20.23297323doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.20.23297323


17 
 

Funding 
Not Applicable 
 
Authors' contributions 
W.G. conducted analysis and drafted the manuscript. D.W. and Y.H. provided advice on machine 
learning and statistical analysis. All authors reviewed and edited the manuscript.   
 
Availability of data and materials 
The computational code used in this study will be made available upon request after the publication 
of this manuscript. Please contact W.G. for code (williamgao110@gmail.com).  
 
Declarations: 
 
Ethics approval and consent to participate 
Not Applicable 
 
Consent for publication 
Not Applicable 
 
Competing interests 
The authors declare no competing interests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 21, 2023. ; https://doi.org/10.1101/2023.10.20.23297323doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.20.23297323


18 
 

References 
 
1. Haug CJ, Drazer JM. Artificial Intelligence and Machine Learning in clinical medicine, 

2023. New England Journal of Medicine. 2023. 388(13): 1201-1208.   
2. Zech JR, Badgeley MA, Liu M, et al. Variable generalization performance of a deep learning 

model to detect pneumonia in chest radiographs: A cross-sectional study. 2018. 15(11): 
e1002683.  

3. Freeman K, Geppert J, Stinton C, et al. Use of artificial intelligence for image analysis in 
breast cancer screening programs: systematic review of test accuracy. 2021. BMJ. 374: 
n1872. 

4. Wang D, Khosla A, Gargeya R, et al. Deep learning for identifying metastatic breast cancer. 
2016. arXiv: 1606.05718v1. 

5. Veta M, Heng Y, Stathonikos N, et al. Predicting breast tumor proliferation from whole-slide 
images: The TUPAC16 Challenge. 2019. Med. Image Anal. 54: 111-121. 

6. Gao W, Wang D, Huang Y. Designing a deep learning-driven resource-efficient diagnostic 
system for metastatic breast cancer: reducing long delays of clinical diagnosis and improving 
patient survival in developing countries. 2023. Cancer Informatics. Submitted. 

7. Fleming K. Pathology and cancer in Africa. 2019 ecancer, 13: 945.  
8. Jedy-Agba E, McCormack V, Adebamowo C, et al. Stage at diagnosis of breast cancer in 

sub-Saharan Africa: a systematic review and meta-analysis. 2016. The Lancet. Global health, 
4(12), e923–e935. 

9. Bakas S, Ormond DR, Alfaro-Munoz KD et al. iGLASS: imaging integration into the Glioma 
Longitudinal Analysis Consortium". 2020. Neuro-oncology 22(10): 1545-1546. 

10. Annas GJ. HIPAA regulations - a new era of medical-record privacy? 2003. New England 
Journal of Medicine 348(15):1486-1490. 

11. Voigt P, Von dem Bussche A. The EU general data protection regulation (gdpr). 2017. A 
Practical Guide, 1st Ed., Cham: Springer International Publishing 10, p. 3152676. 

12. McMahan HB, Moore E, Ramage D et al. Communication-efficient learning of deep 
networks from decentralized data. 2017. Proceedings of the 20th International Conference on 
Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, Florida, USA. JMLR: 
W&CP volume 54. 

13. Sadilek A, Liu L, Nguyen D et al. Privacy-first health research with federated learning. 2021. 
Digital Medicine. 4: 132. 

14. Pati S, Baid U, Edwards B et al. Federated learning enables big data for rare cancer boundary 
detection. 2022. Nat Commun. 13(1): 7346. 

15. Pace L, Shulman LN. Breast cancer in Sub-Saharan Africa: challenges and opportunities to 
reduce mortality. 2016. Oncologist. 21: 739-744. 

16. Bejnordi BE, Litjens G, Timofeeva N. et al. Stain specific standardization of whole-slide 
histopathological images. 2016. IEEE transactions on medical imaging, vol. 35, no. 2, pp. 
404–415. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 21, 2023. ; https://doi.org/10.1101/2023.10.20.23297323doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.20.23297323


19 
 

17. Otsu N. A threshold selection method from gray-level histograms. 1975. Automatica, vol. 11, 
no. 285-296, pp. 23–27. 
18. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. 2019. 
Journal of Big Data. 6: 60. 
19. Sural S, Qian G, Pramanik S. Segmentation and histogram generation using the HSV color 
space for image retrieval. 2002. Proceedings of International Conference on Image Processing, 
vol. 2. IEEE. 
20. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image 
recognition. 2015. arXiv: 1409.1556v6. 
21. Falchetta G, Hammad AT, Shayegh S. Planning universal accessibility to public health care 
in sub-Saharan Africa. 2020. PNAS. 117 (50): 31760 – 31769. 
22. Sung H, Ferlay J, Siegel RL, et al., Global cancer statistics 2020: GLOBOCAN estimates of 
incidence and mortality worldwide for 36 cancers in 185 countries. 2021. CA Cancer J. Clin. 71: 
209-249. 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 21, 2023. ; https://doi.org/10.1101/2023.10.20.23297323doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.20.23297323

