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Abstract

Infectious disease modelling has been prominent throughout the COVID-19 pandemic, help-
ing to understand the virus’ transmission dynamics and inform response policies. Given their
potential importance and translational impact, we evaluated the computational reproducibility
of infectious disease modelling articles from the COVID era. We found that only four out of
100 randomly sampled studies released between January 2020 and August 2022 could be com-
putationally reproduced using the resources provided (e.g., code, data, instructions). For the
100 most highly cited articles from the same period we found that only 11 were reproducible.
Reflecting on our experience, we discuss common issues affecting computational reproducibility
and how these might be addressed.
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Introduction

Mathematical models are useful tools for analysing infectious disease outbreaks. They have been used to
elucidate mechanisms of spread [1], facilitate the design and evaluation of different control strategies [2]
and guide public health decision-making [3]. Never has this been more evident than with the COVID-19
pandemic, where modelling has helped to characterise the biological and epidemiological properties of the
aetiological agent (SARS-CoV-2) and its associated disease (COVID-19) [4, 5, 6]. Modelling has also been
used to forecast epidemic trajectories under various scenarios [7, 8], supporting decisions to implement or
revoke particular interventions – e.g., travel restrictions, social distancing.

Whilst public health policy is typically informed by numerous factors (e.g., social, economic), modelling
is increasingly recognised as a valuable decision support tool. Given this responsibility, policy-relevant
studies should be clearly described, transparent and reproducible [9]. This allows external reviewers to
readily critique: the quality and relevance of input data; the design and implementation of model structures;
and the validity and robustness of modelling assumptions, among others. Within this, the central role of
numerical simulation and computation in infectious disease modelling makes the provision of working code
underpinning computational results necessary.

Recently, Zavalis et al. [10] evaluated the transparency of published articles in infectious disease mod-
elling by recording the number of papers that had publicly released accompanying code. They found that
few authors (20%) share their code, with Collins et al. [11] obtaining similar results for COVID-19 preprints
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(21-33%). These release rates align with other computational domains such as machine learning (33%) [12]
and physics (6%) [13].

Despite this, transparency is still only one element of reproducible research. Providing source code
that either does not work or produces inconsistent results may counter reproducibility. Nevertheless, re-
producibility studies scarcely probe beyond presence/absence evaluations and check that the code that is
made available meets its desired purpose. So, whilst computational reproducibility is widely accepted as
a systemic problem plaguing quantitative research [14], the extent to which infectious disease modelling
articles fail in this regard and the specific reasons why remain unquantified.

In this work, we assess the reproducibility of contemporary infectious disease modelling studies by
determining the extent to which quantitative results can be reproduced using the computational materials
provided (e.g., code, data). Further, to help understand the barriers to computational reproducibility and
possible resolutions, we investigate whether practices such as journal mandates, the provision of instructions,
or notebook-style formatting are associated with increased reproducibility.

Methods

Literature search

We chose Google Scholar as the search repository so as not to discriminate against preprints (many of
which are highly cited and have been impactful throughout the pandemic). To limit our investigation
to articles in the COVID era, we conducted multiple searches of articles released from January 2020 to
August 2022 using the terms: ‘SARS-CoV-2 model*’; ‘infectious disease model* covid’, ‘infectious disease
model*’; ‘coronavirus model*’; ‘covid model*’; ‘Infectious disease modeling’; ‘Infectious disease modelling’
and ‘Infectious disease simulations’. Due to Google Scholar restricting each search to return at most 1,000
results, we used many similar search terms to obtain a more complete data set. We repeated the searches
on two different machines using private browsers to minimise the effects of randomness and user bias. We
also recorded the citation count of each article as reported by Google Scholar (as of August 2022).

Processing the search results

Combining each of the 1,000 results returned from these separate searches, we analysed two subsets: the 100
most cited and a random sample of 100 papers (acknowledging these subsets may intersect). To generate
these subsets, we screened for papers that contained an original simulation or computational component
relating to infectious disease transmission dynamics and for which any results would be reasonably assumed
to be made using computational software (papers with minor computations were still included if the paper
contained new software-generated results). Conversely, we excluded all: reviews; commentaries; non-original
research articles; theses; and papers written in a language other than English. The list of included/excluded
papers was independently checked by two authors, with discrepancies settled by joint consultation with all
authors. A diagram giving a high-level representation of this process is presented in Figure 1.

Evaluating the papers

The evaluation process for each paper can be divided into three steps. First, we assessed the transparency
and inclusion of code-independent information in the papers. This involved documenting: the presence
of data; the availability of code (e.g. through a functional link to the source code); the journal where
the article was published; whether said journal mandated statements on data or code availability (in this
context, a mandate refers to a requirement for a statement or section in the document which is not described
as optional); and any institutional affiliations of the authors.

Second, where a link to the code was provided, we noted the details of the code and storage location.
We recorded: the programming language used; whether the programming environment was open source;
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and whether the code was presented in a notebook format. For interest we also noted: the licensing details
for the code; whether the repository was self-contained; and whether the version of the code for the paper
was archived (will not change).

Finally, we evaluated the reproducibility of the results, recording: whether all/some of the figures, tables
or numerical results appearing in the main paper were reproduced using available resources; and whether
the code was cross-platform (would run on both Windows and Linux).

For each paper, two new virtual machines were created and used to ensure a fair comparison and that the
testing environment was as pristine as possible: one virtual machine running the Windows 11 development
environment and the other Ubuntu version 22.04. We used virtual box to run the virtual machines as it
is a cross-platform virtualisation software. For each paper, we followed all given instructions on setting up
the environment. If no information was given, we used the latest version of the software (unless it was clear
to use a different version) required to run the code. The order in which we ran scripts was determined by
instructions, the naming of files or our basic understanding of the code given. If, during the running of
the code, an error occurred, we reviewed the error message given to determine if it was simply caused by
misplaced files, the naming of paths, or some other very minor issue (e.g., failure to load a required package
or clearing pre-generated results); in which case we resolved the issue and reran the code.

We counted code as outputting all results of the paper if all the graphs and tables/numbers presented
in the main article were reproduced. We counted code as outputting some results if it produced at least one
graph or number presented in the article but not all. If the code was non-deterministic or used different
data from the original study, we counted it as reproducing all or some of the results if this was deemed
to cause the differences. We assessed graphs based on their numeric content, ignoring slight differences in
presentation.

We placed no limit on the amount of time for reproducing the results of studies (computational time
ranged from a few seconds to weeks). When resources such as proprietary software/data were not able to
be sourced (that is, were unavailable to the authors through any of their institutional subscriptions or free
trials) and were required, the article was deemed to not be reproducible (noting that this may not mean
the entire study is not reproducible).

Statistics

Logistic regression was used to assess the effect of data mandates, code mandates, and log transformed
citation count on the proportion of articles that release code or data, referred to hereafter as the release
rate. A multivariate analysis was run to test for significance, including only the input variables with
a univariate p < 0.1 as discussed in [15]. The results for the univariate and multivariate analyses are
presented in Tables 3, 4, and 5.

Similarly, univariate ordinal regression was used to assess the effect of instructions, code format (note-
book or other), the programming language used, and number of log transformed citations on the level of
reproducibility (see Table 6). In the event that the assumptions for ordinal regression were not met (i.e.,
proportional odds did not hold), we used multinomial regression.

For the effect size of each variable, we report the maximum likelihood estimate of the odds ratio (OR)
alongside its 95% confidence interval. Further, we conducted likelihood ratio tests to evaluate the statistical
significance of each covariate considered.

The code and data required to reproduce our analysis are available at:
https://github.com/AITHM/Reproducing-the-Infectious-Disease-Models-of-the-Covid-Era.

Results

Our literature search yielded 16,000 results, of which 7,826 were unique. To generate two sets of 100 eligible
articles (totalling 193 unique articles), we screened 309 and 411 papers for the random and top cited groups,
respectively. The characteristics of these articles are summarised in Table 1.
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Random Top cited
Papers 100 100

Peer reviewed†, n 91 95
Citations, median (IQR∗) 21 (5 - 47) 653 (480 - 1072)

Journal Mandate
Data availability, n 43 71
Code availability, n 11 25
Data and Code availability, n 9 25

Disease
COVID, n 76 100
Other, n 24 0

Link provided
Data, n 67 80
Code, n 19 48
Code and Data, n 19 48

Table 1: Characteristics of infectious disease modelling articles.†Articles that have been published
in peer-reviewed journals.∗Inter-quartile range.# Note that the random and top-cited sets overlap,
containing a total of 193 papers; see the available data for more details.

For interest, we note that all of the 100 most highly cited articles were COVID-related (compared with
76 of the random set) and had a median (IQR) citation count of 653 (480 - 1,072).

Data links were available for 67 of the 100 randomly sampled articles and 80 of the top cited. In contrast,
code links were provided 19 and 48 times for each group, respectively. Surprisingly, only 18 of the 34 articles
published in journals that mandate code availability provided a working link to their source code. We found
no significant association between data release rates and data mandates (p = 0.35; top cited: p = 0.51) and
code release rates and code mandates (random: p = 0.15; top cited: p = 0.17). However, we did observe
significant associations for both groups between code release rates and data mandates (random: OR 4.39,
95% CI 1.43 to 15.4, p = 0.01, top cited: OR 2.79, 95% CI 1.11 to 7.53, p = 0.03) and log transformed
citation count and data release (random: OR 1.40, 95% CI 1.07 to 1.88, p = 0.01; top cited: OR 6.03, 95%
CI 1.72 - 32.1, p < 0.01). Finally we also found a significant association between log transformed citation
count and code release in the top-cited group (OR 2.34, 95% CI 1.22 to 4.87, p = 0.01). See Tables 3, 4,
and 5 for more details.

For those articles that did release their code, we found R to be the most popular programming language
used (featuring 50% of the time for the top cited and 42% for the random set), followed by Matlab.

Running the code provided, we found low levels of reproducibility for both groups, as summarised in
Table 2. In particular, only 4 of the 19 randomly sampled articles were fully reproducible, whilst 8 were
partially reproducible (i.e., we could reproduce at least one result, but not all results). Alternatively, for the
most highly cited group we found that 11 articles were fully reproducible, whilst a further 22 were partially
reproducible. One paper was counted as not being reproducible due to being unable to obtain proprietary
data. We found that where code was provided, the likelihood of reproducing results was not associated
with: the provision of instructions (random: p = 0.33; top cited: p = 0.34); the use of notebooks (random:
p = 0.07; top: p = 0.77); the log transformed citation count (random: p = 0.77; top: p = 0.62); or the
programming language used (random: p = 0.54; top: p = 0.52), see Table 6 for more details.
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Random Top cited
Total Full Partial Total Full Partial

Total 19 4 8 48 11 22

Format
Notebook 3 2 0 10 2 5
Other 16 2 8 38 9 17

Instructions
Provided 14 3 7 29 8 13
None 5 1 1 19 3 9

Language
R 8 1 3 24 5 13
Matlab 5 1 3 5 2 2
Python 1 0 0 6 2 2
Other 5 2 2 13 2 5

Table 2: Reproducibility of papers for which code was provided.

With the most popular languages used being cross-platform (although some extensions may not be),
we found that the vast majority of code provided ran on both Windows and Linux (at least up to the same
point if an error occurred).

Discussion

In this study we verified previous code transparency results [10, 11], finding that less than 20% of randomly
selected infectious disease modelling studies provide working links to code. Notably, the top-cited set of
studies released code far more frequently (48%); however this is may be a function of the journals in which
these articles were published and the mandates which they impose. In any case, code release rates still
considerably lag data release rates (67% random; 80% top-cited).

In our main analysis, we extended previous investigations by testing the reproducibility of code that was
made available. Notably, only four out of the 19 randomly sampled studies that provided code were found to
be completely computationally reproducible, translating to an overall reproducibility rate of 4%. Whilst the
code from a further eight studies could reproduce at least one correct numerical value or figure, the results
are still disappointing. For the top-cited articles, the reproducibility rates of released code are similar (11
out of 48 were completely reproducible, and 22 out of 48 were partially reproducible); however, the higher
rates of code release in this group yielded much greater reproducibility rates overall (11% complete; 22%
partial).

For context, one of the few similar computational reproducibility studies, which was conducted in
computational physics, found that none of the 55 articles considered were reproducible [13]. However, in
contrast to our study, the authors of [13] imposed strict time limits on computation and focused on papers
from a single journal. Similarly we note a source of bias in our own study is for the top cited (random)
articles, the three most prominent affiliations are co-authors on 23% (15%) of the papers, whereas the top
five co-author 35% (22%).

The low rates of code release may be a consequence of several factors which have been discussed
previously [16]: authors perceiving their code as inelegant or unwieldy; concerns over proprietary rights;
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or potential maintenance obligations associated with publicly available code. However, in the context of
the COVID-19 pandemic, time constraints were presumably a significant limiting factor. Still, data release
rates from this period remain much higher, indicating that the priority that is placed on data availability
has not yet been translated to code — something that is mirrored by the number of journals that impose
data and/or code release mandates.

For papers that did release code, there were many reasons why results were not reproduced. Often,
the code was incomplete, either: generating only subsets of published outputs (e.g., failing to produce any
figures); or omitting private dependencies (e.g., custom scripts). Some studies only provided code examples,
designed to demonstrate the methodology, not to functionally reproduce results. Whilst very rare, some
papers’ code executed successfully, but the generated outputs diverged from published results.

Even when articles were found to be at least partially reproducible, some intervention was typically
needed. Required packages and dependencies were frequently not loaded, or file paths were referenced
incorrectly (e.g., using absolute rather than relative referencing). However, these issues were often easily
corrected, and the articles were subsequently assessed without penalty.

When multiple scripts were provided, unclear or limited instructions made it difficult to determine
the appropriate computation order – a problem that was amplified for larger repositories with intricate
dependencies. When unsure, we systematically permuted the order of computation (to the extent that this
was feasible); however, the success of this strategy varied markedly with repository size.

Our results show that the programming language used, formatting structure (e.g., notebooks), and
provision of instructions were not statistically significantly associated with increased rates of computational
reproducibility. However, given the low rates of transparency and computational reproducibility overall, it
is likely that more data is required before conclusions can be reached.

Despite these results, we found that codebases with logical formatting and detailed documentation
were more straightforward to evaluate. Code written in a notebook format was typically self-documenting
and mimicked the presentation of the accompanying article. Even when these studies were found not to
be computationally reproducible, they are arguably more reproducible in the broader sense, in that the
methodology and implementation were considerably more interpretable.

We recognise that many different criteria have been proposed for evaluating and improving reproducibil-
ity (see, e.g., [13, 17, 18]). Whilst the criteria we use follows the same intent, we have tried to minimise
subjectivity and favour demonstrable reproducibility over adherence to rigid reporting standards. For ex-
ample, in our view, a program with clearly named files and extensive self-documentation should not be
penalised for omitting less critical details such as the operating system version number on which it was run.

We emphasise that many of the computational reproducibility issues we recorded (e.g., incompleteness,
run-time errors) were identified because an independent party ran the code in a fresh environment. There-
fore, we strongly recommend that authors consult colleagues or external individuals to test their code,
checking that it runs without error, and successfully reproduces all results. We also suggest that authors
create a clean environment for the code themselves, e.g., using virtualisation software such as containerisa-
tion, virtual machines, or a code-running service like Google Colab or GitHub actions. The public release
of the environment will also prolong the life of the software (e.g., after some required packages are no longer
available) and make it easier for others to use, adapt and extend. Alternatively, editors may request that
reviewers (i) check for the presence of code when appropriate (enforcing existing code release mandates);
and (ii) ensure that it successfully reproduces all computational results.

Whilst our results clearly demonstrate that infectious disease modelling lacks computational repro-
ducibility, we note that this is only one element of reproducible research. Transparency, replicability and
robustness are all important metrics to evaluate a particular study’s validity. Nevertheless, computational
reproducibility remains an important first step towards verification; and it has been argued that not releas-
ing reproducible code is tantamount to stating a mathematical theorem without proof [19].
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Conclusion

Infectious disease modelling, as with other computational fields, has low computational reproducibility.
We have found that journals mandating data release are significantly associated with code release. Hence,
an option moving forward is more journal mandates in data and code release. However, given that many
papers were published in code-mandated journals and still did not provide complete, working code, there
needs to be a change in expectations from editors, reviewers, and authors. The infectious disease modelling
community should make a concerted effort to release complete working code alongside appropriate data and
instructions. Not doing so conceals assumptions and prevents thorough peer review. Finally, publishing
code leaves a legacy and benefits all by facilitating reuse and improvement, enabling more rapid scientific
progress.

Data availability

Anonymised data and code for reproducing the claims and table of the paper can be found at:
https://github.com/AITHM/Reproducing-the-Infectious-Disease-Models-of-the-Covid-Era
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Random Top cited

OR (95% CI) LRχ2 df p OR (95% CI) LRχ2 df p

Data release

Data mandate 1.51 (0.65 - 3.62) 0.89 1 0.35 1.42 (0.48 - 4.00) 0.43 1 0.51

Code mandate 0.55 (0.15 - 2.05) 0.83 1 0.36 0.40 (0.14 - 1.18) 2.79 1 0.10

Citations 1.40 (1.07 - 1.88) 6.14 1 0.01 6.84 (1.98 - 35.9) 11.2 1 < 0.01

Code release

Data mandate 5.02 (1.73 - 16.8) 9.09 1 < 0.01 2.71 (1.11 - 7.03) 4.81 1 0.03

Code mandate 2.82 (0.67 - 10.6) 2.09 1 0.15 1.91 (0.77 - 4.92) 1.93 1 0.17

Citations 1.30 (0.96 - 1.79) 2.92 1 0.09 2.31 (1.22 - 4.74) 6.69 1 0.01

Table 3: Effect size results from univariate logistic regression applied to transparency outcomes. For each binary
variable, the absence of the given covariate is taken as the reference level (e.g., no data mandate). OR: Odds
ratio. CI: Confidence interval. † The citation count was log transformed.

Random

OR (95% CI) LRχ2 df p

Data release

Citations 1.40 (1.07 - 1.88) 6.14 1 0.01

Code release

Data mandate 4.39 (1.43 - 15.4) 6.74 1 0.01

Citations 1.13 (0.82 - 1.58) 0.57 1 0.44

Table 4: Effect size results from multivariate logistic regression applied to transparency outcomes for including
covariates with p values < 0.10 from the univariate analysis. For each binary variable, the absence of the given
covariate is taken as the reference level (e.g., no data mandate). OR: Odds ratio. CI: Confidence interval. † The
citation count was log transformed.
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Top Cited

OR (95% CI) LRχ2 df p

Data release

Code mandate 0.64 (0.21 - 2.00) 0.61 1 0.44

Citations 6.03 (1.72 - 32.1) 9.04 1 < 0.01

Code release

Data mandate 2.79 (1.11 - 7.53) 4.77 1 0.03

Citations 2.34 (1.22 - 4.87) 6.66 1 0.01

Table 5: Effect size results from multivariate logistic regression applied to transparency outcomes for including
covariates with p values < 0.10 from the univariate analysis. For each binary variable, the absence of the given
covariate is taken as the reference level (e.g., no data mandate). OR: Odds ratio. CI: Confidence interval. † The
citation count was log transformed.

Random Top cited

OR (95% CI) LRχ2 df p OR (95% CI) LRχ2 df p

Instructions 2.73 (0.36 - 26.4) 0.94 1 0.33 1.70 (0.58 - 5.16) 0.93 1 0.34

Notebook 6.00 (0.34 - 107)# 5.29# 2# 0.07# 0.82 (0.22 - 3.00) 0.09 1 0.77

Citations† 1.06 (0.70 - 1.63) 0.09 1 0.77 1.19 (0.60 - 2.40) 0.25 1 0.62

Language — 1.22 2 0.54 — 2.26 3 0.52

Matlab 1 (reference) - - - 1 (reference) - - -

R 0.38 (0.11 - 9.40) - - - 0.52 (0.08 - 3.33) - - -

Python * - - - 0.58 (0.05 - 5.91) - - -

Other 1.00 (0.11 - 9.40) - - - 0.25 (0.03 - 1.86) - - -

Table 6: Effect size results from univariate ordinal regression applied to reproducibility outcomes. For each
binary variable, the absence of the given covariate is taken as the reference level (e.g., no instructions). OR: Odds
ratio. CI: Confidence interval.# Results from multinomial regression as the proportional odds assumption was
violated, we present the odds ratio for complete vs no reproducibility. † The citation count was log transformed.
* For the random group, the Python language (n = 1) was grouped with Other languages.
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