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Abstract  

Background 

Machine learning (ML) is increasingly used to predict clinical deterioration in intensive care 
unit (ICU) patients through scoring systems. Although promising, such algorithms often 
overfit their training cohort and perform worse at new hospitals. Thus, external validation is a 
critical – but frequently overlooked – step to establish the reliability of predicted risk scores to 
translate them into clinical practice. We systematically reviewed how regularly external 
validation of ML-based risk scores is performed and how their performance changed in 
external data.  

Methods 

We searched MEDLINE, Web of Science, and arXiv for studies using ML to predict 
deterioration of ICU patients from routine data. We included primary research published in 
English before April 2022. We summarised how many studies were externally validated, 
assessing differences over time, by outcome, and by data source. For validated studies, we 
evaluated the change in area under the receiver operating characteristic (AUROC) 
attributable to external validation using linear mixed-effects models.  

Results 

We included 355 studies, of which 39 (11.0%) were externally validated, increasing to 17.9% 
by 2022. Validated studies made disproportionate use of open-source data, with two well-
known US datasets (MIMIC and eICU) accounting for 79.5% of studies. On average, 
AUROC was reduced by -0.037 (95% CI -0.064 to -0.017) in external data, with >0.05 
reduction in 38.6% of studies. 

Discussion 

External validation, although increasing, remains uncommon. Performance was generally 
lower in external data, questioning the reliability of some recently proposed ML-based 
scores. Interpretation of the results was challenged by an overreliance on the same few 
datasets, implicit differences in case mix, and exclusive use of AUROC.  
 

  



 

Introduction 

In the intensive care unit (ICU), prognostic scores are used to monitor patients’ severity of 
illness, predict outcomes, and guide clinical decisions about interventions and resource 
allocation [1,2]. These scores have quickly become a fixture in modern critical care and have 
been adopted in hospitals worldwide [3]. Established scoring systems — such as the Acute 
Physiology and Chronic Health Evaluation (APACHE) [4] or the Sequential Organ Failure 
Assessment (SOFA) [5] — rely on a small set of carefully selected parameters to identify 
patients or patient groups at risk of deterioration [6]. This simplicity comes at the cost of 
crude prognostication and limited accuracy. 

The increasing availability of detailed electronic health records (EHR) has opened the door 
for developing more sophisticated and personalised scores. Machine learning (ML)-based 
artificial intelligence (AI) has emerged as a promising tool to leverage the wealth of data [7] 
and ML-based scores have attracted significant interest within the critical care community 
[8]. A growing body of literature demonstrates improved accuracy in predicting a diverse 
range of outcomes including all-cause mortality [9,10], sepsis [11,12], kidney injury [13,14], 
respiratory failure [15], and more [16,17].  

Despite their promise, ML-based scoring systems are not without risk. One notable 
challenge is the potential for “overfitting”, where a system's performance may become overly 
reliant on unique characteristics of the original patient cohort used for score development. 
Such overfitting can lead to inaccurate predictions when the system is used in a new 
hospital, where the original unique characteristics are no longer present [7]. Thus, external 
validation on data from previously unseen hospitals is a critical first step in establishing the 
robustness of these systems and ensuring their reliability across different clinical 
environments [18,19]. Unfortunately, external validation is often disregarded in practice 
[8,20], raising concerns about the true potential of ML-based scores in the ICU. Indeed, 
when a proprietary score for the detection of sepsis was implemented in clinical practice, an 
independent evaluation showed that it performed much worse than anticipated [21]. There is 
thus potential for an emerging translational gap, where theoretical benefits and advertised 
gains are not realised in clinical practice. 

This systematic review aims to address this issue by determining how frequently external 
validation is performed in the literature and whether its use has increased in recent years. 
We further investigated how the performances of ML-based ICU scoring systems typically 
changed when applied to data from new hospitals. Our work contributes to the ongoing effort 
of bringing reliable ML-based scores to the ICU bedside. 

Methods 

Eligibility criteria 

Studies were included in the review if they 1) described the development of an ML-based AI 
model that 2) provided early warning of acute patient deterioration in 3) ICU settings based 
on 4) structured, routinely collected EHR data. To be included in the meta-analysis of model 



 

performance, models further needed to 5) be externally validated on data from a 
geographically distinct hospital that was not part of the derivation cohort. Following Shillan et 
al. (2020) [8], ML was defined as “any form of automated statistical analysis or data science 
methodology”. Clinical events were considered “acute” if they occurred up to 7 days after the 
time of prediction. A model gave early warning of such an event if the event was not yet 
known to the treating clinician at the time of prediction. The ICU was defined as “an area 
with a sole function to provide advanced monitoring or support to single or multiple body 
systems” [8]. Models could be externally validated as part of the same study that developed 
the model or in a later publication.  
 
Studies were excluded if they: predicted auxiliary outcomes such as length of stay, risk of 
readmission, laboratory parameters, or values for imputation; used unsupervised learning 
methods to identify patient subgroups (unless those subgroups were used as input for 
supervised prediction); included non-ICU patients without providing separate performance 
metrics (e.g., by including patients from a general ward); required manual note review or 
prospective data collection of model features; used medical images or natural language 
processing of free-text notes; only validated the model on data from hospitals that 
contributed to the development data (including temporal validation on future data); did not 
report performance in the development dataset. 

Search strategy 

We searched the bibliographic databases Ovid MEDLINE and Web of Science for all full-
text, peer-reviewed articles matching our search terms published in the English language 
before April 29th, 2022. We additionally searched the preprint server arXiv for relevant 
preprints using a custom computer script (see supplementary material at  
https://doi.org/10.17605/OSF.IO/F7J46). We included only primary research, excluding 
reviews and conference abstracts (except for abstracts that were peer-reviewed and paper-
length, e.g., from the International Conference on Machine Learning).  
 
We divided our search into three sub-themes: “Machine Learning and Artificial Intelligence”, 
“Intensive care setting”, and “Patient deterioration”. Articles were considered for screening if 
they matched all three themes. Notably, no theme was defined for external validation, which 
was ascertained manually during screening. Details of the search strategy including all 
search terms can be found in the preregistered study Protocol 
(www.crd.york.ac.uk/prospero, RecordID: 311514).  
 
In an attempt to identify models that were validated in a separate, subsequent publication, 
we further performed a reserve citation search using Dimensions AI 
(https://www.dimensions.ai/), looking for validation papers that referenced a screened record 
(see supplementary material [22]).  

Study selection 

Identified articles were exported from the database as RIS files and imported into the 
reference management software Zotero (Cooperation for Digital Scholarship; version 
6.0.26), where they were deduplicated using Zotero’s semi-automated deduplication tool. 



 

Titles and abstracts were independently screened for inclusion by four of the authors (AH, 
BGC, EMA, PR), with each article being seen by at least two reviewers. For all articles that 
remained after title and abstract screening, full texts were obtained and independently 
checked for eligibility by two of the authors (EMA, PR). Before each screening stage, 
screening was piloted on 25 randomly selected articles. Agreement between authors was 
assessed using Fleiss’ Kappa [23]. If agreement was found to be unsatisfactory (defined as 
Kappa < 0.6), decisions were calibrated on another set of 25 articles. If there was 
uncertainty about the eligibility of an article at any stage of the screening, the article was 
forwarded to the next stage. Any disagreements were resolved in a consensus meeting. If 
multiple identified articles describe the same model  ̶  e.g., when development and external 
validation were published in separate articles  ̶  the article relating to model validation was 
included and any missing information on performance in the development dataset was 
supplemented from the article describing the model development. 

Data collection  

Limited data collection was performed for all included studies, covering information on target 
outcome(s), data sources, and whether or not the study was externally validated. For the 
subset of externally validated studies, a more detailed data collection was performed in the 
Numbat Systematic Review Manager [24] using a predefined extraction template (see 
supplementary material [22]). The template was slightly extended prior to data collection to 
cover all elements defined in the MINimum Information for Medical AI Reporting (MINIMAR) 
standard [25]. Data collection was performed independently by two authors (EMA, PR). We 
extracted the following information for each validated study: target population; 
inclusion/exclusion criteria; information on the data sources including country of origin, 
number of hospital sites, cohort size, patient characteristics (age, sex, race, socioeconomic 
status), outcome prevalence; number and type of input features (e.g., vital signs or 
laboratory tests); ML algorithm; strategy for dealing with missing data; data splitting; 
performance metrics and performance in internal and external validation; whether the 
authors explicitly optimised for across-hospital generalisation; and if the authors provided 
their computer code with the study (e.g., on GitHub). For studies that reported results for 
more than one algorithm, the performance of the best algorithm during internal validation 
was recorded. For studies that reported results for more than one outcome, the performance 
for both outcomes was recorded if they were sufficiently different (e.g., mortality and sepsis), 
otherwise the most acute outcome was chosen (e.g., mortality at 24 hours if authors 
reported both mortality at 24 and 48 hours). If a data item could not be ascertained from the 
main text or supplementary material of the article, it was recorded as missing and no attempt 
was made to contact study authors for additional data.  

Statistical analysis 

Study characteristics and extracted performance metrics were summarised using descriptive 
statistics and graphical analysis. Changes over time in the proportion of studies performing 
external validation were assessed using a Chi-square test for linear trend. 
  
Differences in the area under the receiver-operator characteristic curve (AUROC) were 
analysed using a random-effects model [26]. Parameters were estimated via a Bayesian 



 

linear regression model with a single intercept and a normally distributed random effect per 
study. We used weakly informative normal priors for the mean and half-Cauchy priors for the 
scale of the random effects [27]. Due to an observed skewed distribution that might unduly 
influence the results, the difference was modelled with a Cauchy likelihood, which is less 
sensitive to outliers [28] and is often used for robust regression [29]. Each study’s sample 
variance was derived using Hanley’s formula [30]. To explore differences in models 
estimating mortality — which is a well-defined and well-captured ground truth compared to 
inferred complications such as sepsis [31] or kidney injury [32] — a second model with a 
fixed effect for mortality was specified. After estimation, we further calculated the proportion 
of studies in which the absolute difference in AUROC was > ±0.05. A 0.05 threshold was 
chosen in line with previous studies [33]. No analysis of heterogeneity between studies or 
risk of bias was performed. 
 
All analysis was performed in R version 4.2.2 [34]. Bayesian linear models were fitted with 
Hamiltonian Monte Carlo (HMC) using the rstan package version 2.21.8 [35]. All results from 
the database search, screening, full-text review, and data collection as well as the analysis 
code are available at the Open Science Framework [22]. A study protocol was pre-registered 
on PROSPERO (www.crd.york.ac.uk/prospero, RecordID: 311514).  
 

Results 

We identified 4,677 records from MEDLINE (2,613 records), Web of Science (1,863 
records), and arXiv (201 records). A detailed flow diagram is shown in Figure 1. After 
deduplication, the titles and abstracts of 3,851 records were screened. Full texts were 
assessed for 527 manuscripts, of which 355 (67.4%) described the prediction of acute 
deterioration in adult ICU patients from routine data (included studies). The main reasons for 
exclusion were prospective or other non-routine data capture, non-acute outcomes, or the 
inclusion of image, text, or waveform data (Figure 1). Of all included studies, 39 (11.0%) 
were also externally validated (validated studies; Table 1). No additional validation studies 
were identified through the reverse citation search. Agreement between reviewers as 
measured by Fleiss’ Kappa was 0.623 for screening and 0.725 for full-text review.  

Trend over time 

The number of both included and validated studies increased significantly over time 
(p=0.014) and especially after 2018, with 302 / 355 (85.1%) respectively 38 / 39 (97.4%) 
studies published in or after that year (Figure 2). The earliest study performing external 
validation was published in 2015. Between 2018 and 2022, the proportion of validated 
studies increased from 2 / 28 (7.1%) to 7 / 32 (17.9%; only counting studies published until 
April 2022). 

Outcomes 

A total of 214 / 355 (60.3%) included studies predicted short-term mortality. The next most 
commonly predicted outcome was sepsis with 53 / 355 (14.9%), followed by 37 / 355 



 

(10.4%) studies predicting renal complications including acute kidney injury, 19 / 355 (5.4%) 
studies predicting respiratory complications, 16 / 355 (4.5%) studies predicting circulatory 
failure, and 14 / 355 (3.9%) studies predicting cardiovascular complications. At only 14 / 214 
(6.5%), the rate of external validation was notably lower among studies predicting mortality 
compared to all studies. If studies predicting mortality were excluded, the proportion of 
studies that were externally validated — and therefore included in the meta-analysis — 
almost doubled from 11.0% (39 / 355) to 18.2% (29 / 159). 

Sources of data 

Externally validated studies overwhelmingly used US data, with 37 / 39 (94.9%) including 
studies using at least one US dataset for model development or external validation. Eight 
studies used Chinese data, 5 studies used European data (Netherlands, Switzerland, 
Denmark, France), 3 used South Korean data, and 1 used Israeli data. 

The publicly available datasets MIMIC [36] and eICU [37] were overrepresented among 
validated studies. MIMIC was used in 29 / 39 (74.4%) of validated studies compared to 206 / 
355 (58.0%) of all included studies, with 14 studies using it for model development, 10 for 
external validation, and 5 for both. eICU was used in 17 / 39 (43.6%) of externally validated 
studies compared to 57 / 355 (16.1%) of all included studies, 5 times for model development, 
8 times for external validation, and 4 times in both capacities. Together, MIMIC and eICU 
were used in 31 / 39 (79.5%) validated studies, of which they were the only source of data in 
12 / 39 (30.8%) studies. AUMCdb [38] and HiRID [16] — two further, more recent public ICU 
databases — were only used in 2 / 39 (5.1%) included studies each. 

Performance at new hospitals 

All but one of the 39 validated studies reported AUROC. After accounting for sampling 
variability, model performance in the external validation data was -0.037 (95% credible 
interval [CI] -0.064 to -0.017; p-value < 0.001) lower than estimated in the internal validation 
data (Figure 3). Changes in performance ranged from a maximum increase of 0.14 to a 
decrease of -0.32. In 38.6% of cases, performance loss was < -0.05. On the other end of the 
spectrum, performance increased by > 0.05 in 9.1% of cases – indicating differences in 
patient populations between train and evaluation cohorts. There was no evidence for 
differences between studies predicting death and those that predicted other outcomes (p-
value = 0.742). 

Other commonly reported metrics included specificity (18 / 39; 46.2%), sensitivity (17 / 39; 
43.6%), positive predictive value (16 / 39; 41.0%), F1 score (11 / 39; 28.2%), and accuracy 
(10 / 39; 25.6%), although they were reported at a much lower rate than AUROC. 

Discussion 

This systematic review examined the generalisation of complex, ML-based ICU scoring 
systems to new hospitals. We considered any score that supports ICU staff through the 
prediction of imminent patient deterioration from routinely collected EHR data. Leveraging 



 

EHR data in this way to improve critical care continues to attract significant research interest, 
as evidenced by a steady increase in research output. Yet, translating this research into 
widespread clinical practice — and eventually converting it into patient benefit — requires 
comprehensive validation of findings, including an evaluation of the scores’ performance at 
new hospitals. We found that such external validation is still relatively uncommon. Where 
validation was performed, performance at the new hospital tended to be lower than in the 
training cohort, often notably so.  

Implications for the translation of AI into clinical practice 

Fueled by recent advances in natural language processing and their successful translation to 
consumer products, there is a reinvigorated hype around the implementation of AI in 
healthcare [39]. Yet, while many preliminary results keep making the headlines, the proof is 
in the pudding: a large majority of published results are exploratory in nature, providing only 
proof-of-concepts [40]. There is a continued lack of verification and clinical validation, 
blocking the translation of these proof-of-concepts to actual products [19]. In our review, we 
demonstrate that the issue of inadequate verification extends to ML-based scoring systems: 
the rate of retrospective external validation – a first step to establish validity and robustness 
– remains low. Less than 20% of identified studies that proposed new scoring systems for 
the ICU underwent external validation. External validation in this context is an essential step 
for clinical adoption. Unless a model is solely built for use in the hospital(s) it was developed 
at – an unlikely goal – it should be judged by its accuracy across a range of hospitals, all of 
which may potentially use the model in the future. When evaluated this way, we found that 
average model accuracy as measured by the AUROC reduced by -0.037 compared to the 
training hospitals. This constitutes a relative decrease of 7-23% in performance, with 
decreases of up to and more than 50% in some cases. Many ostensibly well-performing 
scores may thus no longer be suitable for use at the new hospital, a fact that would (and 
does) go unnoticed in the absence of external validation. To actually facilitate translation to 
the clinical setting, rigorous external validation must become the standard when developing 
ML-based scoring systems and clinical AI more generally. Retrospective external validations 
in particular aid the early identification of model deficiencies, highlighting the need for 
training and fine-tuning on a broader variety of training data [41]. While there is still a long 
way to go to make such external validation the default, our review at least suggests that 
there is a growing recognition of its importance among researchers: over 80% of all identified 
studies performing external validation were published in 2018 or later.  

Interpretation of external validation results 

The infrequent external validation of ML models for the prediction of acute events in the ICU 
was already noted in a 2019 systematic review, with only 7% of studies at the time using 
geographically independent data for model validation [8]. This has been echoed in more 
recent, disease-specific reviews looking at models for sepsis [20] and acute kidney injury 
[42]. While we showed that this percentage has somewhat improved since, we also find that 
challenges remain even if external validation is performed. 

While we observed a tendency for reduced model performance in external data, the 
magnitude of reduction was milder than anticipated from previous studies [41,43–45]. This 
may partially be explained by the performance metric. We focused on the AUROC as the 



 

primary effect measure, since it allowed performing a meta-analysis due to its popularity and 
its comparability across different levels of prevalence. However, AUROC may be less 
sensitive to changes in the data. For example, while the drop in AUROC in the PhysioNet 
CinC challenge 2019 [43] was generally mild and in line with our findings, the “utility of 
prediction” — a custom metric defined as a timely prediction within 12 hours before to 3 
hours after the onset of sepsis —  in the new hospital was worse than not predicting at all. 
The average reduction in performance might have been more pronounced if another metric 
such as utility or normalised AUPRC were used instead of AUROC. Unfortunately, it was not 
possible to include such metrics in a meta-analysis due to their infrequent reporting. We 
recommend that future validation studies systematically report multiple performance metrics 
that represent the performance holistically.  
 
The observed moderate reduction in average performance may have also been driven by 
the non-negligible number of models whose performance increased during external 
validation. Whereas minor fluctuations may occur due to sampling variability, a model’s 
performance shouldn’t notably increase in the external validation cohort. If it does, this 
suggests that there may be systematic differences in case mix between the training and 
validation cohorts – rendering the performances incomparable. If cohorts cannot be defined 
well enough to ensure their comparability, we recommend also reporting the performance of 
a model trained solely on the validation data. This provides a (potentially overfit) upper limit 
on what might have been achieved in the external data [41] and thus allows readers to take 
any distorting effects of case mix into consideration. 
 
Finally, although the rate of external validation is slowly rising, it appears almost exclusively 
confined to a few open-source validation sets, most prominently MIMIC [36] and eICU [37]. A 
version of MIMIC was used in almost 80% of all identified studies that performed external 
validation. This is potentially problematic, as studies worldwide are thus largely judged by 
their ability to retain performance in patients from the single US hospital included in MIMIC, 
which does not necessarily represent the wider ICU population. This means that users and 
reviewers need to closely scrutinise claims of external validation in the area of ICU scoring 
systems if they judge tools that are to be used outside of the specific clinical settings 
captured by MIMIC. This also highlights that while large open-source datasets are able to 
fuel a large number of publications in certain areas, they do not necessarily by themselves 
improve the ability to build models that generalize, limiting their impact on successful 
translation to the clinical setting.  

Strengths and limitations 

We used a thorough, pre-defined search strategy to identify all relevant studies, covering two 
major bibliographic databases as well as the most relevant preprint server for ML research. 
Inclusion criteria were carefully assessed for all identified records by at least two reviewers 
and we additionally performed a reverse reference search to ensure we did not miss 
validation results that were published as stand-alone manuscripts. 

To allow for direct comparability of AUROC in the development and validation data, we 
limited our analysis to external validation on retrospective, routine data. We did not capture 
validation that was performed by prospectively collecting additional data or within clinical 



 

trials. This has two important implications. First, the proportion of validated studies may be 
higher than reported here, especially in the years preceding the availability of large open-
source datasets. Second, the reported performances do not imply clinical usability but rather 
reflect the stability of study results across different sets of data. Nevertheless, external 
validation in retrospective data is an invaluable first step to assess the usability of a 
prediction model in clinical practice and should be considered for any study developing 
prediction models from routine data. Existing findings are fundamental to the conception of 
future studies and basing future research on 'false' or non-robust results can significantly 
hinder genuine innovation in the field, creating a substantial drain on both time and financial 
resources. 

Due to the anticipated heterogeneity of studies, we limited ourselves to a descriptive 
summary of study results and trends. We did not perform a risk of bias assessment. 
Previous studies that assessed study quality reported a neglect of model calibration, 
inappropriate internal validation, and overall lack of reproducibility [20,42], all of which may 
also have been presented in the studies included here. Our results also assume that there 
were no systematic differences between studies that did and did not get externally validated. 
This is a strong assumption. For example, studies that were externally validated may be 
more generalisable to begin with because good performance in new dataset(s) was an 
explicit part of the study objectives. In this case, the true performance drop among non-
validated studies may be even greater than estimated here. 

Conclusion 

Given the increasing availability of routine data capture, open-source ICU data sources 
[16,36–38], and well-documented tools for data harmonisation and preprocessing [46,47], 
there is little standing in the way of external validation of ML-based scoring systems. 
External validation should thus become the default for any study developing new scoring 
systems. It can provide invaluable information on the robustness of newly proposed scores 
and their potential for widespread adoption. However, while some external validation is 
certainly better than none, any results derived from it will only truly be useful if the data used 
for validation is representative of the model’s intended future use setting. The data used for 
validation should be carefully selected and interpreted to ensure a fair comparison and 
enable meaningful interpretation, taking into account shifts in data quality, patient case mix, 
and any other factors that may impact model performance.   
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Figure 1 - PRISMA flow diagram 



 

 

Figure 2 - Number of eligible (black) and included externally validated studies (orange) by 
year of publication. * For the year 2022, only studies published before May were included. 
Horizontal lines represent the numbers observed until the end of April, with the transparent 
bar representing the projected numbers for the full year.  



 

 

Figure 3 - Reported AUROCs for internal and external validation among (N = 39 -1) included 
studies. One study was omitted because they did not report AUROC. 

 

 
  



 

Table 1 - Summary of externally validated studies 

Authors Year Cohort Outcome Data source Sample size AUROC 

        Dev Val Dev Val Dev Val 

Pirracchio [9] 2015 All patients Mortality MIMIC Other 
(France) 

25k 200- .88 .94 

Delahanty [48] 2018 All patients* Mortality Other (US) Other (US) 147k 90k .95 .94 

Moon [49] 2018 All patients* Neurological Other (Korea) Other (Korea) 3k 325- .90 .72 

Huang [50] 2019 All patients* Mortality eICU +,‡ 
28k   .74 .68 

Liu [51] 2019 Sepsis Sepsis 
(shock) 

MIMIC eICU 15k ? .93 .85 

Shickel [52] 2019 All patients* Mortality Other (US) 
MIMIC 

+ 36k 
49k 

+ .91 
.91 

.90 

.90 

van Wyk [53] 2019 All patients* Sepsis Other (US) + 586- + - - 

Nielsen [54] 2019 All patients* Mortality Other (DK) Other (DK) 10k 2k .79 .73 

Kang [55] 2020 All patients* Mortality MIMIC 
eICU 

+ 21k 
198k 

+ .90 
.87 

.86 

.72 

Zhao [56] 2020 Sepsis Other MIMIC eICU 11k 35k .87 .84 

Roimi [57] 2020 Susp. 
bacteraemia 

Infection MIMIC 
Other (Israel) 

+ 2k 
1k 

+ .89 
.92 

.59 

.60 

Hyland [16] 2020 All patients* Circulatory HiRID MIMIC 36k 9k .94 .90 

Reyna [43] 2020 All patients* Sepsis MIMIC 
Other (US) 

Other (US) 20k 
20k 

? .82 
.86 

.81 

Wang [58] 2020 All patients* Renal Other (China) MIMIC 11k 46k .81 .95 

Liu [59] 2020 MODS Mortality MIMIC 
eICU 

Other (China) 15k 
34k 

439- .86 
.85 

.84 

Zhou [60] 2020 Viral pneumonia Mortality eICU MIMIC 4k 937- .77 .66 

Rahman [61] 2021 All patients* Circulatory eICU MIMIC 216k 16k .82 .90 

Zhi [62] 2021 Sepsis Mortality MIMIC Other (China) 2k 125- .75 .54 

Holder[63] 2021 Sepsis Other Other (US) Other (US) 9k 5k .81 .77 

Hur [17] 2021 All patients* Neurological Other (Korea) MIMIC 12k 2k .92 .70 

Chen [64] 2021 All patients* Renal MIMIC Other (China) 46k 226- .83 .79 

He [65] 2021 Sepsis and AKI Renal Other (China) MIMIC 209- 509- 1.0 1.0 

Shashikumar [66] 2021 All patients* Sepsis Other (US) Other (US) 17k 46k .95 .93 

Levi [67] 2021 GI bleeding Other MIMIC 
eICU 

+ 4k 
10k 

+ .81 
.79 

.76 

.80 

Ding [68] 2021 Sepsis and AKI Renal MIMIC eICU 7k 3k .70 .70 

Huang [69] 2021 AKI Mortality MIMIC eICU 4k 1k- .91 .82 

Singhal [70] 2021 COVID-19 Respiratory Other (US) Other (US) 6k 611- 
77- 

.90 .85 
.88 

Sung [71] 2021 All patients* Mortality Other (Korea) Other (Korea) 22k 2k .99 
.77 
.84 

.96 

.77 

.80 

Liu [72] 2021 All patients* Sepsis Other (US) eICU 882- 6k .72 .78 

Shawwa [73] 2021 All patients* Renal Other (US) MIMIC 98k 19k .69 .66 

Mamandipoor 
[74] 

2021 All patients* Other eICU MIMIC 17k 13k .84 .83 



 

Moor [45] 2021 All patients* Sepsis MIMIC 
eICU 
HiRID 
AUMCdb 

+ 37k 
57k 
27k 
16k 

+ .83 
.80 
.83 
.92 

.71 

.75 

.73 

.81 

Peng [75] 2022 CHF Renal MIMIC eICU 9k 10k .81 .82 

Luo [76] 2022 CHF Mortality MIMIC eICU 6k 1k .83 .81 

Kim [77] 2022 Cardiac arrest 
and MV 

Mortality eICU MIMIC 2k 86- .83 .76 

Fu [78] 2022 Cardiogenic 
shock 

Renal MIMIC eICU 1k 1k .82 .73 

Zhang [79] 2022 Cerebrovascular 
disease 

Renal MIMIC Other (China) 3k 499- .88 .78 

Jiang [80] 2022 Sepsis Other Other (China) MIMIC 1k 688- .89 .77 

Liang [81] 2022 All patients* Renal Other (China) 
MIMIC 

AUMCdb 6k 
37k 

15k .86 
.86 

.87 

* “All Patients” are defined as a general adult ICU patient population without specifying additional health conditions (e.g., 
admitted with sepsis). + Datasets were used alternatingly for development and validation. ‡ eICU includes data from 208 
different hospitals and may thus be used for both development and validation if split by hospital.  
 
AKI, acute kidney injury: AUROC, area under the receiver operating characteristic; CHF, congestive heart failure; DK, 
Denmark; GI, gastro-intestinal; MODS, Multi-organ dysfunction syndrome; MV, mechanical ventilation; US, United States 
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