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Abstract 

Transcriptome-wide association studies (TWAS) have been successful in identifying 

putative disease susceptibility genes by integrating gene expression predictions with genome-

wide association studies (GWAS) data. However, current TWAS models only consider cis-

located variants to predict gene expression. Here, we introduce transTF-TWAS, which includes 

transcription factor (TF)-linked trans-located variants for model building. Using data from the 

Genotype-Tissue Expression project, we predict alternative splicing and gene expression and 

applied these models to large GWAS datasets for breast, prostate, and lung cancers. Our analysis 

revealed 887 putative cancer susceptibility genes, including 465 in regions not yet reported by 

previous GWAS and 137 in known GWAS loci but not yet reported previously, at Bonferroni-

corrected P < 0.05. We demonstrate that transTF-TWAS surpasses other approaches in both 

building gene prediction models and identifying disease-associated genes. These results have 

shed new light on several genetically driven key regulators and their associated regulatory 

networks underlying disease susceptibility. 
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Introduction 

Approximately 90% of risk variants identified in genome-wide association studies 

(GWAS) are located in noncoding or intergenic regions, which suggests that they may affect 

cancer risk by dysregulating gene expression 1-10. Fine-mapping of genetic risk loci, along with 

functional experiments provide strong evidence that regulatory variants in linkage disequilibrium 

(LD) with GWAS-identified risk variants disrupt DNA binding affinities of specific transcription 

factors (TFs) and modulate expression of susceptibility genes 11-22.  Thus, identifying TFs, whose 

DNA bindings are altered by risk-associated genetic variations, and their controlling genes can 

greatly improve the understanding of transcriptional dysregulation in human diseases and 

cancers23-26. A pioneering study analyzed Chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) data for TFs such as FOXA1 in multiple breast cancer cell lines to 

investigate the binding of GWAS-identified risk variants 21. The study suggested that regulatory 

variants confer to breast cancer risk by mediating their altered binding affinities. Subsequent 

studies have revealed multiple breast cancer risk-associated TFs such as ESR1, MYC, and KLF4 

20,27 through interrogating data on gene expression, TF ChIP-seq, and GWAS-identified risk 

variants. We have recently conducted a comprehensive analysis of TF ChIP-seq and GWAS data 

for breast cancer, and developed an analytical framework to identify TFs that contribute to breast 

cancer risk. Our study revealed that the genetic variations of 22 TFs were significantly associated 

with breast cancer risk and highlighted genetic variations of TF-DNA bindings (particularly for 

FOXA1) underlying breast cancer susceptibility 28.  

 

Transcriptome-wide association studies (TWAS) have successfully uncovered large 

numbers of putative susceptibility genes for cancers and other diseases, and many of these genes 

have been further supported by functional experiments 29-33. In TWAS, a reference with both 

transcriptome and high-density genotyping data from a small set of subjects, such as the 

Genotype-Tissue Expression project (GTEx), is used to build prediction models of gene 

expression for downstream association analyses. However, the accuracy of gene expression 

prediction predicted by cis-genetic variants could be compromised if these variants are located in 

non-regulatory elements or if they disrupt binding sites of non-transcribed TFs in target tissues 

34-37. Our recent approach, sTF-TWAS 38, by integrating susceptible TF-occupied cis-regulatory 
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elements (STFCREs) from risk-associated TFs significantly improve the detection of cancer 

susceptibility genes compared to the conventional TWAS approaches.  

 

Despite the progress made by TWAS in recent years 37-43, the current models for 

predicting gene expression were based solely on cis-located genetic variants (<1Mb distance), 

which generally account for only a modest proportion of disease heritability 44. In comparison, 

trans-located genetic variants may have more impact on the disease phenotype due to their 

advantages in population selection pressure and compensatory post-transcriptional buffering 45,46. 

However, including trans-located variants in TWAS analysis is a challenge due to their 

overwhelming numbers on gene expression than cis-located variants, requiring larger sample 

sizes for detection 47. Therefore, an integrative epigenetic data approach is needed to prioritize 

trans-located variants that may play a regulatory role in gene expression. 

 

In this work, we introduced transTF-TWAS, which included TF-linked trans-located 

variants, together with cis-regulatory variants for prediction model building in an effort to 

improve susceptible gene discovery. We showed that transTF-TWAS outperforms other methods 

by significantly improving prediction models and identifying disease genes. In particular, we 

conducted transTF-TWAS to analyze both gene expression and alternative splicing with data 

generated from multiple normal tissues from the Genotype-Tissue Expression (GTEx) and large-

scale GWAS data for breast, prostate, and lung cancers and three brain disorders to search for 

disease susceptibility genes and loci (Table S1). 

 

 

Results  

Overview of transTF-TWAS framework  

We introduced our new approach, transTF-TWAS, to build gene expression prediction 

models by adding TF-linked trans-located variants together with cis-variants under our previous 

sTF-TWAS framework. As illustrated using data in breast cancer, we firstly identified putative 

TF cis-regulatory variants that potentially affect expression of a TF (e.g., FOXA1) by conducting 

cis-eQTL analysis and analyzing epigenetic data generated in breast cancer-related cells. A set of 

the cis-regulatory variants regulating TF expression (namely TF-cis-regulatory-variants) was 
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determined based on the significant associations between TF gene expression and genetic 

variants, as well as regulatory evidence for these variants through interactions with proximal 

promoters or distal enhancer-promoter regions (Fig. 1A; Materials and Methods).   

 

Secondly, we analyzed TF ChIP-seq data generated in breast cancer-related cells to 

characterize their genome-wide binding sites for susceptible TFs which have been identified in 

breast cancer from our prior work 28 (Fig. 1B; Materials and Methods). We next characterized 

each gene potentially regulated by all possible susceptible TFs based on the evidence of the TF-

DNA binding sites that are located in its flanking of transcription start sites (TSS, +/-20K; Fig. 

1C). As TF-cis-regulatory-variants have the potential to modulate the expression of the TF 

protein, which may result in changes in gene expression of downstream targets. Thus, these 

genetic variations may affect genes regulated by the TF, even if they are located several 

megabases away or on different chromosomes. To test this, for each TF, we assessed the 

performance of a prediction model that utilized its TF-cis-regulatory-variants to predict 

expression of each target gene using Group Lasso method (i.e., number of G TFs; Fig. 1C; 

Materials and Methods). The Group Lasso’s property of encouraging between-group sparsity and 

within-group retainment aligns to our intention of selecting the actual functioning TFs and then 

retaining their cis-regulatory-variants. The groups survive the regularization are corresponding to 

those of TF-cis-regulatory-variants that may affect the expression of the gene. The final set of 

TF-cis-regulatory variants was identified for downstream gene expression model building by 

combining the groups from the significant models using standard Elastic Net (Fig. 1C; Table S1; 

Materials and Methods).  

 

Lastly, by expending our previous sTF-TWAS framework to build gene expression 

prediction models using the prioritized 50K cis-located variants (Fig. 1B), we included TF-cis-

regulatory-variants (as trans-located variants) identified from the above analysis. Here, we only 

focused on the set with 50K cis-located variants, as the identified genes were highly overlapped 

among analyses with different number of variants (i.e., 50K vs 500K variants) in our prior work 

28,38. The GTEx reference data were primarily used to build genetically predicted gene expression 

in four tissues, including breast, prostate, lung and brain (Materials and Methods; Fig. 1D). We 

conducted TWAS analyses by applying the gene expression prediction models, respectively, to 
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GWAS summary statistics for breast, prostate, and lung cancers and other diseases to search for 

their susceptibility genes and loci (Fig. 1D). 

 

transTF-TWAS outperforms existing TWAS approaches  

To evaluate the performance of transTF-TWAS, we conducted simulations under an 

extension of our sTF-TWAS framework38, sTF-TWAS(R), by adding randomly selected trans-

located variants of the equal number (Materials and Methods). We first compared prediction 

performance of gene expression built from transTF-TWAS with sTF-TWAS(R) and sTF-TWAS.  

In the analysis using data from breast tissues in GTEx, we observed that transTF-TWAS 

predicted slightly more genes than sTF-TWAS(R) at a cutoff of R2 > 0.01, while it predicted over 

2,000 genes more than sTF-TWAS (Fig. 1E). Using independent datasets generated in breast 

normal tissues from KOME (n = 181), we further showed that a higher proportion of these 

predicted genes in GTEx were verified in transTF-TWAS when compared to two alternative 

approaches (Fig. S1). By further applying the prediction models to GWAS data in breast cancer, 

we identified 141 putative susceptibility genes using transTF-TWAS, at a Bonferroni-corrected P 

< 0.05, which were more than those identified by sTF-TWAS (62 genes), and sTF-TWAS(R) (41 

genes) (Fig. 1E).   

 

We next expanded our comparisons for transTF-TWAS with existing approaches 

including sTF-TWAS38, PUMICE43 and S-PrediXcan30, in the analysis for breast, prostate and 

lung cancers. We showed that transTF-TWAS identified more genes than sTF-TWAS under 

multiple P-value cutoffs (Fig. 2A). As described above, we identified 141 putative susceptibility 

genes from transTF-TWAS, at a Bonferroni-corrected P < 0.05, while fewer genes were 

identified by sTF-TWAS (n=62), S-PrediXcan (n=52), and PUMICE (n=42) (Fig. S2; Fig. S3; 

Table S2). We conducted similar comparisons for prostate and lung cancers and demonstrated 

consistent trends of more genes identified by transTF-TWAS compared to the other three 

approaches (Fig. S2; Fig. S3; Table S3; Table S4).  

 

We further performed functional annotation for the genes identified by transTF-TWAS 

and sTF-TWAS with known target cancer-related genes of interest (Materials and Methods). We 

showed that more (i.e., n=61 for transTF-TWAS vs. n=26 for sTF-TWAS) (Fig. 2B) and a 
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comparable proportion (i.e., 62.2% for transTF-TWAS vs. 61.9% for sTF-TWAS) of breast 

cancer-related genes were detected by transTF-TWAS than those identified by other approaches 

(Fig. 2C). We also found an overall higher quantity and higher or comparable proportion of 

known cancer related genes identified for both prostate and lung cancers by our approach than 

other approaches (Fig. 2B,C).  

 

Genetically driven key regulators and their associated networks underlying cancer risk 

We showed that transTF-TWAS detected more genes than sTF-TWAS in breast, prostate, 

and lung cancers, whereas a large number of significant genes were uniquely detected by 

transTF-TWAS (Fig. 3A). To further illustrate how these unique genes contributed by trans-

located variants, we examined whether these genes can be predictable by sTF-TWAS. We found 

that most of the unique genes in breast and prostate cancers failed to be genetically predicted by 

sTF-TWAS, indicating the trans-located variants significantly contributed risk gene discovery 

via the improved gene expression prediction performance (Fig. 3A; Table S5; Table S6; Table 

S7). 

 

Of the identified genes, we next evaluated the lead trans-located variants that present the 

strongest associations with cancer risk in the prediction model for each of our identified putative 

susceptibility genes. In breast cancer, we observed that the lead variants are significantly 

enriched in the TF-cis-regulatory-variants for ESR1 (n= 73 genes), followed by TCF7L2 (n=13), 

and FOXA1 (n=11) (Fisher’s exact test, P < 0.01 for all; Fig. 3B, C; Table S8; Table S9). In 

prostate cancer, we observed that the lead variants are significantly enriched in NKX3-1 (n= 61 

genes), followed by GATA2 (n=13) (Fisher’s exact test, P < 0.01 for all; Table S8; Table S10). 

These results highlighted these genetically-driven key regulators and their associated regulatory 

networks that underlie cancer susceptibility. 

 

Charactering novel cancer risk genes identified by transTF-TWAS 

To further characterize putative susceptibility genes and loci identified under our 

transTF-TWAS framework, we additionally analyzed alternative splicing (sp-transTF-TWAS) 

for breast, prostate and lung cancers (Fig. 4; Fig. S4; Table S11; Table S12; Table S13). We 

comprehensively compared our findings from both transTF-TWAS and sp-transTF-TWAS, with 
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those reported from previous TWAS, eQTL, or other genetic studies for breast32,48; 19; 28,38,49,50, 

prostate31,38,51-53 and lung cancers38,53,54.  

 

For breast cancer, we identified 141 putative susceptibility genes from transTF-TWAS 

and 239 putative susceptibility genes from sp-transTF-TWAS, at a Bonferroni-corrected P < 0.05. 

Combing the results from both analyses, we identified 374 putative breast cancer susceptibility 

genes, including 212 genes at 163 novel loci (more than 1Mb away from any previous GWAS-

identified risk variant for breast cancer) and 53 previously unreported located in GWAS loci (Fig. 

5A, B; Table S14). For prostate cancer, we identified 136 putative susceptibility genes from 

transTF-TWAS and 318 putative susceptibility genes from sp-transTF-TWAS. Combing the 

results from both analyses, we identified 443 putative prostate cancer susceptibility genes, 

including 251 genes at 193 novel loci and 75 genes previously unreported located in GWAS loci 

(Fig. 5A, B; Table S15).  For lung cancer, we identified 36 putative susceptibility genes from 

transTF-TWAS and 41 putative susceptibility genes from sp-transTF-TWAS. Combing the 

results from both analyses, we identified 70 putative lung cancer susceptibility genes, including 2 

genes at one novel locus and 9 genes previously unreported located in GWAS loci (Fig. 5A,5B; 

Table S16). Taken together, our analysis revealed total 887 putative susceptibility genes for these 

three cancer types, including 137 that were previously unreported in GWAS loci and 465 in loci 

unreported by GWAS (Table S17; Table S18). 

 

Functional evidence of oncogenic roles for the identified putative susceptibility genes 

We next examined whether our identified putative cancer susceptibility genes had been 

reported as predisposition genes55,56, cancer drivers 57,58, or Cancer Gene Census (CGC) genes 59 

(Materials and Methods). We found eight cancer driver genes and five CGC among previously 

unreported genes for breast cancer, as well as six cancer driver genes and eight CGC among 

previously reported genes (Fig. 5C). Similarly, for prostate cancer, we found ten cancer driver 

genes and eight CGC among previously unreported genes, and six cancer driver genes and four 

CGC among previously reported genes (Fig. 5C). For lung cancer, we identified four cancer 

driver genes and three CGC among previously reported genes (Fig. 5C). Functional enrichment 

analysis showed that our identified genes were significantly enriched in those known cancer-
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related genes with P = 0.0044 for breast cancer, P = 0.0097 for prostate cancer and P = 0.012 for 

lung cancer (Materials and Methods). 

 

We also explored the functional roles of the identified putative susceptibility genes using 

CRISPR-Cas9 screen silencing data to investigate gene essentiality on cell proliferation in breast 

(n=45), prostate (n=8), and lung (n=130) cancer relevant cell lines (Materials and Methods). 

Using a cutoff of median CERES Score < −0.5 in the above cells, following the previous 

literature 60,61, we provided strong evidence of essential roles in cell proliferation for 19 

previously unreported genes for breast cancer (Fig. 5D); 36 unreported genes for prostate cancer 

(Fig. 5E); and two unreported genes for lung cancer (Fig. 5F).  

 

TransTF-TWAS strengthens non-cancer risk gene discovery  

To evaluate the generalizability of transTF-TWAS, we conducted additional analysis for 

brain disorders including schizophrenia (SCZ), Alzheimer’s disease (AD), and autism spectrum 

disorder (ASD). By comparison, we also conducted S-PrediXcan and sTF-TWAS for each of the 

diseases. We found that transTF-TWAS identified more putative susceptibility genes than both 

sTF-TWAS and S-PrediXcan for AD and ASD. Using ASD as an example, we identified eight 

putative susceptibility genes from transTF-TWAS at a Bonferroni-corrected P < 0.05, while only 

one and six genes was identified by S-PrediXcan and sTF-TWAS, respectively. The results 

suggest that our transTF-TWAS approach has broad applicability for enhancing the discovery of 

disease susceptibility genes (Fig. S5). 

 

Discussion 

In this study, we demonstrated that the new approach, transTF-TWAS, significantly 

improved the detection of putative cancer susceptibility genes with increased statistical power 

and accuracy over other existing TWAS approaches (i.e. sTF-TWAS38, PUMICE43, and S-

PrediXcan30). Under transTF-TWAS framework, we predicted alternative splicing and gene 

expression and applied these models to large GWAS datasets for breast, prostate, and lung 

cancers. Our analysis revealed total 887 putative cancer susceptibility genes, including 465 in 

regions not yet reported by previous GWAS and 137 in known GWAS loci but not yet reported 

previously. Many of the newly identified associations have been supported by their oncogenic 
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roles in cancer development 57-59, including 88 cancer driver genes, CGC or those with strong 

evidence of essential roles in target cancer cell proliferation. These findings provide new insights 

into the genetic susceptibility of the three common cancers.   

 

Previous TWAS mainly use cis-genetic variants in building gene expression models. 

However, investigation into trans-located variants has been limited due to statistical analysis 

burden of their large numbers. To address this, transTF-TWAS is to identify TF-linked trans-

located variants by comprehensively characterizing TF-cis-regulatory-variants and using Group 

Lasso to select a set of these variants to significantly contribute prediction models. The use of 

Group Lasso can be powerful in identifying a set of TF-cis-regulatory-variants, which may affect 

the expression of the TF regulated target genes. Our analysis identified many TF-linked trans-

located variants (i.e., average 10 for each gene for breast cancer) contributed to gene expression 

prediction, which included several thousand newly predicted genes missed by other approaches. 

We observed that the newly predicted genes had a similar proportion of verifiability in 

independent datasets compared to the remaining genes (Fig. S1). Of note, in our prior study of 

sTF-TWAS, it is demonstrated that the approach improves statistical power compared to existing 

approaches and the Type-I Error is well under control 38. By conducting simulations and real data 

analysis, we further showed that transTF-TWAS predicted a higher proportion of verifiable 

genes and detected more significant genes with higher accuracy compared to sTF-TWAS, 

indicating the strong validity of our method (Fig. S1).   

 

Much efforts 20,21,27, including our work28, have established cancer susceptible TFs, 

whose DNA binding sites altered by risk genetic variants that regulate cancer susceptibility 

genes. However, it remains unclearly how susceptibility TF-based transcriptional networks 

underlying genetic susceptibility to common cancers. In this study, transTF-TWAS can 

strengthen susceptibility gene discovery through integrating the prior information of TF-cis-

regulatory-variants altered regulators and their downstream target genes.  For breast cancer, we 

observed that the variants potentially regulated TFs significantly contribute to expression 

prediction of their downstream regulated genes. In turn, the putative susceptible genes that were 

identified appear to be commonly regulated by FOXA1 and ESR1 through the upstream 

genetically-driven regulatory mechanisms, further highlighting their key roles in driving breast 
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cancer susceptibility (Fig. 3; Table S9). Similarly, we also highlighted key TFs, NKX3-1 62-65 

and GATA2 66-69 for prostate cancer (Table S10). Unfortunately, we did not observe significant 

TFs in lung cancer, likely due to the less genetic effects of the TF on downstream regulated 

genes 38.   

 

Using the transTF-TWAS framework, we also conducted sp-transTF-TWAS for breast, 

prostate, and lung cancers. In line with previous work38, our results also suggested that 

genetically regulated alternative splicing significantly contribute to cancer risk. We demonstrated 

that sp-transTF-TWAS improved the detection of cancer susceptibility genes with increased 

statistical power and accuracy over S-PrediXcan and sTF-TWAS (Table S11; Table S12; Table 

S13). 

 

Our findings are in line with the evidence that trans-located genetic variants may have 

more impact on diseases than cis-located genetic variants70-72. For our transTF-TWAS, one 

critical step is to prioritize TF-linked trans-located variants for model building based on 

identifying TF-cis-regulatory-variants and TF regulated downstream genes. The concept of our 

approach can also be used to identify trans-located variants based on long distance-based 

epigenetic signals (>1Mb) such as distal chromatin-chromatin interaction, enhancer-gene link, 

enhancer-gene correlation as well as trans-eQTLs 73-76. Thus, our transTF-TWAS will further 

strengthen disease susceptibility gene discovery with increasing availability of extensive 

epigenetic datasets in future studies. On the other hand, the prior information of TF-linked trans-

located variants can be integrated into other extensions of TWAS, such as multiple-tissue 

approaches (UTMOST 77 and S-MultiXcan 78), or variance component (Kernel) TWAS 39,40 or 

instrumental-variable approaches 41,42.    

 

In conclusion, we demonstrated that our transTF-TWAS, by integrating TF-linked trans-

located variants with TWAS, significantly improved disease susceptibility gene discovery and 

advanced our understanding of complex human diseases, including cancers. Our study also 

highlighted several genetically driven key regulators and their associated regulatory networks 

underlying disease susceptibility. 
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Materials and methods 

Data resources 

We obtained the individual-level genotype dataset from GTEx (v8)79,80, which was 

quality controlled using PLINK81. Summary statistics of GWAS data for breast cancer were 

obtained from the Breast Cancer Association Consortium (BCAC), which has generated GWAS 

data for 122,977 cases and 105,974 controls from European descendants. GWAS data for 

prostate cancer were released from the European descendants were released from the Prostate 

Cancer Association Group to Investigate Cancer Associated Alterations in the Genome 

(PRACTICAL)82, with 79,194 cases and 61,112 controls from European descendants. GWAS 

data for lung cancer were obtained from the websites of the Transdisciplinary Research of 

Cancer in Lung of the International Lung Cancer Consortium (TRICL-ILCCO) and the Lung 

Cancer Cohort Consortium (LC3) 83, with 29,266 cases and 56,450 controls from European 

descendants. GWAS summary statistics for schizophrenia (SCZ, N= 70,100), Alzheimer's 

disease (AD, N=22,246), and autism spectrum disorder (ASD, N= 10,263) were downloaded 

from the Psychiatric Genomics Consortium website (PGC) (Fig. 1D).  

 

The TF-occupied regulatory variants for breast, prostate, lung cancers, and three brain 

disorders were collected based on ChIP-seq data of transcription factors (TFs) generated in 

diseases related cell lines from the Cistrome database84. We evaluated their quality control based 

on the guidance from the database and selected high-quality datasets for downstream analysis. 

Detailed ChIP-seq data for breast, prostate, lung cancers and brain disorders were described in 

our previous work 28,38.  

 

We included germline whole genome sequencing (WGS) and RNA-sequencing (RNA-

seq) data from GTEx (release 8) 79,80 for normal breast tissue, prostate tissue, lung tissue, and 

brain cortex tissue. We selected tissue samples from 151 women for breast tissue, 221 men for 

prostate tissue, 515 individuals for lung tissue, and 205 individuals (both sexes) for brain cortex 

tissue. The fully processed, filtered, and normalized gene expression data matrices (in BED 

format) were downloaded from the GTEx portal. The WGS file and sample attributes were 

obtained from dbGaP, and the subject phenotypes for sex and age information were obtained 

from the GTEx portal. The covariates used in eQTL analysis were obtained from 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.10.23295443doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23295443


GTEx_Analysis_v8_eQTL_covariates.tar.gz, and the covariates for sQTL analysis were obtained 

from GTEx_Analysis_v8_sQTL_covariates.tar.gz, both of which were downloaded from the 

GTEx portal. Normal breast tissue samples for both RNA-sequencing and genotyping from 181 

individuals of European were collected through the Susan G. Komen Normal Tissue Bank 

(KOME). Genotype and gene expression data generation and processing have been described in 

our previous sTF-TWAS work 38.  

 

We downloaded approximately 3.6 million DNase I hypersensitive sites (DHSs) regions 

within human genome sequence 85. The enhancers regions were downloaded from EpiMap 

repository 86, which contains ~2M non-tissue specific enhancers regions. The CAGE peak 

regions were downloaded from FANTOM5 87, and we also included all regions within 

transcription start site (TSS) +/-2K for each gene as promoter regions. The eQTLs were 

downloaded from the GTEx portal 79,80 and eQTLGen 88. The Enhancer to gene link information 

across 833 cell-types were downloaded from EpiMap repository 86. We all used cell-type specific 

chromatin-chromatin interaction data from the 4D genomics and previous literature 89,90.  

 

To analyze cancer-related susceptibility genes, we downloaded a list of gene sets from 

the Molecular Signatures Database (MGB) on Gene Set Enrichment Analysis (GSEA). 

Additionally, we downloaded lists of predisposition genes from previous literatures 56,91, cancer-

driven genes from two previous literatures 92,93, and CGC 94 from the COSMIC website. To 

investigate the effect of an individual gene on essentiality for the proliferation and survival of 

cancer cells, we downloaded two comprehensive datasets, "sample_info.csv" and 

"CRISPR_gene_effect.csv," from DepMap Public 21Q4.  

 

Identifying TF-cis-regulatory-variants  

To determine a set of the cis-regulatory variants that potentially regulate TF expression 

(namely TF-cis-regulatory-variants), we first prioritized putative regulatory variants by only 

including TF-occupied variants that are located in DNase I hypersensitive sites (DHSs) 85, 

enhancer regions86 and promoter regions 86. Of them, the significant associations between a TF 

and its cis-genetic variants were identified at a nominal p-value < 0.05, based on the eQTL 

analysis in both target tissues and whole blood samples using data from GTEx portal79,80 and 
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eQTLGen88. Furthermore, we also analyzed epigenetic data to search regulating evidence by 

these variants through interactions with proximal promoters or distal enhancer-promoter regions. 

Specifically, we examined if these variants are located in the promoter region of a TF (TSS +/- 

2K) or enhance region with an evidence of the enhancer linking to the TF based on expression-

enhancer activity correlation across 833 cell-types from the EpiMap repository 86, as well as 

chromatin-chromatin interaction data from the 4D genomics and previous literature 89,90. Finally, 

the TF-cis-regulatory-variants were identified based on the significant associations from eQTL 

results, and the regulatory evidence from the variants linked to the TF. 

 

Gene expression prediction model building based on trans-located variants  

We analyzed TF ChIP-seq data generated in target cancer-related cells to characterize 

their genome-wide binding sites for susceptible TFs using data from the Cistrome database 84.  

We next characterized each gene potentially regulated by all possible susceptible TFs based on 

the evidence of their TF-DNA binding sites that are located in its flanking 20Kb of TSS (i.e., 

number of G TFs; Fig. 1C). For each TF, we assessed the performance of a prediction model that 

utilized its TF-cis-regulatory-variants to predict expression of each target gene using Group 

Lasso method. We trained a Group Lasso to select a group of TF-cis-regulatory-variants from 

each TF (i.e., 1 to G TF).  

𝑳𝒐𝒔𝒔(𝜷∗) = 𝒂𝒓𝒈𝒎𝒊𝒏||𝒚 − 𝑿𝜷||𝟐
𝟐 +  𝝀 ∑ ||𝜷𝒈||𝟐

𝑮

𝒈=𝟏

 

where the coefficient in 𝜷 are divided into G groups and 𝜷𝒈 denotes the coefficients vector of 

variants in the g-th group. X are all trans-located variants from G groups. 𝒚 is normalized gene 

expression data generated in different tissue samples from GTEx v8. In Group Lasso, the 

regularizor, ||𝜷𝒈||𝟐, also called 𝑙2,1-norm consists of the intra-group non-sparsity via 𝑙2-norm 

and inter-group sparsity via 𝑙1-norm. Only significant models were used to determine those 

groups of TF-cis-regulatory-variants that may affect the expression of the gene. The final set of 

TF-cis-regulatory variants was identified for downstream gene expression model building by 

combining the groups from the significant models. We next built gene expression prediction 

models for the final sets of TF-cis-regulatory variants and cis TF-occupied variants using 

standard Elastic Net under our sTF-TWAS framework.  For each gene, the gene expression level 

was regressed on the number of effect alleles (0, 1, or 2) for each genetic variant with adjustment 
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for top 5 genotyping PCs, age, and other potential confounding factors (PEERs).  We used 30 

PEER factors for our downstream model building based on the recommendation for breast, 

prostate and brain tissues, and 60 PEER factors for lung tissue. Prediction model performance 

was assessed using the R2 via a 10-fold cross-validation.  

 

Simulation study and external verification of gene expression predictions  

To evaluate prediction performance of our developed approach, we simulated scenario 

for each gene that had the equal number of artificial TF groups with our transTF-TWAS. We 

also randomly generated the same number of trans-located genetic variants (> 1Mb distance) 

within each TF group with our transTF-TWAS. Similarly, we next used Group Lasso to select 

significant groups from the artificial TF groups. The final set of trans-located variants was 

identified for downstream gene expression model building by combining the groups from the 

significant models. We next built gene expression prediction models for the final sets of and cis 

TF-occupied variants under sTF-TWAS framework. The models of genetically predicted gene 

expression were built in breast normal tissues from the GTEx project. To externally verify gene 

expression prediction performance, we first used the same analytical protocol to build the 

prediction models using standard Elastic Net based on normalized gene expression data 

generated in breast tissue from the GTEx (v8), and then we re-calculated the prediction 

performances in terms of variance explained (R2) using selected variants trained from the GTEx 

based on an independent dataset generated in breast normal tissues from KOME, where the 

genotype and gene expression data were processed following the protocol in GTEx.  

 

Association analyses between predicted gene expression and cancer risk 

To evaluate associations of genetic predicted gene expression with cancer risk, we 

applied the weight matrix obtained from the gene prediction models to the summary statistics 

implemented in S-PrediXcan 95. The statistical method described in the following equation that 

was also described elsewhere32,33, was used for association analyses.  

                              𝑍𝑔 ≈  ∑ 𝑤𝑙𝑔𝑙∈Model𝑔

�̂�𝑙

�̂�𝑔
 

�̂�𝑙

se(�̂�𝑙)
                   

Here, Z-score was used to estimate the association between predicted gene expression 

and cancer risk. Here, 𝑤𝑙𝑔 is the weight of genetic variant 𝑙 for predicting the expression of gene 
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𝑔. �̂�𝑙and se(�̂�𝑙) are the GWAS-reported regression coefficients, and its standard error for variant 

𝑙, and �̂�𝑙 and �̂�𝑔 are the estimated variances of variant 𝑙 and the predicted expression of gene 𝑔, 

respectively.  

 

By comparison, we also performed TWAS analysis using PUMICE43 (Prediction Using 

Models Informed by Chromatin conformations and Epigenomics) with default settings. PUMICE 

improves the accuracy of transcriptomic imputation through utilizing tissue-specific 3D genomic 

and epigenomic data to prioritize regions that harbor cis-regulatory variants. The source codes of 

PUMICE were obtained from https://github.com/ckhunsr1/PUMICE. The precomputed models 

trained in breast, prostate and lung tissues from GTEx v8 can be found under 

https://github.com/ckhunsr1/PUMICE/tree/master/models_GTEx_v8.  

 

Genetically-driven key regulators and their associated networks regulating breast cancer 

susceptibility genes 

For each of the identified putative susceptibility genes, we evaluated the lead variant that 

present the strongest associations with cancer risk in the prediction model. If the lead variant was 

a trans-located variant, we next identified its potential regulated TF based on the previous 

analysis of TF-cis-regulatory-variant (see the preceding section). A TF-gene pair was further 

determined based on the above information of the lead trans-located variant linked to both the 

gene and TF. Based on the information of TF-gene pairs, a TF-transcriptional network was built 

using Cytoscape 3.9.196. To evaluate whether our identified susceptibility genes significantly 

enriched in a TF of interest, we conducted a comparison between this TF and the remaining 

combined TFs as background, using Fisher’s exact test.   

 

Annotation of the identified genes using cancer-related gene database 

To verify the evidence whether the TWAS-identified genes are related to cancer 

susceptibility, we extracted cancer related gene sets from the MGB database. Putative cancer 

related genes were characterized based on their annotation with the key words ‘breast cancer’, 

‘prostate cancer’ and ‘lung cancer’. We calculated the number and percentage (success rate) of 

putative cancer related genes that overlapped with those extracted from the MGB database 

among the identified genes in this study.  Previous TWAS or eQTL studies for breast cancer 
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19,28,32,38,48 , prostate cancer 31,38,51-53 and lung cancer 38,53,54 reported genes related with these 

cancers. Genetic variants related with risk of breast cancer 49,50, prostate cancer 97 and lung 

cancer 83,98 were reported in previous GWAS. We also examined the overlapping between the 

genes identified in this study with predisposition genes, cancer driver genes and CGC-based gene 

sets. To evaluate whether our identified genes significantly enriched in these cancer-related 

genes, we conducted enrichment analysis based on the probability mass function of the 

hypergeometric distribution. Similar to our previous work38, the P-value is calculated as phyper 

function implemented in R.  

 

Effect of gene silencing on cell proliferation using data from CRISPR-Cas9 essentiality 

screens in cancer relevant cells 

Gene-dependency levels from CRISPR-Cas9 essentiality screens for a total 17,386 genes 

using a computational method, CERES, were downloaded from the DepMap portal60. CRISPR-

Cas9 has enabled genome-scale identification of genes that are important for the proliferation 

and survival of cancer cells, which have been widely used for genetic studies28,60,61. For each 

gene, we calculated the total count and the median of negative CERES values (for cell 

proliferation) from 45 breast relevant cells, 8 prostate relevant cells and 130 lung relevant cells. 

The cutoff of CERES value < -0.5 was used to indicate the essentiality 29,60.  

 

The probability mass function of the hypergeometric distribution is:  𝑃(𝑥) = 
(𝑚

𝑥 )∗( 𝑛
𝑘−𝑥)

(𝑁
𝑘)

, 

where  m is the total number of genes in all cancer-related gene databases, which includes all 

predisposition genes, cancer drivers and CGC genes; n is the number of genes that are not 

included in the cancer-related gene databases (n = N – m, N= 19, 291 protein-coding genes based 

on the annotation from the Gencode.v26.GRCh38). 
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FIGURES 

 

 

Figure 1. Overview of the Developed Analytical Framework. A. An illustration of how to 

prioritize TF-linked trans-located variants for prediction model building (using FOXA1 as an 

example). B. Flow chart showing prioritized TF-occupied regulatory variants (50K), which were 

ranked based on established TF-occupied elements associated with breast cancer risk. C. An 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 12, 2023. ; https://doi.org/10.1101/2023.10.10.23295443doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.10.23295443


illustration of the two-step gene expression prediction model building in transTF-TWAS. D. The 

top table showed the sample size of the data that used for training gene expression prediction 

model. The bottom table showed the sample size for GWAS cohort. E. The left bar chart showed 

the number of gene with predictive R2 > 0.01 among transTF-TWAS, sTF-TWAS and simulated 

model. The right bar chart showed the number of significant gene among transTF-TWAS, sTF-

TWAS and simulated model. The number of significantly identified genes was indicated at a 

Bonferroni-corrected P < 0.05.  
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Figure 2. Comparison of gene-trait associations between transTF-TWAS with other TWAS 

approaches (sTF-TWAS, PUMICE, and S-PrediXcan) for breast, prostate and lung cancer. 

A. Bar chart showing the number of genes identified from transTF-TWAS and other TWAS 

approaches under various P-value cutoffs (i.e., P < 1e-05, 1e-06, 1e-07, and 1e-08). The P-values 

are the nominal P-values from the Z score test from TWAS. B. Bar chart showing a comparison 

between the total number of target cancer related genes among transTF-TWAS and other TWAS 

approaches. C. Bar chart showing a comparison of the proportion (success rate) of target cancer 

related gene among transTF-TWAS and other TWAS approaches, relative to the total number of 

genes identified from the set. 
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Figure 3. The gene regulatory network underlying cancer risk driven by master regulators. 

A. Venn diagrams showing the number of putative susceptibility genes commonly or uniquely 

identified by transTF-TWAS and sTF-TWAS. An arrow points from the uniquely identified 

genes by transTF-TWAS to a bar chart showing: Set 1: genes predicted in transTF-TWAS, but 

not in sTF-TWAS. Set 2: genes predicted in both transTF-TWAS and sTF-TWAS. B. A heatmap 

showing the LD structure among putative ESR1 cis-regulatory variants in breast cancer. The 

ESR1 cis-regulatory variants are trans-located variants that present the strongest associations 

with cancer risk in the prediction model. C. A network showing the connections between the 

putative ESR1 cis-regulatory variants in breast cancer and putative susceptibility genes identified 

by transTF-TWAS that were contributed by putative ESR1 cis-regulatory variants.  
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Figure 4. Putative susceptibility genes identified by transTF-TWAS. Manhattan plots 

showing the associations identified from transTF-TWAS. Red dots indicated all newly identified 

susceptibility genes, and the grey dashed line refers to Bonferroni-corrected P < 0.05. The newly 

identified putative susceptibility genes with P < 10-15 were highlighted. The P-values are the raw 

P-values from the Z score test from TWAS (two-sided). A) breast cancer. B) prostate cancer. C) 

lung cancer.  
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Figure 5. Putative susceptibility genes identified by transTF-TWAS and sp-transTF-

TWAS. A. Venn diagrams showing the number of putative susceptibility genes commonly or 

uniquely identified by transTF-TWAS and sp-transTF-TWAS. B. Bar chart showing the total 

identified putative susceptibility genes combined from transTF-TWAS and sp-transTF-TWAS 

for breast, prostate and lung cancer. C. Venn diagrams showing all newly identified genes that 

were cancer driven genes, Cancer Gene Census (CGC), or genes with CERES<-0.5 for breast 

cancer and prostate cancer. D-F. Boxplot showing all newly identified genes with evidence of 

essential roles in cell proliferation based on a cutoff of median CERES values < -0.5 for D) 

breast cancer (sample size: 45 cell lines), E) lung cancer (sample size: 130 cell lines), and F) 

prostate cancer (sample size: 8 cell lines). In the boxplots shown in these figures, the whiskers 

denote the range; the boxes denote the interquartile range; the middle bars in denote the median. 
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