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Abstract 

Chronic kidney disease (CKD) is a complex disorder that causes a gradual loss of kidney function, 

affecting approximately 9.1% of the world's population. Here, we use a soft-clustering algorithm to 

deconstruct its genetic heterogeneity. First, we selected 322 CKD-associated independent genetic 

variants from published genome-wide association studies (GWAS) and added association results for 

229 traits from the GWAS catalog. We then applied nonnegative matrix factorization (NMF) to 

discover overlapping clusters of related traits and variants. We computed cluster-specific polygenic 

scores and validated each cluster with a phenome-wide association study (PheWAS) on the BioMe 

biobank (n=31,701). NMF identified nine clusters that reflect different aspects of CKD, with the top-

weighted traits signifying areas such as kidney function, type 2 diabetes (T2D), and body weight. For 

most clusters, the top-weighted traits were confirmed in the PheWAS analysis. Results were found to 

be more significant in the cross-ancestry analysis, although significant ancestry-specific associations 

were also identified. While all alleles were associated with a decreased kidney function, associations 

with CKD-related diseases (e.g., T2D) were found only for a smaller subset of variants and differed 

across genetic ancestry groups. Our findings leverage genetics to gain insights into the underlying 

biology of CKD and investigate population-specific associations.   
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Introduction 

 

Chronic kidney disease (CKD) is a primarily asymptomatic disease characterized by a gradual loss of 

kidney function over a period extending from several months to years[1]. CKD affects approximately 

9.1% of the global population, with a higher prevalence in high-income countries[2]. The leading risk 

factors for developing CKD are diabetes (40% of cases) and hypertension (29% of cases), followed by 

heart disease, family history of CKD, and obesity[3]. Other factors, such as exposure to HIV and 

contaminants, are additionally important in low-income countries[4,5]. The genetic ancestry also plays 

a crucial role, with increased risk rates of kidney failure in Black/African Americans and 

Hispanics/Latinos compared to individuals of European ancestry[6]. If left untreated, CKD increases 

the mortality risk for individuals with cardiovascular disease (CVD) and can result in the complete loss 

of kidney function[7]. Therefore, early detection is critical for improving quality of life and life 

expectancy. During the early stages of CKD, cost-effective treatment options are available and can be 

tailored to the cause of the disease[8].  

  

CKD is defined by a reduced functionality of the kidneys, which limits its filtering capability over a 

period of at least three months[9]. The main biomarkers for CKD detection include the urinary 

albumin/creatinine ratio (ACR) and the estimated glomerular filtration rate (eGFR) [10]. While ACR 

facilitated diagnosing albuminuria – an indicator of kidney damage characterized by an elevated 

excretion of urinary albumin – the eGFR estimates the filter volume of the glomerulus per unit of 

time using different biomarkers such as serum creatinine[10]. An abnormal kidney activity is indicated 

by high ACR values, reduced eGFR, or both.  

  

Over the past few decades, many large-scale genomic studies, such as genome-wide association 

studies (GWAS), have successfully identified more than 500 independent genetic variants associated 

with reduced kidney function[11–13]. The association between genetic variants and various phenotypes 

has been studied, and the results are often shared in publicly available databases, like the GWAS 

Catalog[14]. The association of one genetic variant with multiple traits can be considered to identify 

secondary traits associated with a phenotype. This understanding can help elucidate potentially 

shared disease mechanisms, assuming that genetic variants affecting a shared pathway also have a 

similar impact on the associated traits. 

 

Soft-clustering methods provide a means to reduce the genetic complexity of a heterogeneous 

disease while also accounting for shared disease mechanisms. In contrast to hard-clustering 

approaches like K-means or hierarchical clustering, soft-clustering enables the factorization of high-
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dimensional data by identifying overlapping clusters[15]. Non-negative matrix factorization (NMF) is a 

family of algorithms within multivariate analysis that addresses the dimensionality challenge by 

extracting meaningful features from a given data set[16,17].  

 

In this study, we aimed to deconstruct the heterogeneity of CKD by identifying its genetic subtypes. 

First, we collect all published variant-trait associations for variants associated with reduced kidney 

function and apply soft-clustering using NMF. We used the algorithm’s weights to calculate cluster-

specific polygenic scores (cPGS) within the BioMe biobank. Finally, we use a phenome-wide 

association study (cPGS-PheWAS) to validate and interpret the clusters. By deconstructing the 

complexity of CKD, this methodology contributes new insights into the disease pathways of CDK and 

enhances our understanding of population-specific differences for CDK. 

 

 

 

Results 

 

NMF identified nine clusters of CKD-associated variants 

The most frequent CKD-associated secondary traits retrieved from the GWAS Catalog are related to 

kidney function (e.g., blood urea nitrogen, urea, uric acid, and cystatin C measurements), hemoglobin 

levels (e.g., hemoglobin measurements, hematocrit, and erythrocyte counts), T2D, body weight (e.g., 

body height, appendicular lean mass, BMI, BMI-adjusted waist-hip ratio), and pulse pressure (systolic 

and diastolic blood pressure measurements), among others (see Fig.S1). CKD-associated traits and 

their associated CKD variants were factorized into nine partly overlapping clusters by conducting 

NMF. To ensure the results were robust, we repeated the clustering with bNMF and got comparable 

results (Tab.S1). The top seven traits per cluster are summarised in Fig.1. The ‘Reduced lipids’ cluster 

is associated with decreasing blood lipid levels (triglycerides, total cholesterol, use of lipid-lowering 

medications) and liver enzymes. The top traits of the cluster ‘Increased body mass’ show a positive 

association with body weight (appendicular lean mass, body height, and body weight). The clusters 

‘Increased blood volume’ and ’Reduced blood volume’ are positively and negatively associated with 

volemic traits (e.g., mean corpuscular volume and mean corpuscular hemoglobin), respectively. 

Similarly, clusters ‘Increased/Reduced hematocrit’ show opposite associations with hemoglobin 

content (e.g., hematocrit, hemoglobin measurements, red blood cell density, erythrocyte count), and 

clusters ‘Increased/Reduced inflammation’ convey opposite associations with markers of 

inflammation (C-reactive protein) and blood lipids. Lastly, cluster ‘Increased urate’ is positively 

associated with kidney function biomarkers like urate, blood/serum urea nitrogen, blood proteins, 
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and Cystatin C. The complete lists of the top features and variants per cluster, defined as traits and 

variants in the top decile of the cluster weights of the matrices H and W, are listed in Tab.S2. The 

matrices H and W are also available as supplementary material. Fig.S2 summarises how the variants 

are distributed in each cluster, showing their overlaps.  

 

PheWAS replicated biological pathways of most clusters across ancestries 

Each cluster was examined by conducting a cPGS-PheWAS with 988 quantitative traits and 832 binary 

traits on the four BioMe cohorts (ALL, AFR, AMR, EUR). Except for the ‘Increased body mass’ and the 

‘Reduced blood volume’ clusters, we replicated at least 3 of the clusters’ top 5 traits (Fig.2). The level 

of significance was reached more frequently across ancestries (ALL) than when replicating on the 

individual ones (AMR, AFR, EUR) (Tab.S3). In addition to the replicated traits, significant associations 

with decreasing eGFR were seen in clusters ‘Increased urate’ (β=-0.04 [-0.06 - -0.03], p-value=6.7e-

09) and ‘Reduced hematocrit’ (β=-0.05 [-0.07 - -0.04], p-value=4.0e-12) (Tab.S3). ‘Reduced 

hematocrit’ was also nominally associated with an increased risk for chronic renal failure (OR=1.11 

[1.05-1.16], p-value=1.2e-04) and with the curated phenotype ‘diabetic and hypertensive CKD’ 

(OR=1.27 [1.11-1.46], p-value=6.6e-04). Besides showing negative associations with disorders of 

lipoid metabolism, cluster ‘Increased inflammation’ shows strong negative associations with 

Alzheimer's disease (OR=0.60 [0.52-0.7], p-value=1.5e-11) and dementias (OR=0.77 [0.71-0.84], p-

value=1.0e-09) (Fig.S3). Regarding the individual ancestries, EUR showed the strongest associations 

when replicating on binary traits, with an increased risk for “visual disturbances” (OR=1.51 [1.27-

1.79], p-value=2.1e-06) in the cluster ‘Reduced inflammation,’ while AFR showed the strongest 

associations when replicating on quantitative traits, with the strongest association being for the LDL-

HDL ratio (β=-0.14 [-0.17 - -0.11], p-value=9.3e-21) in the ‘Increased inflammation’ cluster. Fig.2 

summarizes which of the top traits of each cluster have been replicated, while the complete list of 

cPGS-PheWAS results by ancestry is stored in Tab.S3.  
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Figure 1 - Top seven CKD-associated secondary traits per cluster 
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Figure 2 - Replication of cluster traits 

 

cPGSs suggest clear differences between genetic ancestries 

We extracted the cluster weights of the W matrix and used them to calculate cluster-specific 

polygenic scores (cPGS) for participants of the BioMe cohort. Fig.4 shows the standardized polygenic 

score distributions for all NMF clusters across the BioMe cohort (ALL) and the individual continental 

populations EUR (n=7,447), AMR (n=5,336), and AFR (n=5,660). A normal distribution was observed 

for the cluster ‘Increased urate’ (EUR, AMR, and AFR; Anderson-Darling test, all p-values available in 
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Tab.S5). Although polygenic scores are expected to have a normal distribution
[18]

, the other eight 

clusters present either a skewed tail (e.g., ‘Increased hematocrit’) or several peaks in their cPGS 

distributions (e.g., ‘Reduced inflammation’). As illustrated in Fig.3, the peaks are caused by a few 

variants with relatively high cluster weights (the complete list of cluster weights for the top variants 

of each cluster is available in Tab.S2). For example, the top variant in cluster ‘Increased inflammation’ 

(rs429358, mapped gene: APOE) weighs 4.6, while the second one (rs17050272) weighs 0.2. In Fig.4, 

we can also observe how this variant is more frequent in participants of inferred EUR ancestry. 

Similarly, the top variant of ‘Reduced inflammation’ (rs1260326, mapped gene: GCKR) weighs 5.7 and 

seems to be more frequent in the AFR population, while the second one (rs4418728) weighs 0.9. This 

unbalance in weight creates the three peaks of the distributions: the lower peak includes the scores 

of individuals without the top variant (0 copies), the middle one the heterozygous (1 copy), and the 

higher peak includes scores of participants with two copies of the top variant. Other ancestry-specific 

differences are visible in the distributions of four clusters and are significant when testing with the 

Mann-Whitney test (all p-values available in Tab.S4). This suggests that some variants appear with 

different frequencies in people that do not share similar ancestry: ‘Increased inflammation’ (all 

combinations), ‘Reduced inflammation’ (all combinations), ‘Reduced lipids’ (EUR vs. AFR), and 

‘Increased body mass’ (EUR vs AFR and AFR vs AMR). 

 

 

Figure 3 - Summary statistics of the weights of each cluster 
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Figure 4 - Standardized cluster-specific polygenic scores (cPGS) per genetic population 

 

 

Distribution of participants across clusters 

As the cPGS are calculated separately per cluster, each BioMe participant might have high polygenic 

scores in multiple clusters. Therefore, to understand the cluster overlap in terms of relative risk, we 

checked how many individuals belonged to the top decile of 1 or more clusters. 58% (18,431/31,701) 

of the whole BioMe cohort (ALL) were at high risk in at least 1 cluster. Of these, 60.2% were in the 

top decile for only 1 cluster, while 37% were at risk for 2-3 clusters (Fig.S4). 

 

 

Discussion 

 

CKD is typically defined as a progressive loss of kidney function over time. Although numerous 

genetic variants have been identified as associated with CKD, their relationship to disease pathways 

remains largely unclear. The work described here is the most comprehensive assessment of how 

variants associated with CKD can be grouped according to different CKD-related factors. Specifically, 

we included variant-trait associations of 322 CKD SNPs and 229 related metabolic traits from publicly 

available GWAS datasets. By analyzing these associations with NMF, a factorization approach that 

allows for minimal overlap between groups, we identified 9 clusters of CKD variants and associated 

traits.  
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CKD is commonly recognized as a heterogeneous condition with various underlying causes and risk 

factors, which are unlikely to represent a single disease process. This complexity is also reflected by 

the associated traits retrieved from published GWAS, which are related to kidney function, 

hemoglobin levels, T2D, body weight, and pulse pressure, among others. Attempting to deconvolute 

CKD's genetic heterogeneity and differentially grouping these traits, the nine clusters we identified 

represented different aspects of CKD. For example, the ‘Increased urate’ cluster, whose clustering 

weights represent abnormal levels of urinary metabolites like urate, blood/serum urea nitrogen, 

blood proteins, and Cystatin C, is related to decreasing kidney function. In normal conditions, such 

blood metabolites are excreted by the kidneys, but in CKD they accumulate and exert a detrimental 

biological activity
[19,20]

. A second cluster, which we summarised as ‘Increased inflammation,’ was 

strongly clustered around rising serum C-reactive protein (CRP) concentrations. CRP is a common 

inflammatory biomarker in chronic diseases like CKD, diabetes, and cardiovascular diseases[21–23]. In 

line with that, patients with CKD commonly experience chronic inflammatory states
[24]

. These states 

tend to worsen as the disease progresses toward end-stage renal disease and are reflected, or even 

modulated[25], by increasing CRP levels[26–28]. 

 

We then studied the genotype-phenotype correlation to demonstrate the utility of the clusters. We 

could replicate most of the top-weighted features on quantitative traits (i.e., biomarkers), while the 

validation on binary traits (i.e., diagnoses) was less robust and required additional clinical 

interpretation. For the clusters of ‘Increased urate’ and ‘Increased inflammation,’ the top traits were 

confirmed by the PheWAS. CKD is also associated with dyslipidemia comprising high levels of 

triglycerides and LDL-cholesterol, and low levels of HDL-cholesterol and apolipoprotein A1[29]. We 

could observe similar associations in clusters ‘Increased inflammation,’ ‘Reduced lipids,’ and 

‘Reduced inflammation.’ Notably, we found multiple significant associations for cluster ‘Increased 

inflammation’ with reduced risk of dementias. Glycerophospholipids play an essential role in neural 

membranes[30,31], and their levels are directly correlated with serum triglycerides and inversely 

correlated with total cholesterol and eGFR
[32]

. 

 

A limitation of this study is the need for more genetic diversity in the GWAS Catalog, which mainly 

consists of studies performed on the European population. This European bias is well described in 

the literature and has important implications for disease risk prediction across global populations
[33]

. 

Despite this lack of genetic diversity, we could still validate our results in BioMe, a biobank enriched 

for populations with non-European ancestries. We were most powered when jointly analyzing across 

ancestries (ALL), while signals replicated in different ancestral groups with some group-specific 
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differences. This result suggests that, although most CKD risk factors converge across ancestral 

groups, ancestry-specific studies are essential. Another two limitations are the filtering rules used to 

select traits and variants for the algorithm’s input matrix and the possible existence of non-additive 

interactions between risk factors that we did not consider in this study.  Lastly, one of the input CKD 

studies, the PAGE study[34], was also conducted using BioMe data. However, this should not impact 

the results since we are not looking at CKD case/control scenarios but at CKD subtypes.  

 

Understanding the biological pathways that lead to CKD is essential to improve clinical management. 

For example, some clusters group similar traits but with opposite effect directions (e.g., ‘Increased 

hematocrit’ and ‘Reduced hematocrit’), while others suggest potentially protective effects (e.g., 

against dyslipidemia in cluster ‘Increased inflammation’). This behavior might indicate that CKD can 

affect the same metabolic pathways differently, confirming the genetic complexity of the disease. 

Additionally, the clusters have a limited degree of overlap and, as each represents a specific set of 

variants, participants might be high risk (i.e., in the top decile of the polygenic score) for more than 

one cluster. This additive disease model, similar to the mutational signatures in cancer, suggests a 

possible interplay of genetic susceptibility to multiple disease-causing mechanisms[35].  

 

In summary, by clustering genetic variants associated with CKD, we identified clusters with distinct 

trait associations, likely representing mechanistic pathways involved in CKD. We confirmed the 

validity of these clusters phenotypically. Further clinical investigations could explore whether 

individuals with a common disrupted pathway also share similar complications, a comparable rate of 

disease progression, or a different treatment response. In the future, classifying patients with CKD 

using their genotype may improve care by offering a more personalized and genetically informed 

clinical plan. 

 

Methods 

 

Trait-variants selection 

We identified and aligned the alleles of 508 independent genetic variants associated either with 

decreased kidney function (defined as low eGFR levels for at least three months) or with CKD (using 

ICD-9/10 codes) from the most recent GWAS and GWAS meta-analyses
[11,13,34,36,37]

 (Fig.5a). We then 

used the R package LDlinkR (R version 4.2.1) to retrieve all proxy SNPs in linkage disequilibrium (r2 >= 

0.6) with the lead variants, across all available 1000G human populations[38,39] and used the GWAS 

Catalog database to link the proxy SNPs to 805 associated traits (as of July 30th, 2022) [14]. We 

excluded gender-specific GWAS and GWAS performed on less than 100 individuals. Additionally, as 
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we are interested in secondary features associated with CKD, we excluded GWAS of traits directly 

related to eGFR or CKD (e.g., "Mild to moderate chronic kidney disease," "Estimated Glomerular 

Filtration Rate"). We kept trait-variant associations with a significance threshold of less than 

1×10
−6

 using a Bonferroni correction for all 2,401 associations in our data set. To reduce sparsity in 

the data, we excluded traits associated with less than five variants; this threshold was empirically 

defined by comparing the clustering results of traits associated with up to 15 CKD variants. We 

standardized effect sizes across all GWAS by dividing the regression coefficient beta (B) by the 

standard error, using the GWAS summary statistic results. Traits and variants were then arranged as 

a matrix with the standardized effect sizes (β) as values. Tab.S5 contains, for each input CKD variant, 

the list of CKD-associated secondary traits extracted from the GWAS Catalog and the corresponding 

exclusion criteria for those excluded during the filtering steps. 

 

 

Figure 5 - Methods overview 
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NMF 

NMF factorizes the input matrix of trait-variant associations (X, of dimensions 229x322) into a matrix 

of traits (H, 229xK) and one of variants (W, Kx322), so that HxW ≈ X
[16]

 (Fig.5b). The factorization rank 

K corresponds to the number of clusters. We implemented NMF using the R package ButchR with 

10,000 iterations, 30 random initiations, and the convolution threshold set to 80[40]
. The number of 

expected clusters was set between 2 and 20. ButchR suggests the optimal K based on six cluster 

evaluation metrics, like the mean silhouette width and the Frobenius error. If two or more K were 

presented, we considered results with the highest mean silhouette width and the lowest Frobenius 

error, as suggested by Alexandrov et al
[35]

. As additional validation, we also performed a Bayesian 

version of NMF
[17]

, using the code provided by Udler et al
[41]

. bNMF was run 1,000 times with up to 

200,000 iterations in each run.  

 

Cluster-specific polygenic scores 

The results of clustering provide cluster-specific weights for each variant and trait. We used PLINK 

and the variant cluster weights to calculate cluster-specific polygenic scores (cPGS) of the BioMe 

biobank participants[42]. cPGS were standardized within each cluster. The normality of each cPGS 

distribution was tested with the Anderson-Darling method. Differences between ancestry-specific 

distributions were tested with the Mann-Whitney test. 

 

Validation cohort (BioMe) 

We validated our results using the genetic and linked electronic health records (EHR) data of 31,701 

BioMe biobank participants[43] (Fig.5c). As a fine-scale population structure can improve the risk 

prediction of complex diseases within genetic groups[44], we inferred the genetic ancestry of the 

BioMe participants. We then performed a Principal Component Analysis (PCA) using PLINK, excluding 

relatives above 2nd-degree (kinship method, estimated using KING
[45]) and variants with minor allele 

frequency below 0.05[42,46]. We trained a random forest classifier to infer the genetic ancestry of 

BioMe participants using the 1000 Genomes labels as reference[47]. The labeled ancestries are 

Admixed American (AMR, n=5,336), African (AFR, n=5,660), European (EUR, n=7,447), South Asian 

(SAS, n=613), and East Asian (EAS, n=728). For sub-population-specific analyses, we removed 

participants with mixed ancestry (defined as having a random forest probability ≤ 0.5) and outliers by 

only including the quantiles 0.25-0.90
[48]

 (n=11,404). 

 

Modeling disease outcomes as a function of cluster-specific polygenic scores 
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For each cluster, the cPGS were associated with the phenotypes available in the BioMe data set by 

performing a phenome-wide association study (cPGS-PheWAS). We fitted linear regression models to 

analyze 988 quantitative traits (e.g., laboratory results) and logistic regression models for 832 binary 

traits with cPGS as independent variables, adjusting for sex, age, and the first ten genetic principal 

components (stats R package[49]).  Binary traits included Phecodes mapped to ICD-9 and ICD-10 codes 

(a Phecode is considered if at least two relevant diagnostic codes were present in a patient’s EHR) [50] 

and curated phenotypes
[51]

. Controls were identified as the reference category. Traits were only 

considered if present or measured in at least 100 biobank participants.  The model parameters were 

standardized using the effectsize R package (refit method) [52]. Standardized coefficient estimates 

(linear regression) and odd ratios (logistic regression) were reported with the corresponding 95% 

confidence intervals. The Bonferroni method was used to adjust for multiple testing, and the alpha 

threshold was defined as 2.7e-05 (0.05/(988+832)). We then compared the PheWAS results with the 

traits in the top decile of NMF’s trait weights. 
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Figure Legends 

Figure 1 - Top seven CKD-associated secondary traits per cluster (also available as LaTeX code) 

The top seven secondary traits per cluster are shown with their effect direction (Effect columns) and 

respective cluster weights (Activity columns). ‘HDL’ is high-density lipoprotein, ‘VLDL’ is very low-

density lipoprotein, ‘meas.’ is measurement, and ‘conc.’ is concentration. 

 

Figure 2 - Replication of cluster traits  (also available as LaTeX code) 

The table lists traits replicated with the PheWAS on the ALL cohort for each cluster. ‘Dir’ is the trait 

effect direction, ‘activity’ is the trait cluster weight, ‘OR’ is the standardized odds ratio (binary traits 

cPGS-PheWAS), ‘Coeff’ is the standardized coefficient estimate (quantitative traits cPGS-PheWAS), 

‘95% CI’ are the 95% confidence intervals. The last column specifies whether the p-value reaches the 

Bonferroni significance level. ‘HDL’ is high-density lipoprotein, ‘VLDL’ is very low-density lipoprotein, 

‘RAS’ is the renin-angiotensin system, ‘meas.’ is measurement, and ‘conc.’ is concentration. 

Regarding the cluster names, IBM is ‘increased body mass,’ and BV is the short version for ‘blood 

volume.’  

 

Figure 3 - Summary statistics of the weights of each cluster   (also available as LaTeX code) 

‘SNPs’ indicates the number of CKD variants with a weight > 0. The minimum weight in all clusters is 

1e-45. ‘Q90 weight’ is the minimum weight of the SNPs in the cluster’s top decile. 

 

Figure 4 - Standardized cluster-specific polygenic scores (cPGS) per genetic population  

The figure compares the standardized cPGS distributions between inferred ancestries of the BioMe 

participants. The x-axis represents the units of standard deviation (or z-scores). AFR, AMR, and EUR 

refer to the sub-cohorts of individuals with inferred African, Ad Mixed American, and European 

ancestry, respectively.  

 

Figure 5 - Methods overview 

a, We selected 322 independent CKD-associated variants from the summary statistics of published 

GWAS. For each of them, we retrieved all independent proxy SNPs in linkage disequilibrium (r2 >= 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2023. ; https://doi.org/10.1101/2023.10.12.23296926doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.12.23296926
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

0.6) and (from the GWAS Catalog) 229 proxy-associated traits with their respective effect size (B). b, 

We standardised the effect sizes across all GWAS (β) and generated an association matrix X of 

dimensions 229x322. NMF factorizes X into a matrix of traits (W) and one of variants (H), which share 

a dimension K (i.e., the number of clusters). c, We extracted the weights of each cluster from the H 

matrix and used them to calculate cluster-specific polygenic scores (cPGS) of 31.701 BioMe 

participants. After standardizing the cPGS, we conducted a cPGS-PheWAS for each cluster to validate 

their respective top traits, which were extracted from the W matrix. 
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