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Abstract 

Multi-ancestry genome-wide association studies (GWAS) have highlighted the existence of 

variants with ancestry-specific effect sizes. Understanding where and why these ancestry-

specific effects occur is fundamental to understanding the genetic basis of human diseases and 

complex traits. Here, we characterized genes differentially expressed across ancestries (ancDE 

genes) at the cell-type level by leveraging single-cell RNA-seq data in peripheral blood 

mononuclear cells for 21 individuals with East Asian (EAS) ancestry and 23 individuals with 

European (EUR) ancestry (172K cells); then, we tested if variants surrounding those genes 

were enriched in disease variants with ancestry-specific effect sizes by leveraging ancestry-

matched GWAS of 31 diseases and complex traits (average N = 90K and 267K in EAS and 

EUR, respectively). We observed that ancDE genes tend to be cell-type-specific, to be enriched 

in genes interacting with the environment, and in variants with ancestry-specific disease effect 

sizes, suggesting the impact of shared cell-type-specific gene-by-environment (GxE) 

interactions between regulatory and disease architectures. Finally, we illustrated how GxE 

interactions might have led to ancestry-specific MCL1 expression in B cells, and ancestry-

specific allele effect sizes in lymphocyte count GWAS for variants surrounding MCL1. Our 

results imply that large single-cell and GWAS datasets in diverse populations are required to 

improve our understanding on the effect of genetic variants on human diseases.   
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Introduction 

Multi-ancestry genome-wide association studies (GWAS) have highlighted that, despite the 

strong correlation of causal effect sizes across ancestries 1–9, a non-negligible fraction of causal 

variants have ancestry-specific effect sizes, likely due to gene-by-environment (GxE) 

interactions 7–9. Knowing where and why ancestry-specific effects of disease risk variants occur 

is fundamental for understanding the genetic basis of human diseases and for improving the 

portability of polygenic risk scores across ancestries 6. 

Differences in gene regulation across ancestries have been observed at different 

regulatory levels (such as gene expression 10–18, eQTL effect sizes 19–21, methylation 22,23 and 

enhancer activity 24) and could inform which variants have ancestry-specific disease effect 

sizes. Indeed, gene regulation differences can also be due to GxE (e.g., ancestry-specific eQTL 

effect sizes), and variants with ancestry-specific disease effect sizes tend to be enriched in 

regulatory regions and around genes differentially expressed in tissues interacting with the 

environment 7. However, investigating if ancestry-specific regulatory and disease architectures 

are correlated (because of shared GxE mechanisms) has been challenging for multiple reasons. 

First, there is a limited availability of ancestry matched GWAS and functional datasets from non-

European descent. Second, while regulatory differences (such as ancestry-specific gene 

expression) could be due to GxE, they can also be the consequences of differences in allele 

frequencies due to genetic drift, different answers to the ancestry environment with no genetic 

mediation, or batch effects due to how multi-ancestry data have been collected 12. Finally, as 

gene regulation tend to be cell-type-specific 25,26, it is unclear which cell types are the most 

subject to ancestry-specific gene regulation and disease effect sizes.  

Here, we aim to characterize genes differentially expressed across ancestries (ancDE 

genes) at the cell-type level, and to test if ancDE genes are enriched in disease variants with 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2023. ; https://doi.org/10.1101/2023.10.20.23297214doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.20.23297214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

ancestry-specific effect sizes. We leveraged single-cell RNA-seq (scRNA-seq) data in peripheral 

blood mononuclear cells (PBMCs) for 21 individuals with East Asian (EAS) ancestry and 23 with 

European (EUR) ancestry 27 (172,385 cells analyzed across 7 main cell types), and ancestry-

matched GWAS of 31 diseases and complex traits 7 (average N = 90K and 267K in EAS and 

EUR, respectively). We observed that ancDE genes tend to be cell-type-specific, to be enriched 

in genes interacting with the environment and in variants with ancestry-specific disease effect 

sizes, suggesting the impact of shared cell-type-specific GxE interactions between regulatory 

and disease architectures. Our results imply that large single-cell and GWAS datasets in diverse 

populations are required to improve our understanding of human diseases. 
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Results 

Overview of the methods 

We characterized ancDE genes by leveraging scRNA-seq data in PBMCs from 21 and 23 

healthy females of EAS and EUR ancestry, respectively 27. We focused on the 7 most abundant 

cell types, with number of cells varying between 2,284 and 71,207 across them (172,385 total 

cells across the 7 cell types): B cells (B), Natural killer cells (NK), CD4+ and CD8+ T cells (T4 

and T8, respectively), conventional dendritic cells (cDC) and classical and non-classical 

monocytes (cM and ncM, respectively) (Figure 1A). Cell-type proportions were not significantly 

different across the two populations (Figure 1B and Supplementary Table 1). Differential 

expression across ancestries was tested independently in each cell type for each expressed 

gene using a Poisson linear mixed-effects model with the donor as a random effect, and 

ancestry and multiple covariates as fixed effects.  

We tested if SNPs surrounding ancDE genes (i.e., SNPs in a +/- 100kb window) were 

enriched in ancestry-specific effect sizes by using the S-LDXR method 7. For a given annotation 

�, S-LDXR reports the enrichment of squared multi-ancestry genetic correlation (�2), which is 

defined as 

����� � ������
���  

where ��� is the squared correlation of the per-allele effect sizes in the two populations (i.e., 

squared multi-ancestry genetic correlation), and ������ is the squared multi-ancestry genetic 

correlation computed within SNPs in �. We note that �2 is not impacted by allele frequency 

differences across the two populations (as it computes correlation of per-allele effect sizes and 

not effect sizes on normalized genotypes), and that S-LDXR estimates of �2 were unbiased for 

annotations with allele frequency differences in simulations (and conservative for other 

annotations) 7. Here, we applied S-LDXR with the annotations of the baseline-LD-X model on 31 
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diseases and complex traits 7 (average N = 90K and 267K in EAS and EUR, respectively); 

results were meta-analyzed across 20 approximately independent traits, including 10 

approximately independent blood and immune-related traits (Supplementary Table 2). We 

constructed SNP-annotations based on gene sets by selecting all SNPs falling in 100-kb 

windows on either side of the gene bodies. 

Further details are provided in Methods. We have released differential gene expression 

results and corresponding S-LDXR annotations, as well as code to replicate our analyses (Data 

and code availability). 

 

 

Cell-type-specificity of genes differentially expressed between East-Asian and European 

populations  

We tested differential gene expression in 7 immune cell types within 21 and 23 healthy 

individuals of EAS and EUR ancestry, respectively. We detected between 8 and 160 ancDE 

genes with false discovery rate (FDR) < 0.05 (396 ancDE genes across the 7 cell types, 320 

unique genes; Supplementary Fig. 1 and Supplementary Table 3). As the number of 

significant genes per cell types correlated with the number of tested cells (r = 0.60), we 

restricted further analyses to the 100 genes with the smallest P values within each cell type, 

leading to a list of 545 unique ancDE genes (including only 15 genes of the major 

histocompatibility complex (MHC) region) (Supplementary Table 4). All further analyses were 

replicated using the 200 and 500 genes with the smallest P values within each cell type. 

Out of the 545 unique ancDE genes, 452 (83%) were differentially expressed in a single 

cell type, suggesting high cell-type-specificity of differential expression across ancestries 

(Figure 2A). Within each cell type, between 53% and 72% of ancDE genes were specific to this 

cell type (Figure 2B). Genes differentially expressed in at least two cell types tend to cluster 
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between lymphoid (NK, B, T4 and T8) and myeloid cell types (cM, ncM, and cDC) (e.g., 28 

genes are differentially expressed in both T4 and T8 cell types, and 18 genes were differentially 

expressed in cM and nCM cells). Within the ancDE genes differentially expressed in at least 2 

cell types, a large fraction (86 out of 93; 92%) had consistent directions across the cell types 

(i.e., overexpressed or underexpressed in all the cell types) (Supplementary Table 5). 

To validate that the cell-type-specificity of ancDE genes was not an artifact of a relatively 

low number of samples (despite the high number of cells), we performed the following 

supplementary analyses. First, we replicated this observation when defining ancDE genes using 

the FDR 5% threshold, and the 200 and 500 smallest P values: 85%, 82%, and 77% of unique 

ancDE genes were differentially expressed in a single cell type, respectively (Supplementary 

Figs. 1-3). Second, we leveraged a larger scRNA-seq with 416 EUR males and 565 EUR 

females 28 (1,175,543 cells across 7 similar cell types) and identified the top 100 genes the most 

significantly differentially expressed in both sex for each cell type (578 unique sexDE genes) 

(see Methods). We observed that 86% of sexDE genes were differentially expressed in a single 

cell type, confirming that environment differences impact gene expression at the cell-type-

specific level (Supplementary Fig. 4 and Supplementary Table 6). 

 

AncDE genes are enriched in genes interacting with the environment  

We next sought to investigate if ancDE genes tend to be driven by environmental differences 

(i.e., GxE interactions of their eQTLs, or different answers to environments with no genetic 

mediation), genetic differences (population differences in allele frequencies of their eQTLs), or 

both. 

 First, by performing gene ontology enrichment analyses 29, we observed that the 545 

ancDE genes were enriched in genes involved in immune response to the environment (FDR 
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corrected P of 7.88 x 10-4 for leukocyte activation (GO:0045321) pathway; Supplementary 

Table 7). At the cell-type level, we found the most significant enriched GO categories in ncM 

cells (e.g., FDR corrected P of 7.01 x 10-7 myeloid cell activation involved in immune response 

(GO:0002275) pathway), NK cells (FDR corrected P of 1.7 x 10-5 for interferon-gamma-

mediated signaling (GO:0060333) pathway) and cM cells (FDR corrected P of 1.48 x 10-2 for 

neutrophil activation involved in immune response (GO:0002283) pathway) (Supplementary 

Table 7). We detected even more significantly enriched pathways involved in immune response 

when defining ancDE genes by using the 200 and 500 smallest P values (such as FDR 

corrected P of 4.50 x 10-5 and 2.22 x 10-6 for response to external biotic stimulus (GO:0043207) 

and viral process (GO: 0016032) pathways, respectively). Similar conclusions were obtained 

when removing MHC genes from the analysis (Supplementary Table 7).  

 Second, we investigated if ancDE genes were due to allele frequency differences of their 

eQTLs by leveraging cell-type-specific eQTLs from 982 EUR individuals 28; we note that our 

dataset was underpowered to detect ancestry-specific eQTLs and that there is (to our 

knowledge) no existing large EAS PBMC single-cell dataset available (see Discussion). We 

determined that nearly half of cell-type-specific ancDE genes (47%; 329 out of 700) have at 

least one independent EUR eQTLs in the corresponding cell type, which is 3.1 times more than 

what we would expect by chance (Fig 3A). Interestingly, these eQTLs tend to have extremely 

high fixation index (Fst) across EAS and EUR reference populations 30 (mean Fst = 0.21 across 

all ancDE gene eQTLs vs. mean Fst = 0.10 across eQTLs of all expressed genes, P = 1 x 10-28 

for difference; Fig 3B). When replicating differentially expression analyses for ancDE genes for 

which genotypes of the eQTLs were available (273 out of 329), we found that 71% of these 

genes (194 out of 273) do not remain in the top 100 most significantly differentially expressed 

genes after conditioning on their eQTLs (Fig 3C). These results suggest that at least a third of 

ancDE genes (0.47 x 0.71) are driven by allele frequency differences of their eQTLs across 
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ancestries. We replicated all our analyses and conclusion by defining ancDE genes using an 

FDR 5% threshold, as well as the 200 and 500 genes with the smallest differentially gene 

expression P values within each cell type (Supplementary Figs. 5-7).  

 Finally, we investigated if allele frequency differences of eQTLs across ancestries were 

more likely due to adaptation to new environments or to genetic drift.  We observed that ancDE 

genes with eQTLs were also enriched in genes involved in immune response (minimum FDR 

corrected P of 1.31 x 10-2, 1.68 x 10-2, 4.13 x 10-4 and 1.43 x 10-5 for myeloid cell activation 

involved in immune response (GO:0002275), peptide antigen binding (GO:0042605) pathway, 

response to interferon-gamma (GO:0034341) and peptide antigen binding (GO:0042609) 

pathways when considering the FDR 5% threshold, and the 100, 200 and 500 most significant 

ancDE genes, respectively; Supplementary Table 7), suggesting that allele frequency 

differences of their eQTLs might have been driven by adaptation to new environments rather 

than genetic drift. AncDE genes without eQTLs were enriched in genes involved in immune 

response but significance did not pass the FDR 5% threshold (except when considering the top 

500 most significant ancDE genes; Supplementary Table 7). Finally, we observed that 27% of 

cell-type-specific sexDE genes (186 out of 700) have at least one independent eQTLs 

(Supplementary Fig. 8), demonstrating that genes with eQTLs can be differentially expressed 

even without differences in allele frequencies. 

All together, these results suggest that ancDE genes are enriched in genes interacting 

with the environment. At least a third of ancDE genes could be due to allele frequency 

differences of their eQTLs, although it is very likely that a large fraction of these eQTLs is 

enriched in GxE interactions.  
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AncDE genes are enriched in ancestry-specific causal effect sizes of complex traits  

We created a SNP-annotation for the 545 unique ancDE genes (annotation representing 4.8% 

of investigated common SNPs) and analyzed it using S-LDXR on 31 diseases and complex 

traits and meta-analyzed results across 20 approximately independent traits. We observed that 

SNPs in ancDE genes were significantly enriched in SNP-heritability (h2) in both populations (h2 

enrichment = 2.07 ± 0.18, P = 3 x 10-9 in EAS; h2 enrichment = 1.71 ± 0.13, P = 2 x 10-8 in EUR) 

highlighting the impact of ancDE genes on human diseases and complex traits. 

We determined that SNPs within ancDE genes were extremely depleted of squared 

multi-ancestry genetic correlation (�2 = 0.69 ± 0.04, P = 6 x 10-13; Figure 4 and Supplementary 

Tables 8 and 9) and is more depleted (and most significantly depleted) than any other 

annotation from the baseline-LD-X model (Supplementary Table 10). We detected significant 

depletions (P < 0.05/31) for 6 traits, including: hematocrit (�2 = 0.35 ± 0.12, P = 5 x 10-8), 

lymphocyte count (�2 = 0.52 ± 0.12, P = 2 x 10-5) and height (�2 = 0.71 ± 0.09, P = 5 x 10-4) 

(Supplementary Table 8). AncDE genes �2 was also significantly lower than �2 estimated on all 

genes (�2 = 0.95 ± 0.01, P = 3 x 10-9 for difference with ancDE genes) and on genes expressed 

in the 7 cell types (�2 = 0.91 ± 0.01, P = 1 x 10-6 for difference with ancDE genes); by performing 

100 random sampling of 545 genes, we also validated that ancDE genes were significantly 

depleted in multi-ancestry genetic correlation (�2 = 0.84 ± 0.01, P < 1/100 for difference with 

ancDE genes; Supplementary Fig. 9). The net contribution of the ancDE gene annotation to 

the covariance of effect sizes (�, see Methods) was only slightly significant (P = 0.02; 

Supplementary Table 9), meaning that most of the multi-ancestry genetic correlation depletion 

of this annotation was already captured by existing annotations of the baseline-LD-X model. 

Indeed, we observed that the variants within the ancDE gene annotation tend to have higher 

values for annotations with depleted �2 that are related to regulatory regions and/or selection; 

for example, they tend to be enriched in promoters, exons and UTRs, and to have higher 
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background selection statistics 31,32 and lower predicted allele age 32,33 than other SNPs 

(Supplementary Table 11). 

As expected, �2 was even smaller when meta-analyzed across 10 approximately 

independent blood and immune-related traits (�2 = 0.64 ± 0.07, P = 7 x 10-8), and remained 

significantly depleted in the 10 remaining traits (�2 = 0.76 ± 0.06, P = 3 x 10-5). Similar 

conclusions were obtained when defining ancDE genes using the FDR 5% threshold, and the 

200 and 500 smallest P values (Supplementary Table 9). We rerun S-LDXR on two distinct 

annotations corresponding to ancDE genes with and without eQTLs, respectively (each 

annotation represents 2.4% and 2.5% of investigated SNPs, respectively). We observed similar 

depletion of squared multi-ancestry genetic correlation for the two annotations (�2 = 0.65 ± 0.07 

and �2 = 0.66 ± 0.04, respectively) (Supplementary Table 9), suggesting that even if genes 

were differentially expressed due to allele frequency differences of their eQTLs, these genes are 

likely enriched in ancestry-specific causal effect sizes. 

To support that genes with varying levels of expression in different environments are 

enriched in context-specific causal effect sizes, we extended S-LDXR to stratify squared genetic 

correlation between male and female GWASs and applied it to sexDE genes annotations on 17 

independent traits previously identified with sex genetic correlation significantly less than 1 (ref. 

34) (see Methods). We observed significant depletion of squared sex genetic correlation within 

our male and female GWASs (�2 = 0.91 ± 0.02, P < 2 x 10-7), and similar depletion when 

stratifying sexDE genes with and without eQTLs (�2 = 0.89 ± 0.03 and �2 = 0.90 ± 0.02, 

respectively) (Supplementary Table 12). 

Finally, to refine ancDE gene �2 signal, we performed S-LDXR analyses by creating 

SNP-annotations for each of the 7 main cell types (each annotation represents between 0.8% 

and 1.0% of investigated SNPs). The 7 SNP-annotations were all depleted of squared multi-
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ancestry genetic correlation (�2 < 0.78; Figure 5 and Supplementary Table 9) and all cell types 

except T8 were significantly depleted. We observed the smallest and most significant depletion 

for the ancDE genes in B cells (�2 = 0.35 ± 0.06, P = 1 x 10-24) and cDC cells (�2 = 0.36 ± 0.10, 

P = 6 x 10-10). Smaller �2 for the B and cDC annotations were observed when meta-analyzed 

across 10 approximately independent blood and immune-related traits (�2 = 0.30 ± 0.07, P = 4 x 

10-21 and �2 = 0.21 ± 0.12, P = 1 x 10-10, respectively); this trend was not observed across the 10 

remaining traits (Supplementary Fig. 10 and Supplementary Table 9). Similar conclusions 

were obtained when defining ancDE genes using the 200 and 500 smallest P values 

(Supplementary Figs. 11-12 and Supplementary Table 9).  

Altogether, these results demonstrate discordant causal effect sizes between EAS and 

EUR GWAS for variants surrounding ancDE genes, likely due to GxE interactions. The 

magnitude of �2 was similar for genes with and without eQTLs, suggesting that even if a gene is 

differentially expressed because of different allele frequencies of its eQTLs, this gene is likely to 

also be enriched in GxE effects (as difference of allele frequencies might have been driven by 

adaptation). Finally, for blood and immune-related traits, we observed stronger discordant effect 

sizes for SNPs within ancDE genes in B cells and cDC cells, two cell types that initiate and 

shape the adaptive immune response to new environments. 

 

 

Illustrating ancDE genes with strong GWAS discordant effect sizes  

Here, we illustrate how GxE interactions may have led to differential expression of the ancDE 

gene MCL1 in B cells, different MCL1 eQTL effect sizes in blood, and different allele effect sizes 

around MCL1 in lymphocyte count (LYMPH) EAS and EUR GWASs (Figure 6 and 

Supplementary Fig. 13).  

 MCL1 is a gene that is essential to B cell development 35–37, which we only found 
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significantly (FDR 5%) differentially expressed between EAS and EUR in B cells (P = 2 x 10-5; 

Figure 6A and Supplementary Table 3). While no MCL1 eQTLs in B cells were reported in ref. 

28, we investigated MCL1 eQTLs in blood in EAS (262 samples 38) and EUR (30,174 samples 39) 

datasets. We observed shared eQTLs (with similar allele frequency) across the datasets, but 

larger effect sizes in EAS (Supplementary Fig. 13), consistent with the higher expression of 

MCL1 in B cells in EAS.  

We observed significant associations in the LYMPH EUR GWAS (minimum P = 7 x 10-22 

for rs6587520) around the MCL1 gene, but not in the LYMPH EAS GWAS (P at rs6587520 in 

EAS = 0.52) (Figure 6B). We observed significant different marginal allele per-effect sizes at 

the EUR most significant loci (per-allele effect size of rs6587520 T allele = -0.004 ± 0.006 and -

0.023 ± 0.002 in EAS and EUR, respectively; P = 1 x 10-3 for difference; Figure 6C), similar 

allele frequencies for the most associated variants in EUR (Figure 6D), and similar LD patterns 

with rs6587520 in both ancestries (Supplementary Fig. 14), demonstrating that these 

discordant effects were not driven by power issues due to different GWAS sample sizes (N = 

62K in EAS 40 vs. N = 338K in EUR 41), and different allele frequencies and difference LD 

structure across the ancestries. One possible interpretation of these results would be that, 

because of the lower MCL1 expression in European populations (inducing reduction of B cells 

35), the variant rs6587520 will counterbalance this effect by increasing lymphocyte counts in 

European populations (as rs6587520 common allele increases lymphocyte counts, rs6587520 is 

expected to increase (on average) lymphocyte counts in European populations). 

All together, these results suggest that GxE interactions might have led to ancestry-

specific gene expression in B cells, ancestry-specific effect sizes of the gene eQTLs in blood, 

and ancestry-specific GWAS allele effect sizes in lymphocyte count around this gene.  
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Discussion 

Here, we characterized ancestry-specific gene regulation architectures at the cell-type level and 

investigated its overlap with ancestry-specific disease architectures. We analyzed scRNA-seq 

data in PBMCs from 44 individuals of EAS or EUR ancestry, and observed that ancDE genes 

tend to be differentially expressed in a single cell type, were enriched in genes involved in 

immune response to the environment, and that at least of third of ancDE genes could be due to 

allele frequency differences of their eQTLs (although it is likely that a large fraction of these 

eQTLs have allele frequency differences due to adaptation to new environment). Then, by 

leveraging ancestry-matched GWAS of 31 diseases and complex traits, we determined that 

squared multi-ancestry genetic correlation enrichment is �2 = 0.69 ± 0.04 for SNPs surrounding 

ancDE genes, representing the lowest correlation reported by S-LDXR; numbers were similar 

when stratifying genes with and without eQTLs, suggesting that even if genes were differentially 

expressed due to allele frequency differences of their eQTLs, they are likely enriched in 

ancestry-specific effect sizes. We observed that these depletions were driven by ancDE genes 

from B cells (�2 = 0.35 ± 0.06) and conventional dendritic cells (�2 = 0.36 ± 0.10). Finally, we 

illustrated how GxE interactions may have led to differential expression of the ancDE gene 

MCL1 in B cells, different MCL1 eQTL effect sizes in blood, and different allele effect sizes 

around MCL1 in LYMPH EAS and EUR GWAS.  

 To validate that cell-type-specificity of ancDE genes were not driven by low single-cell 

sample size and that our S-LDXR results were not driven by different allele frequency and LD 

structure across ancestries, we also extended our approach to sex-specific regulatory and 

complex trait architectures and observed similar patterns. Specifically, by detecting sexDE 

genes in a larger single-cell dataset 28 (1,175,543 cells from 982 donors), we showed that 

sexDE genes were also cell-type specific (Supplementary Fig. 4 and Supplementary Table 

6), and that nearly a quarter have at least one independent eQTLs (Supplementary Fig. 8), 
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demonstrating that genes with eQTLs can be differentially expressed even without differences in 

allele frequencies. Then, by extending S-LDXR to sex-specific effect sizes in sex-specific 

GWASs (in theory not subject to allele frequency and LD differences across investigated 

populations), we observed a significant depletion of squared sex genetic correlation within 17 

independent male and female GWASs 34 (�2 = 0.91 ± 0.02, P < 2 x 10-7) (Supplementary Table 

12), confirming the impact of GxE interactions within GWAS effect sizes. In supplementary 

analyses, we also assessed discordant effects of sex-stratified GWAS within functional 

annotations from the baseline-LD model 32 and showed similar enrichment of squared multi-

ancestry and sex genetic correlations across annotations (Supplementary Fig. 15). 

Our findings have several implications for downstream analyses. First, they provide a 

partial source of explanation for the non-transportability of polygenic risk scores across 

populations 6. Accounting for ancDE genes in relevant cell types could help to downweigh 

variant effects when computing polygenic risk scores. Second, our results highlight the benefits 

of generating single-cell datasets (rather than functional dataset in bulk tissues) in non-

European populations, as ancestry-specific regulation tends to be cell-type-specific. Finally, we 

proposed a framework leveraging single-cell and GWAS datasets that could be extended to 

analyze the impact of any environment interactions into complex traits, as performed here by 

considering ancestry and sex as environments.  

We note several limitations of our work. First, although our dataset was (to our 

knowledge) the largest multi-ancestry scRNA-seq dataset publicly available, it contains only 44 

individuals, which limited us to detect a hundred of FDR significant ancDE genes in the most 

abundant cell types. However, extremely significant S-LDXR results obtained in the top 100 

ancDE genes in ncM (one of the lowest abundant cell types with 5,149 cells) suggest that the 

gene ranking of our analyses is robust, even if many of these genes are not significant at the 

FDR level. Low sample size also prevented us from performing eQTL analyses and to directly 

quantify ancestry-specific eQTL effect sizes at the cell-type level. In our application to the MCL1 
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gene, we notably had to investigate blood eQTLs measured in non-homogenous EAS and EUR 

datasets, which might have impacted our conclusion on ancestry-specific eQTL effect sizes 

(although the observed effect was consistent with the higher expression of MCL1 in B cells in 

EAS). Second, our analyses were restricted to populations of only two ancestries, which are the 

only ones with both large functional and GWAS datasets available. Ongoing efforts to generate 

both functional and GWAS datasets in diverse populations would help to replicate our results. 

Third, our analyses were restricted to gene expression, and did not investigate the impact of 

ancestry-specific regulatory elements (such as enhancers), whereas chromatin signals have 

been observed to be more ancestry-specific than gene expression 24. We anticipate that 

generating diverse functional datasets (such as single-cell ATAC-seq or single-cell multiome) in 

diverse ancestries will help to investigate ancestry-specific regulation at a finer scale. Fourth, 

our analyses were restricted to 7 main PBMC cell types, limiting the characterization of rarer cell 

types, as well as the characterization of the cellular composition of each main cell type. Despite 

these limitations, our results convincingly demonstrate that ancestry-specific effect sizes are 

enriched in genes with ancestry-specific regulation and demonstrate the urge to generate large 

single-cell and GWAS datasets in diverse populations to improve our understanding on the 

effect of genetic variants on human diseases.  
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Methods 

Single-cell RNA-seq data in peripheral blood mononuclear cells 

We used processed scRNA-seq data in PBMCs from ref. 27, containing 256 individuals of East 

Asian (EAS) and European (EUR) ancestries. After restricting to 98 controls individuals and 

removing 158 systemic lupus erythematosus cases to have a homogeneous population, 

removing 50 individuals from the ImmVar study (which had only European individuals), 2 

outliers in a principal component analysis (PCA) (Supplementary Fig. 16), and two males in 

the remaining dataset, we obtained a dataset of 21 EAS female controls and 23 EUR female 

controls generated in similar batches.  

 We restricted our analyses to the 7 most abundant cell types (between 18,203 and 

380,477 cells per cell type before quality control), and removed cells labeled as PB (1,411 

cells), Progen (807 cells), Prolif (8,265 cells), and pDC (5,233 cells). After removing cells with 

more than 20% of their reads in 13 mitochondrial (MT) genes, and cells with less than 500 reads 

or more than 10,000 reads, we obtained a total of 172,385 cells across the 7 cell types 

(Supplementary Table 1).  

For supplementary analyses, we used the single-cell RNA-seq in 982 Europeans (565 

females and 416 males) in PBMCs from ref. 28. We defined B cells as the ones labeled as “naive 

B cell”, “memory B cell” and “transitional stage B cell”, NK cells as the ones labeled as “natural 

killer cell”, T4 cells as the ones labeled as “central memory CD4-positive, alpha-beta T cell”, 

“naive thymus-derived CD4-positive, alpha-beta T cell”, “effector memory CD4-positive, alpha-

beta T cell”, “CD4-positive, alpha-beta cytotoxic T cell”, “CD4-positive, alpha-beta T cell”, T8 

cells as the ones labeled as “effector memory CD8-positive, alpha-beta T cell”, “naive thymus-

derived CD8-positive, alpha-beta T cell”, “central memory CD8-positive, alpha-beta T cell”, 

“CD8-positive, alpha-beta T cell”, cM cells as the ones labeled as “CD14-positive monocyte” 

and ncM as the ones labeled as “CD14-low, CD16-positive monocyte”. We applied similar 
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quality control than described above and obtained a total of 1,175,543 cells within the 7 cell 

types. 

 

Genes differentially expressed across ancestries 

Within each cell type, we tested if each gene was differentially expressed between EAS and 

EUR individuals by using a Poisson linear mixed-effects model with the number of reads as the 

outcome variable, the donor as a random effect, and ancestry, age, batch, 5 first principal 

components of a principal component analysis (PCA) computed at the cell-type level on the 

2,000 most variable genes, log of total number of reads per cell, proportion of genes expressed 

in a single cell (CDR: cellular detection rate) and fraction of reads in MT genes as fixed effect 

covariates. We restricted our analyses to 19,995 genes 42, and for each cell type we restricted 

our analyses to genes with at least 50 reads across all controls (48% of the genes on average 

across the cell types). For main analyses, we defined genes with the top 100 smallest P values 

for the ancestry covariate as ancDE genes. We computed FDR P values using the Benjamini-

Hochberg correction 43 implemented in the R p.adjust function. We performed a similar 

approach to compute genes differentially expressed between females and males (sexDE genes) 

using data from ref. 28. We note that using a Poisson linear mixed-effects model with principal 

components computed at the cell-type level should have limited the impact of cell type 

heterogeneity on ancDE and sexDE gene results (as reported in refs. 18,44).  

 

Estimating enrichment of stratified squared multi-ancestry genetic correlation using S-

LDXR 

S-LDXR 7 is a method to estimate enrichment of stratified squared multi-ancestry genetic 

correlation across functional categories of SNPs using GWAS summary statistics and ancestry-

matched linkage disequilibrium (LD) reference panels. S-LDXR models per-allele effect sizes 
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(accounting for differences in allele frequency differences between populations) of SNP j in two 

populations (labeled as ��� and ���) with variance and covariance, 

	
������ �
�������
�

, 	
������ � 
�������
�

, ������� , ���� � 
������
�

 

where 
���� is the value of SNP � for annotation �, ��� and ��� are the net contribution of 

annotation � to the variance of ��� and ���, respectively, and �� is the net contribution of 

annotation � to the covariance of ��� and ���. 

S-LDXR estimates the stratified squared multi-ancestry genetic correlation, which is 

defined as 

������ �
������

���� ������� ��� 

where ����  and ����  are heritabilities in each population, and �� is the multi-ancestry genetic 

covariance of each binary annotation �: 

����� � ��������
��������� 

where 
����� and ��� are annotations and coefficients for all annotations �� included in the 

analysis, respectively.  

Then S-LDXR estimate the enrichment of squared multi-ancestry genetic correlation, 

which is defined as 

����� � ������
���  

where ��� is the genome-wide squared multi-ancestry genetic correlation.  

We applied S-LDXR using recommended settings 45, reference files (i.e., 481 East Asian 

and 489 European samples in the 1000 Genomes Project 30), and a background set of 

functional annotations (i.e., the baseline-LD-X model, a set of 62 functional SNP-annotations 

known to impact per-allele effect sizes). We applied S-LDXR on 31 diseases and complex traits 
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7 (average N = 90K and 267K in EAS and EUR, respectively); most of the results were meta-

analyzed across 20 approximately independent traits, including 10 approximately independent 

blood and immune-related traits (Supplementary Table 2). Reported P values for heritability 

enrichments were two-sided (i.e., testing if heritability enrichment is different from 1); reported P 

values for �� and � were one-sided (i.e., testing if �� and � are lower than 1 and 0, respectively).  

Our analyses included SNP-annotations related to gene sets, which were constructed by 

adding 100-kb windows on either side of the transcribed region of each gene in the set 7,46. All 

analyses included a SNP-annotation for the 19,995 genes, and seven SNP-annotations 

representing the set of genes expressed in each cell type (i.e., genes with at least 50 reads 

across all controls).  

 

Gene ontology (GO) enrichment analysis 

We performed GO enrichment analysis of ancDE genes using R package goseq 29. We 

restricted analyzed pathways to the ones containing between 10 and 1,000 genes. We defined 

the reference set of genes as the genes with at least 50 reads across all samples within 

investigated cell types. We computed FDR P values using the Benjamini and Hochberg 

correction 43 implemented in the R p.adjust function. 

 

Cell-type-specific eQTL analyses 

To determine whether the cell-type-specific ancDE genes were driven by allele frequency 

differences, we leveraged independent cell-type-specific eQTLs from ref. 28. We defined B cells 

eQTLs by merging eQTLs from cell types labeled as “B IN” and “B Mem”, T4 eQTLs by merging 

eQTLs from cell types labeled as “CD4 ET”, “CD4 NC” and “CD4 SOX4”, T8 eQTLs by merging 

eQTLs from cell types labeled as “CD8 ET”, “CD8 NC” and “CD8 S100B”. We defined cDC, cM, 

nCM and NK eQTLs by considering eQTLs from cell types labeled as “DC”, “Mono C”, “Mono 

NC” and “NK R”, respectively. We restricted all analyses to variants with a MAF > 5% in EUR. 
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We compared the EAS and EUR allele frequency of these eQTLs using 481 EAS and 

489 EUR individuals from 1000 Genomes 30,47. Fixation index (Fst) across EAS and EUR 

populations were computed using the formula 48 

��	 � ��
�
����������

�

�

�����
�

�

�����
��	
�
��	
��

��	
�
��	
��
�, 

where �̂��� and �̂��� are the allele frequencies estimated in the EAS and EUR populations, 

respectively, ���� and ���� are the sample size of these populations, and ���� is defined as 

����� � �����/2. 

To test if the 329 ancDE genes with EUR independent eQTLs were still significantly 

differentially expressed after conditioning to the genotypes of these eQTLs, we extracted those 

SNPs in the genetic data of ref. 27 (genotypes of eQTLs were available for 273 out of 329 

genes) and replicated our differentially expression analyses for ancDE genes while correcting 

for the genotypes of the eQTLs. 

 

Extending S-LDXR to estimate enrichment of stratified squared sex genetic correlation  

We extended S-LDXR to estimate enrichment of stratified squared sex genetic correlation using 

GWAS summary statistics computed in males and females of the same ancestry, and a 

corresponding LD reference panel. Here, we applied S-LDXR using recommended settings 45, 

and the EUR reference file and the baseline-LD model version 2.2 used by S-LDSC 32. We 

downloaded the male and female GWASs previously identified with sex genetic correlation 

significantly less than 1 (ref. 34), and defined a set of 17 independent traits with genetic 

correlation 49 < 0.1. We observed consistent squared sex genetic correlation and multi-ancestry 

genetic correlation among annotations of the baseline-LD and baseline-LD-X models 

(Supplementary Fig. 15). 
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Figures 

Figure 1: An immune multi-ancestry single-cell dataset. (A) We report UMAP coordinates
and assignment of 172,385 cells to 7 immune cell types 27: B cells (B), Natural killer cells (NK),
CD4+ and CD8+ T cells (T4 and T8, respectively), conventional dendritic cells (cDC) and
classical and non-classical monocytes (cM and ncM, respectively). The number of cells in each
cell type is reported in the legend. (B) We report cell-type proportions across 21 EAS and 23
EUR individuals; we did not observe significant differences (P < 0.05/7) of cell-type proportions
across ancestries (min P = 0.03 in cM; Supplementary Table 1). The median value of each
proportion is displayed as a band inside each box. Boxes denote values in the second and third
quartiles. The length of each whisker is 1.5 times the interquartile range (defined as the height
of each box). All values lying outside the whiskers are considered to be outliers. 
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Figure 2: Cell-type-specificity of ancDE genes. (A) We report the number of cell-type-specific
ancDE genes (top 100 smallest P values for each cell type) shared across all the cell types. We
observed that 83% of ancDE genes were differentially expressed in a single cell type. (B) For
each cell type, we report the number of ancDE genes shared across all the cell types. List of
ancDE genes is reported in Supplementary Table 4. Across the cell types, between 53% and
72% of their ancDE genes were cell-type-specific. Similar patterns were observed when defining
ancDE genes using the FDR 5% threshold, and the 200 and 500 smallest P values
(Supplementary Figs. 1-3) and for genes differentially expressed in males and females 28

(Supplementary Fig. 4). 
 
 
 

Figure 3: AncDE genes are driven by allele frequency differences of their eQTLs. (A) We
report the number of cell-type-specific ancDE genes with at least one EUR eQTLs and without
eQTLs in the corresponding cell type. Dotted boxes represent the number of ancDE genes that
would have been observed by chance. (B) We report mean fixation index (Fst) across EAS and
EUR reference populations 30  for all ancDE gene eQTLs, eQTLs of all expressed genes, and all
SNPs. (C) Scatter plot of ancDE genes -log10(P) before and after conditioning on their eQTLs.
Solid points represent ancDE genes that remain in the top 100 most significantly differentially
expressed genes after conditioning on their eQTLs. 
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Figure 4: Squared multi-ancestry genetic correlation enrichment for variants surrounding
ancDE genes. We report squared multi-ancestry genetic correlation enrichment ( 2) for each
independent trait and meta-analyses results across groups of traits. Orange bars represent
blood and immune-related traits, gray bars represent other traits, and the blue bar represents
the meta-analysis across all traits. Error bars represent 95% confidence interval (CI) for traits
with 2 significantly lower than 1. Numerical results are reported in Supplementary Tables 8-9.
AF: Atrial Fibrillation; AMN: Age at Menarche; AMP: Age at Menopause; BASO: Basophil Count;
BMI: Body Mass Index; EGFR: Estimated Glomerular Filtration Rate; EO: Eosinophil Count;
HBA1C: Hemoglobin A1c; HTC: Hematocrit; LYMPH: Lymphocyte Count; MCHC: MCH
Concentration; MCV: Mean Corpuscular Volume; MDD: Major Depressive Disorder; NEUT:
Neutrophil Count; PLT: Platelet Count; RA: Rheumatoid Arthritis; SBP: Systolic Blood Pressure;
TC: Total Cholesterol; TG: Triglyceride. 
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Figure 5: Squared multi-ancestry genetic correlation enrichment for variants surrounding
cell-type-specific ancDE genes. We report squared multi-ancestry genetic correlation
enrichment ( 2) for cell-type-specific ancDE gene annotations meta-analyzed across 20
independent traits. Error bars represent 95% CI. Numerical results are reported in
Supplementary Table 9.
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Figure 6: Discordant results between EAS and EUR Lymphocyte Count GWAS around the
B-cell ancDE gene MCL1. (A) We report logtp10k for MCL1 pseudo-bulk gene expression in B
cells between ASI and EUR individuals. The median value of each expression is displayed as a
band inside each box. Boxes denote values in the second and third quartiles. The length of
each whisker is 1.5 times the interquartile range (defined as the height of each box). All dots
represent observed values. (B) We report lymphocyte count (LYMPH) -log10 GWAS P values
computed in EAS and EUR populations. The orange region represents 100kb windows on either
side of MCL1 gene body. (C) We report LYMPH marginal effect sizes computed in EAS and
EUR populations. Marginal effects are plotted using absolute values. Blue lines represent 95%
CI. (D) We report EAS MAF and EUR AF in 1000 Genomes. Color intensity in (A,B,C)
represents GWAS -log10(P) differences between EAS and EUR.   
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