Abstract
Multi-ancestry genome-wide association studies (GWAS) have highlighted the existence of variants with ancestry-specific effect sizes. Understanding where and why these ancestry-specific effects occur is fundamental to understanding the genetic basis of human diseases and complex traits. Here, we characterized genes differentially expressed across ancestries (ancDE genes) at the cell-type level by leveraging single-cell RNA-seq data in peripheral blood mononuclear cells for 21 individuals with East Asian (EAS) ancestry and 23 individuals with European (EUR) ancestry (172K cells); then, we tested if variants surrounding those genes were enriched in disease variants with ancestry-specific effect sizes by leveraging ancestry-matched GWAS of 31 diseases and complex traits (average N = 90K and 267K in EAS and EUR, respectively). We observed that ancDE genes tend to be cell-type-specific, to be enriched in genes interacting with the environment, and in variants with ancestry-specific disease effect sizes, suggesting the impact of shared cell-type-specific gene-by-environment (GxE) interactions between regulatory and disease architectures. Finally, we illustrated how GxE interactions might have led to ancestry-specific MCL1 expression in B cells, and ancestry-specific allele effect sizes in lymphocyte count GWAS for variants surrounding MCL1. Our results imply that large single-cell and GWAS datasets in diverse populations are required to improve our understanding on the effect of genetic variants on human diseases.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by NIH grant R35 GM147789.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The single-cell dataset used in this study, differential gene expression results, S-LDXR files, summary statistics in EAS and EUR, and code to replicate our analyses are available at https://zenodo.org/records/10011016. Genotype data from ref. 27 is available in dbGap (dbGaP Study Accession: phs002812.v1.p1). S-LDXR is available at https://huwenboshi.github.io/s-ldxr/.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced are available online at https://zenodo.org/records/10011016.