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Abstract

Diabetes is a prevalent chronic condition that poses significant challenges to early diag-
nosis and identifying at-risk individuals. Machine learning plays a crucial role in diabetes
detection by leveraging its ability to process large volumes of data and identify complex
patterns. However, imbalanced data, where the number of diabetic cases is substantially
smaller than non-diabetic cases, complicates the identification of individuals with diabetes
using machine learning algorithms. Our study focuses on predicting whether a person is
at risk of diabetes, considering the individual’s health and socio-economic conditions while
mitigating the challenges posed by imbalanced data. To minimize the impact of imbalance
data, we employed several data augmentation techniques such as oversampling (SMOTE-
N), undersampling (ENN), and hybrid sampling techniques (SMOTE-Tomek and SMOTE-
ENN) on training data before applying machine learning algorithms. Our study sheds light
on the significance of carefully utilizing data augmentation techniques, without any data
leakage, in enhancing the effectiveness of machine learning algorithms. Moreover, it offers
a complete machine learning structure for healthcare practitioners, from data obtaining to
ML prediction, enabling them to make data-informed strategies.
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1. Introduction

Communicable diseases like coronavirus, dengue fever, hepatitis, HIV/AIDS, and chick-
enpox have garnered global attention due to their potential for rapid cross-border trans-
mission and profound impact on public health. Historically responsible for pandemics like
Covid-19, Spanish flu, MARS, and cholera, these diseases have prompted extensive research
and response efforts (Van Seventer and Hochberg, 2017; Kenworthy et al., 2018; Zumla
et al., 2016; Green, 2015; Islam et al., 2021; Chowdhury et al., 2022). In contrast, non-
communicable diseases (NCDs), including chronic illnesses, have received less recognition
despite their significant global health implications (Budreviciute et al., 2020; Frumkin and
Haines, 2019; WHO, Accessed March 22, 2023c). Rooted in genetic, physiological, envi-
ronmental, and behavioral factors, NCDs progress gradually and are not contagious, often
affecting specific populations within regions (Supakul et al., 2019; Bigna and Noubiap,
2019). Nonetheless, the prevalence of NCDs is surging, becoming the foremost cause of
death and disability worldwide (Habib and Saha, 2010; CDC, Accessed March 24, 2023;
WHO, Accessed March 22, 2023a; Divers et al., 2020). Diabetes, cardiovascular disease,
chronic lung disease, and cancer are the predominant NCDs, collectively accounting for
most NCD-related mortality (CDC, Accessed March 24, 2023; WHO, Accessed March 22,
2023b).

Diabetes, in particular, holds a prominent place within the NCD landscape. It ranks as
the seventh leading cause of death in the United States (CDC, Accessed March 22, 2023e),
with over 37.3 million Americans affected in 2019, approximately one in every ten people
(CDC, Accessed March 22, 2023b,A). Alarmingly, many individuals with diabetes or pre-
diabetes remain unaware of their condition, with every 1 in 5 people with diabetes and 8 in
10 people with pre-diabetes remaining undiagnosed (CDC, Accessed March 22, 2023b,A).
Such underdiagnosis is concerning, given that individuals with diabetes are more vulnerable
to seasonal and emerging diseases like COVID-19. Around 39.7% of hospitalized COVID-19
patients have diabetes as an underlying condition, rising to 46.5% for patients aged 50 to
64 (CDC, Accessed March 22, 2023d; Kastora et al., 2022; Rajpal et al., 2020).

Moreover, those with diabetes face a 60% higher risk of early mortality than those with-
out diabetes and increased susceptibility to complications such as blindness, kidney failure,
heart attacks, strokes, and limb amputation (CDC, Accessed March 24, 2023,A). Over the
last two decades, diabetes prevalence has doubled in the USA, raising significant concerns
(CDC, Accessed March 22, 2023c). Financially, diagnosed diabetes incurs substantial med-
ical expenditures, averaging $16,752 per year, around $9,601 of which are attributed to
diabetes, making it an economic burden. (Association, 2018; Chen et al., 2018; Association,
Accessed June 22, 2023).

In this context, the timely identification of individuals at risk of diabetes is crucial for ef-
fective preventive measures. But mass testing for diabetes would be costly, time-consuming,
and overwhelming for healthcare facilities. However, widespread diabetes testing entails
significant costs, time consumption, and strains on healthcare resources. Machine learning
emerges as a pivotal tool in diabetes detection, capitalizing on its capacity to process in-
tricate datasets and discern complex patterns. Consequently, our study’s core objective is
to comprehensively explore the intricate nexus between health, socioeconomic factors, and
diabetes through accessible data and a machine-learning approach.

During the analysis phase, a notable challenge surfaced: a substantial class imbalance
within the dataset, a significant hurdle for achieving accurate results via machine learning
algorithms. Existing literature underscores the adverse impact of dataset imbalance on
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algorithm performance, with established methods demonstrating subpar performance in
identifying minority classes when data leakage is absent (Fernández et al., 2018; Kaur et al.,
2019; Ul Hassan et al., 2022). We employed various sampling techniques and ensemble
machine learning algorithms to address this imbalance (Chawla et al., 2002; Anand et al.,
2010), ensuring no data leakage occurred at any study stage. Valuing these techniques and
identifying the most effective strategy for handling imbalanced data within the context of
machine learning algorithms formed critical dimensions of our investigation. Impressively,
all sampling techniques yielded superior recall values compared to the original dataset. Our
methodology notably highlights the superior performance of the Editest Nearest Neighbors
(ENN) sampling technique across all metrics. Moreover, our findings align with existing
research, indicating that higher BMI, elevated blood pressure levels, and advanced age
correlate with elevated diabetes risk (Leong and Wilding, 1999; Gray et al., 2015; Group,
2010; Geiss et al., 2002; Caspersen et al., 2012; Ahima, 2009; Morley, 2008).

2. Study Design

The step-by-step workflow, as illustrated in Diagram Figure 1, outlines the various stages
and processes involved in conducting our study. The diagram provides a visual represen-
tation of how the study progresses from data collection to analysis and interpretation of
results.

2.1. Data Overview

This study employs the 2021 - Behavioral Risk Factor Surveillance System (BRFSS)
dataset, sourced from telephone surveys, encompassing USA residents’ health behaviors,
conditions, and socioeconomic aspects (CDC, Accessed March 22, 2023a). The BRFSS-2021
dataset holds 438,693 records featuring 303 attributes. For diabetes classification, our binary
approach excludes gestational diabetes, focusing on Type 1 and Type 2 diabetes (CDC,
Accessed March 22, 2023g,A; Association, 2010). The latter is omitted due to its transient
nature, which is linked explicitly to pregnancy (Buchanan et al., 2005). Gestational diabetes
is reversible; it typically resolves after childbirth, unlike Type 1 and Type 2 diabetes,
which require lifelong management. Type 1 diabetes results from immune-driven insulin
deficiency (Katsarou et al., 2017; Eisenbarth, 1986), while Type 2 diabetes emerges from
insulin resistance (Astrup and Finer, 2000; Chatterjee et al., 2017). Approximately 90-95%
of cases are Type 2, while 5-10% are Type 1 (Association, 2010; CDC, Accessed March 22,
2023g,A). This study adopts a simplified binary categorization approach by grouping Type
1 and Type 2 diabetes under the variable ”diabetes”.

2.1.1. Data Preprocessing

We meticulously curated the most pertinent features for our study through an exhaus-
tive review of existing literature (Robertson et al., 2011; Dinh et al., 2019; Hill-Briggs et al.,
2021; Shriraam et al., 2021; Asiimwe et al., 2020; Budreviciute et al., 2020; Supakul et al.,
2019; Ullah et al., 2022), resulting in a selection of 20 variables. Our independent vari-
ables encompass BMI, AGE, Income, Smoking, Blood Pressure, Cholesterol, Heart Disease,
Asthma, Kidney Disease, Marital Status, Education, General Health Condition, Exercise,
Arthritis, Depression, Food and Vegetable Consumption, Sex, and Diabetes as the depen-
dent variable. The target variable inquired whether respondents had ever been told they
had diabetes, with response options including Yes (1), Yes (But female told only during
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Figure 1: Illustration of the Study Process from Data Collection to Result Interpretation.

pregnancy) (2), No (3), No (Pre-diabetes or borderline diabetes) (4), Don’t know/Not Sure
(7), Refused (9), and Blank (Table 1).

To align the dataset for machine learning analysis, we conducted preprocessing by
eliminating missing values and disregarding instances where respondents indicated ”Don’t
Know/Not Sure,” ”Refused,” or left fields ”Blank.” Furthermore, we excluded gestational
diabetes due to its temporary and reversible nature. Pregnant women were also removed
from our study set to mitigate biases. Consequently, our study considered only yes (1)
without gestational diabetes and no (3) without pregnant women. The dataset’s diabetic
and non-diabetic percentages are presented in Table 2, with age-specific distributions in
Table 3. Notably, the dataset demonstrates a minimal impact of diabetes on young indi-
viduals, aligning with broader literature indicating increased diabetes risk for individuals
over 45 years of age (CDC, Accessed March 22, 2023e). Consequently, we focused on in-
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Table 1: Diabetes Classification Question and Response

Target Question Response ID

”Ever told you had diabetes?” Answered ”yes” 1
Answered ”yes” but, ”Female told only during pregnancy” 2
No (Diabetes) 3
No (Pre-diabetes or borderline diabetes) 4
Don’t know/Not Sure 7
Refused 9

dividuals aged 40 and above to harmonize our dataset with existing literature and address
dataset imbalances. This dataset preparation culminated in a dataset size of (262,958, 21),
providing a solid foundation for subsequent data preprocessing and analysis.

Table 2: Structure of the Dataset

Type Size Ratio

Diabetic 48,581 15%
Non-Diabetic 265,332 85%

Total 313,913 100%

2.1.2. Splitting the dataset

The organized dataset underwent partitioning into training and testing subsets, utilizing
an 80% training and 20% testing ratio. For this purpose, we employed Python’s model selec-
tion library’s default test-train split command. This command not only shuffles the dataset
but also employs a stratified approach, thereby preserving the proportional representation
of each Diabetes class observed in the original dataset (See in Figure 2 and Table 4).

2.2. Balancing Techniques:

In Table 4, the imbalanced nature of our dataset’s target variable is evident, with di-
abetic patients representing only 18.0%. To address this class imbalance, we implemented
four distinct sampling techniques on the training data tailored to nominal data. These
techniques encompass oversampling, undersampling, and hybrid approaches. We applied
these techniques to balance the dataset and enhance our models’ performance.

For the oversampling technique, we adopted the Synthetic Minority Over-sampling Tech-
nique for nominal data (SMOTE-N) (Chawla et al., 2002), given the nominal nature of our
data. As for undersampling, we utilized the Edited Nearest Neighbours algorithm (Alejo
et al., 2010). We employed SMOTE-Tomek, which combines SMOTE-N with Tomek Links,
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Table 3: Age Structure of The Dataset

Age Criteria Percentage

18 - 24 Diabetic 0.02
Non-Diabetic 0.98

25 - 29 Diabetic 0.02
Non-Diabetic 0.98

30 - 34 Diabetic 0.03
Non-Diabetic 0.97

35 - 39 Diabetic 0.05
Non-Diabetic 0.95

40 - 44 Diabetic 0.07
Non-Diabetic 0.93

45 - 49 Diabetic 0.11
Non-Diabetic 0.89

50 - 54 Diabetic 0.13
Non-Diabetic 0.87

Age Criteria Percentage

55 - 59 Diabetic 0.17
Non-Diabetic 0.83

60 - 64 Diabetic 0.19
Non-Diabetic 0.81

65 - 69 Diabetic 0.20
Non-Diabetic 0.80

70 - 74 Diabetic 0.23
Non-Diabetic 0.77

75 - 79 Diabetic 0.24
Non-Diabetic 0.76

80 or older Diabetic 0.20
Non-Diabetic 0.80

Don’t know/ Diabetic 0.13
Refused/ Missing Non-Diabetic 0.87

Table 4: Before and After Splitting

Type Size Percentage

Diabetic 46,944 18%
Non-Diabetic 216,014 82%

Total 262,958 100%

Catagory Type Size Percentage

Train Diabetic 37,456 18%
Non-Diabetic 172,910 82%

Test Diabetic 9,488 18%
Non-Diabetic 43,104 82%
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Figure 2: Visual Representation of Before and After Splitting the Dataset

and SMOTE-ENN, which integrates SMOTE-N with Edited Nearest Neighbours (Chawla
et al., 2002) as hybrid techniques. The specific details of these sampling techniques are
briefly outlined in the following sections.

2.2.1. SMOTE (Synthetic Minority Over-sampling Technique)

SMOTE is a widely acknowledged technique for addressing imbalanced data in classifi-
cation problems (Chawla et al., 2002; Burez and Van den Poel, 2009; He and Garcia, 2009).
It operates by generating synthetic instances for the minority class through interpolation
between existing examples rather than through replacement-based oversampling (Chawla
et al., 2002). For each minority instance xi, SMOTE constructs N synthetic examples by
interpolating with its K nearest neighbors xj , incorporating a parameter λ within the range
of 0 to 1. This interpolation process is represented as xnew = xi + λ(xj − xi), where xi and
xj denote feature value vectors.

2.2.2. ENN (Edited Nearest Neighbour)

ENN, or Edited Nearest Neighbors, is an enhanced classification algorithm derived from
k-Nearest Neighbors (k-NN), designed to eliminate noisy and mislabeled instances from the
training dataset. This refinement improves classification accuracy, rendering ENN particu-
larly valuable for addressing imbalanced datasets (Alejo et al., 2010; Wilson, 1972).

2.2.3. SMOTE-ENN and SMOTE-TOMEK

SMOTE-ENN emerges as the fusion of SMOTE and ENN techniques, effectively tack-
ling imbalanced data classification challenges. By merging SMOTE’s minority class over-
sampling with ENN’s majority class undersampling, the method harmonizes the dataset’s
distribution. This technique was formulated by (Batista et al., 2004) as a robust approach
for handling class imbalance.

Similarly, SMOTE-TOMEK is another amalgamation technique employed in imbalanced
data classification scenarios. It is a potent strategy renowned for its efficacy in addressing
imbalanced datasets, particularly when faced with noisy or overlapping instances. By inte-
grating SMOTE and Tomek Links, this technique effectively navigates imbalanced scenarios
to improve model performance.
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2.3. Encoding nominal values

Given that all dataset features are of nominal type, using the values directly would mis-
lead machine learning models. Due to this, we applied to the dataset one-hot encoding. This
approach created distinct categories based on unique values in each column, subsequently
expanding the number of columns to 92.

2.4. Machine Learning Algorithms

Employing a diverse set of machine learning algorithms, including Logistic Regression,
Gradient Boosting, AdaBoost, and Random Forest classifiers, we strived to leverage their
distinct strengths for enhanced predictions. The top three performing algorithms were
aggregated using a voting classifier to optimize overall predictive accuracy for each sampling
technique. This collaborative approach aimed to bolster the accuracy and robustness of our
predictions across different sampling strategies. The following section provides a concise
overview of these algorithmic components.

2.4.1. Logistic Regression

Logistic Regression (LR) models binary responses using a set of independent predictors.
Let Pi denote the probability of a patient responding ”Yes” and 1 − Pi the probability of
responding ”No”. The LR model equation is formulated as follows:

ln

[
Pi

1− Pi

]
= β0 + β1x1i + β2x2i + · · ·+ βpxpi (1)

This equation computes the natural logarithm of the odds ratio of responses, with β0, β1, β2, · · · , βp
representing the model coefficients. Subsequently, the equation is transformed as:

Pi

1− Pi
= exp(β0 + β1x1i + β2x2i + · · ·+ βpxpi) (2)

This further leads to:

Pi =
exp(β0 + β1x1i + β2x2i + · · ·+ βpxpi)

1 + exp(β0 + β1x1i + β2x2i + · · ·+ βpxpi)
(3)

2.4.2. Random Forest

Initially introduced by (Breiman, 2001), Random Forest operates as a tree-based ensem-
ble prediction model. This prediction model builds multiple decision trees using randomly
selected predictor variables and training datasets. The independent variables are repre-
sented as X = (X1, X2, ..., Xk), while Y signifies the response variable. The main goal is to
predict Y by establishing a prediction function f(X) ((Cutler et al., 2012)).

The model minimizes the loss function L(Y, f(X)) to determine the prediction function.
In classification tasks, the commonly used loss function is the zero-one loss.

L(Y, f(X)) =

{
0 if Y = f(X)

1 otherwise.
(4)
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2.4.3. Gradient Boosting

Gradient Boosting, a widely adopted ensemble method for classification and regression
tasks, was initially introduced by (Friedman, 2001). This technique constructs an additive
model by sequentially incorporating weak learners, enhancing the model’s overall perfor-
mance ((Hastie et al., 2009)). By iteratively focusing on the mistakes made by prior learners,
each subsequent learner aims to correct and improve upon the prior ones, effectively creating
a powerful ensemble model that effectively leverages each learner’s strengths.

2.4.4. AdaBoost (Adaptive Boosting)

AdaBoost, introduced by (Freund and Schapire, 1997), is an iterative algorithm designed
to enhance the performance of weak classifiers, also known as base classifiers. AdaBoost
improves data classification capabilities by adapting these base classifiers’ errors iteratively.
This process contributes to a reduction in both bias and variance. The algorithm’s strength
lies in its ability to continuously train and refine the classifiers, resulting in an ensem-
ble model that leverages the individual strengths of these classifiers, ultimately yielding
improved overall classification accuracy (Wu et al., 2020).

2.4.5. Voting Classifier

Voting classifiers belong to the ensemble machine learning category, where the outcomes
of multiple distinct classifiers are combined to yield a final prediction (Beyeler, 2017). This
approach harnesses collective knowledge to bolster prediction accuracy and reliability. By
amalgamating predictions from each classifier, the voting classifier employs a majority rule
mechanism to make a final prediction, opting for the class label that accumulates the highest
number of votes. This collaborative approach enhances the model’s overall predictive power,
benefiting from its constituent classifiers’ diverse insights.

2.5. Evaluation Metrics

During our evaluation, we focused on four essential metrics: precision, recall, accuracy,
and AUC-ROC (Japkowicz, 2006). In the context of imbalanced data, recall gains signifi-
cance by accurately pinpointing positive instances within the minority class, which is crucial
in real-world applications. Unlike accuracy, which can be deceptive in such datasets, robust
recall guarantees adept detection and prediction of minority class instances. This section
briefly elaborates on the evaluation metrics’ descriptions.

2.5.1. Precision

Precision addresses how accurate identifications are, expressed as the percentage of cor-
rect optimistic predictions out of all predicted positives. Also known as positive predictive
value (PPV), it is calculated by dividing true positives by the sum of true positives and
false positives.

Precision =
True Positive

True Positive+ False Positive
(5)

2.5.2. Recall (Sensitivity)

Recall quantifies the proportion of true positives correctly detected, reflecting the ratio
of true positives to all instances that should have been identified as positive. In binary
classification, recall corresponds to sensitivity.

Recall =
True Positive

True Positive+ False Negative
(6)
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2.5.3. Accuracy

Accuracy gauges the percentage of correct classifications achieved by a trained model,
calculated by dividing the sum of true negatives and true positives by the total instances
in the dataset. This metric is particularly effective for balanced classification tasks with
relatively even class representation.

Accuracy =
True Negative+ True Positive

True Negative+ True Positive+ False Negative+ False Positive
(7)

2.5.4. AUC-ROC

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) evaluates
binary classification model performance. It measures the model’s ability to differentiate
between positive and negative classes by plotting True Positive Rate (TPR) against False
Positive Rate (FPR). A perfect classifier yields an AUC of 1.0, while a random classifier
has an AUC of 0.5. The AUC-ROC value is computed by integrating the TPR-FPR curve
over the entire FPR range from 0 to 1.

AUC −ROC =

∫ 1

0
TPR(FPR), dFPR (8)

3. Hyper Parameter Tuning

To optimize model performance, we leveraged GridSearchCV for hyperparameter tuning
on the training data. This method systematically explores various hyperparameter com-
binations within a predefined grid, enabling the models to be trained and assessed for the
most favorable configuration that maximizes performance metrics. Through this approach,
we fine-tuned our models, identifying optimal hyperparameters that enhanced accuracy and
better generalization when handling unseen data.

4. Result

Diabetes, a chronic condition affecting millions globally, arises from the body’s inability
to regulate blood sugar levels, resulting in elevated glucose levels in the bloodstream and
severe complications, including nerve and kidney damage, vision issues, and cardiovascular
disease. Timely identification of individuals at risk of developing diabetes is essential for
effective intervention. Traditional testing methods for diabetes, while valuable, can be
costly, time-consuming, and may not capture the full complexity of risk factors. In contrast,
machine learning offers distinct advantages by leveraging existing data to provide cost-
effective and efficient solutions, particularly crucial for early detection, where subtle risk
factors might play a significant role. However, the challenge of imbalanced data, where the
number of diabetes cases is limited compared to non-diabetic instances, poses difficulties
in training machine learning algorithms. Overcoming this hurdle is essential for accurate
diabetes prediction using machine learning algorithms.

Our study focuses on comparing three sampling techniques: oversampling, undersam-
pling, and hybrid methods (Figure 3,Figure 4) to address data imbalance. We apply the
Synthetic Minority Over-Sampling Technique (SMOTE-N) to oversample the minority class
(individuals with diabetes), creating a more balanced dataset for machine learning al-
gorithms to learn. For undersampling, we utilize Editing Nearest Neighbour to reduce
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the number of samples in the majority class (people without diabetes) and mitigate the
dataset’s imbalance. Furthermore, we explore hybrid techniques, including SMOTE-Tomek
and SMOTE-ENN, to achieve a balanced dataset.

Our study employs several machine learning algorithms on each sampling technique,
including Logistic Regression, Random Forest, AdaBoost, and Gradient Boost (Table 6).
Following an initial evaluation of AUC scores and recall metrics, we fine-tune hyperpa-
rameters using GridSearchCV for these algorithms, utilizing the TTU High-Performance
Computing Center (HPCC) for computational efficiency. Model performance evaluation
includes precision, recall, accuracy, and AUC scores (Table 6,Figure 4). Specifically, our
focus lies on recall, as it is paramount in disease detection due to the inherent imbalance of
positive cases(Figure 3) (Japkowicz, 2006).

The challenge of imbalanced data becomes evident when comparing the model perfor-
mance before and after applying the sampling techniques (Figure 5). Applying Logistic
Regression, Random Forest, Gradient Boosting, and AdaBoosting on the raw data reveals
relatively high accuracy scores, ranging from 81.7% to 83.0%. However, this high accuracy
is accompanied by relatively low recall scores, ranging from 57.4% to 58% (Table 5). This
discrepancy underscores the misclassification of positive cases as negative, adversely affect-
ing timely diagnosis and patient care. Misclassification can lead to missed interventions and
an increased risk of complications.

Table 5: Before implementing the data balancing techniques

Models Precision Recall Accuracy AUC

Logistic Regression 0.718 0.577 0.83 0.787
Random Forest 0.663 0.574 0.817 0.754
Gradient Boosting 0.722 0.575 0.83 0.789
AdaBoosting 0.717 0.58 0.83 0.787

Our study leverages various data-balancing techniques to address these limitations, re-
sulting in substantial improvements, particularly in recall (Table 6). Among the strategies,
the ENN undersampling technique stands out, enhancing recall by approximately 14.2%
when paired with Gradient Boosting. AdaBoosting and Logistic Regression, paired with
ENN, also yield significant recall improvements of 13.3% and 13.1%, respectively (Figure 5).
The effectiveness of these techniques emphasizes the importance of data balancing, partic-
ularly for minority class identification.

Our study extends to using ensemble methods, such as the soft voting classifier, to
achieve a robust and stable model by combining top-performing algorithms based on recall.
For instance, when employing the ENN sampling method, the voting classifier attains a
recall of 71.4% and an AUC of 78.9% (Table 7), highlighting its capability to identify
positive cases and differentiate between classes more precisely. Other techniques, including
SMOTE-ENN and SMOTE-N, yield promising results, further underscoring the value of
ensemble methods for enhancing model accuracy in imbalanced datasets.

Our study identifies essential risk factors for diabetes classification through feature selec-
tion and analysis. Key factors include age, BMI, and blood pressure, consistent with prior
research. We emphasize that machine learning techniques offer a significant advantage over
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Table 6: After implementing different sampling strategies

Sampling Strategy Models Precision Recall Accuracy AUC

Logistic Regression 0.623 0.707 0.625 0.787
Random Forest 0.629 0.708 0.691 0.774

ENN Gradient Boosting 0.635 0.717 0.703 0.791
AdaBoosting 0.632 0.713 0.694 0.787

Logistic Regression 0.627 0.699 0.706 0.772
Random Forest 0.618 0.606 0.783 0.734

SMOTE-N Gradient Boosting 0.63 0.641 0.775 0.731
AdaBoosting 0.652 0.659 0.791 0.770

Logistic Regression 0.609 0.674 0.679 0.729
Random Forest 0.624 .685 0.718 0.756

SMOTE-ENN Gradient Boosting 0.602 0.658 0.684 0.705
AdaBoosting 0.61 0.684 0.642 0.748

Logistic Regression 0.617 0.676 0.710 0.744
Random Forest 0.63 0.68 0.742 0.763

SMOTE-Tomek Gradient Boosting 0.613 0.663 0.719 0.729
AdaBoosting 0.623 0.688 0.711 0.756

Table 7: Voting Classifier

Sampling Strategy Precision Recall Accuracy AUC

ENN 0.635 0.714 0.706 0.789

SMOTE-N 0.635 0.676 0.757 0.765

SMOTE-ENN 0.617 0.681 0.699 0.752

SMOTE-Tomek 0.625 0.681 0.728 0.758

traditional testing methods because they leverage existing data for cost-effective and effi-
cient early detection. Our findings indicate that while under-sampling techniques exhibit
superior outcomes, hybrid techniques provide comparable results, indicating their potential
for effective diabetes classification. Computational resources may be limited. Even running
logistic regression can provide valuable initial insights. Ultimately, our study underscores
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Figure 3: Recall for Different Sampling Techniques: Edited Nearest Neighbors (ENN), Synthetic Minority
Over-sampling Technique (SMOTE-N), SMOTE-Tomek, and SMOTE-ENN for Logistic Regression, Random
Forest, Gradient Boosting, and AdaBoost

the pivotal role of machine learning in enhancing early diabetes detection using existing
data, given the challenges posed by imbalanced datasets. Further hyperparameter tuning
for computationally intensive algorithms and larger datasets may yield optimized results.
Ultimately, our study underscores the pivotal role of machine learning in enhancing early
diabetes detection using existing data, given the challenges posed by imbalanced datasets.

5. Conclusion

The implications of our study carry profound significance within the context of the pre-
vailing global burden of diabetes. With millions of individuals affected worldwide, diabetes
has substantial social, economic, and healthcare ramifications. According to data from the
International Diabetes Federation, an estimated 463 million adults between the ages of 20
and 79 were grappling with diabetes in 2019, and this number is projected to escalate to an
astounding 700 million by 2045 (Saeedi et al., 2019). Beyond the personal toll of diabetes
on physical health and well-being, the disease significantly strains healthcare systems and
economies globally. It is predicted that annual healthcare expenditures linked to diabetes
will surpass $800 billion by 2045 (Williams et al., 2020).

In light of this pressing issue, the imperative of proactive diabetes prevention and effec-
tive management strategies becomes clear. This necessitates the identification and mitiga-
tion of pivotal risk factors for the disease and the refinement of diagnostic and treatment
approaches. In this context, machine learning algorithms and data augmentation techniques
play a critical role in enhancing accurate and efficient predictions, shedding light on the in-
tricate web of underlying causes and enabling early identification of individuals at risk of
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Figure 4: AUC for Different Sampling Techniques: Edited Nearest Neighbors (ENN), Synthetic Minority
Over-sampling Technique (SMOTE-N), SMOTE-Tomek, and SMOTE-ENN for Logistic Regression, Random
Forest, Gradient Boosting, and AdaBoost

Figure 5: Comparison of improvement of recall value between original and best sampling technique (ENN)
for different ML algorithms

diabetes. Our study delves into the application of data augmentation techniques such as
SMOTE-N, SMOTE-ENN, SMOTE-Tomek, and ENN, with a specific focus on the training
dataset. Our findings highlight the potential effectiveness of these techniques, as they yield
more precise and potent machine-learning models when employed wisely. However, it is
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(a) ENN (b) SMOTE-N

(c) SMOTE-ENN (d) SMOTE-Tomek

Figure 6: Comparative Evaluation of Area Under the Receiver Operating Characteristic (AUC-ROC) Curves
for Different Sampling Techniques: Edited Nearest Neighbors (ENN), Synthetic Minority Over-sampling
Technique (SMOTE-N), SMOTE-Tomek, and SMOTE-ENN for Logistic Regression, Random Forest, Gra-
dient Boosting, and AdaBoost

imperative to be aware of the potential pitfalls associated with these techniques. For in-
stance, indiscriminate application to the entire dataset could inadvertently introduce biases
or lead to over-fitting, undermining the model’s capacity to generalize to new and unseen
data. Moreover, some of these methods may exact a computational and temporal cost,
particularly when dealing with extensive datasets. Consequently, a prudent evaluation of
these factors is crucial when determining the most suitable technique for a given project.

After conducting a thorough literature review, we have discovered that using a sam-
pling technique on the entire raw data may result in data leakage and ultimately lead to
inflated metric values (Tampu et al., 2022; Silva et al., 2022; Jagan Mohan et al., 2022;
Jamuna Devi and Kavitha, 2023; Navarro et al., 2021). However, when appropriately used,
our strategy enhances the outcome of severely imbalanced data compared to the initial and
existing results (Xie et al., 2019). Also, it is imperative to note that comparing results
to existing literature may only sometimes yield fruitful results because the parameters of
the machine learning algorithm depend on the dataset’s unique characteristics, including
the set of dependent and independent variables. As a result, changes in the dataset can
affect the outcome(James et al., 2021; Rowe, 2019). Therefore, it is essential to consider
how much improvement in prediction is happening compared to the raw data when making
comparisons.

In summation, the implications of our study resonate deeply with the global burden
of diabetes. We have built an end to end methodology for machine learning algorithms
to handle the highly imbalance data. By facilitating early detection, enabling proactive
interventions, and optimizing resource allocation, our holistic strategy seeks to transform
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the trajectory of diabetes prevention and management.
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