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While the use of short self-report measures is common practice in biobank initiatives, such 
phenotyping strategy is inherently prone to reporting errors. In this work, we aimed to 
explore challenges related to self-report errors for biobank-scale research. 

We derived a reporting error score (RESUM) for n=73,129 UK Biobank (UKBB) participants, 
capturing inconsistent self-reporting in time-invariant phenotypes across multiple 
measurement occasions. We then performed genome-wide association scans on RESUM, 
applied downstream analyses (LD Score Regression and Mendelian Randomization, MR), and 
compared its properties to a previously studied participation behaviour (UKBB participation 
propensity). The results were then used in extended analyses (simulations, inverse probability 
and variance weighting) to explore patterns and propose possible corrections for biases 
induced by reporting error and/or selective participation. Finally, to assess the impact of 
reporting error on SNP effects and trait heritability, we improved phenotype resolution for 15 
self-report measures and inspected the changes in genomic findings.  
 
Reporting error was present in the UKBB across all 33 assessed, time-invariant, measures, 
with repeatability levels as low as 11% (e.g., inconsistent recall of childhood sunburns). We 
found that reporting error was not independent from UKBB participation, evidenced by their 
negative genetic correlation (rg = -0.90), their shared causes (e.g., education, income, 
intelligence; assessed in MR) and the loss in self-report accuracy following participation bias 
correction. Depending on where reporting error occurred in the analytical pipeline, its impact 
ranged from reduced power (e.g., for gene-discovery) to biased effect estimates (e.g., if 
present in the exposure variable) and attenuation of genome-wide quantities (e.g., 20% 
relative h2-attenuation for self-reported childhood height). 
 
Our findings highlight that both self-report accuracy and selective participation are 
competing biases and sources of poor reproducibility for biobank-scale research. 
Implementation of approaches that aim to enhance phenotype resolution while ensuring 
sample representativeness are therefore essential when working with biobank data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 

Genomic research is often confronted with large-scale datasets containing error in the 

phenotypic measures, as data collection is optimized towards the recruitment of large 

numbers of people. To reduce participant burden, save resources and maximize sample size, 

recruitment schemes often favour minimal phenotyping (i.e., the administration of short self-

report scales) over precision phenotyping (i.e., the application of gold-standard measures). In 

the UK Biobank (UKBB), such self-report measures serve as the primary data source for 

commonly studied phenotypes, notably sociodemographic data, health-related information, 

behavioral outcomes, and lifestyles. While all phenotypes are measured with some degree of 

error, including those objectively ascertained (e.g., biological measures/laboratory assays), 

error induced by brief self-report measures pose a particular challenge when studying the 

associations of those phenotypes with genetic or other phenotypic information. As the 

reported information is influenced by subjective interpretation, misreporting, or cognitive 

limitations, error in self-report measures constitutes a potentially greater threat to the 

validity of findings. 

While the early stages of genome-wide research were dominated by a push towards ever-

growing sample sizes, challenges related to phenotype ascertainment are increasingly 

recognized as a non-negligible source of bias in genomic research1,2. While random error in 

phenotypes does not lead to bias in SNP estimates (cf., sFigure 1), the resulting 

measurement imprecision and increased Type-II error rates constitute one of the causes for 

large sample size requirements in genomic research. If gene-discovery is the primary study 

aim, increasing sample sizes can compensate for random error in the phenotype within the 

limits of feasibility. However, more problematically, random error puts an upper bound on 

how much variance can be explained in the phenotype34. Downstream genome-wide 

analyses focusing on variance components (e.g., heritability estimates5, polygenic 

prediction6–8) would therefore show (downward) bias in the presence of self-report 

inconsistencies.  

Detecting and correcting self-report errors can be challenging when relying on biobank-scale 

data, as the required validation data is rarely available. However, with the increasing 

availability of repeated measurements in the UKBB, it is now possible to more systematically 

explore causes and consequences of self-report inconsistencies across measurement 

occasions. In this work, we aim to contribute to the growing body of research scrutinizing the 



impact of study design characteristics and participant behaviour (e.g., sampling procedures9–

11, missing data12, study engagement13, data quality14–16) on findings obtained from biobank-

scale data. Here, we focus on the challenges related to reporting error, defined as 

inconsistent self-reporting across measurement occasions. To that end, we aim to quantify 

error in commonly studied UKBB phenotypes, explore underlying characteristics and links 

with other participation behaviours, and assess its impact on genome-wide quantities. Such 

work is not only crucial for the interpretation of findings obtained from existing biobanks, but 

may help shape strategies aiming to enhance phenotype resolution in future biobank 

initiatives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Methods 

Indexes of reporting error in the UK Biobank 

The UK Biobank is a large prospective study assessing more than 500,000 participants aged 

between 39 and 60 years who attended one of the baseline assessment centres between 

2006 and 201017. We first screened all UKBB phenotypes that could be used as indexes of 

reporting error, defined as inconsistent self-reporting over time. To that end, we included 

phenotypes that were assessed longitudinally but represented time-invariant variables, 

namely those that cannot change following the baseline assessment (e.g., self-reported birth 

weight, number of older siblings, age at first sexual intercourse). For each of the included 

time-invariant phenotypes, we partitioned its variance into its error-free and reporting error 

component, by regressing time point two phenotype (PT2, e.g., self-reported birth weight at 

follow-up) onto time point one phenotype (PT1, e.g., self-reported birth weight at baseline). 

Follow-up time (time between PT1 and PT2, timeT2-T1) was included as a covariate in this model 

(PT2 = PT1 + timeT2-T1). The variance explained by the model (R2) was used as an index of 

phenotype repeatability, such that 1- R2 quantifies the level of reporting error per phenotype. 

For comparison, we also estimated R2 for phenotypes subject to within-person temporal 

variability (including only objectively ascertained phenotypes, e.g., BMI, LDL) and measures 

subject to both temporal variability and reporting error (e.g., self-reported alcohol use, 

physical activity).  

Next, to explore some of the properties underlying reporting error, we derived individual 

reporting error scores using a two-stage protocol; in stage one, we extracted the residuals 

(|RESi|) from a model regressing PT2 on PT1. In stage 2, the scaled residuals (|RESi|/ SDT1,T2) 

from stage one model were residualized for follow-up time (timeT2-T1). The reporting error 

scores were then used as input for Principal Component Analysis (PCA) to obtain a weighted 

reporting error summary score. In PCA, we included only reporting error scores with at least 

50,000 non-missing repeated observations. After combining the selected scores, we imputed 

missing values using row-wise mean imputation and performed PCA. Based on the first 

principal component, we then generated the weighted summary scores from the values of 

their observed indicator items. This score is a (weighted) average of reporting errors, 

representing the overall inaccuracy an individual exhibits when responding to time-invariant 



questions repeated over time. The resulting summary scores were used as the primary 

outcome in downstream analyses exploring correlates and causes of reporting error.  

 

Genome-wide analyses 

The reporting error summary score (RESUM) was then subjected to a genome-wide scan. For 

all genome-wide analyses (GWA), we restricted the sample to individuals of European 

ancestry based on principal components and excluded individuals with high missing rate and 

high heterozygosity on autosomes. Genetic variants were filtered according to Hardy-

Weinberg disequilibrium (P > 1 × 10-15), minor allele frequency (> 1%), minor allele count 

(>100) and call rate (> 90%). The association tests were performed in REGENIE v2.0.2 (ref18), 

adjusting for age, sex and the first ten principal components. The resulting RESUM summary 

statistics file was then included in LD score regression19 (as implemented in GenomicSEM20) 

to estimate SNP heritability and genetic correlations with other traits. Genetic correlations 

were estimated for 39 publicly selected traits with available summary statistics files, where 

the selected traits tapped into participation behaviours (e.g., the UKBB participation 

probability, re-contact availability in the UKBB), physical features (e.g., height, body mass 

index), biological markers (e.g., LDL, systolic blood pressure), lifestyles (e.g., smoking, coffee 

intake), social variables (e.g., socioeconomic status, education), and mental 

health/personality (e.g., schizophrenia, ADHD, neuroticism) (cf. sTable 1 in Supplement for 

details and references). To identify causal factors contributing to reporting error, we 

performed Mendelian Randomization (MR) as implemented in the R-Package 

TwoSampleMR21. Here, we used the same 39 selected traits with publicly available summary 

statistics files to extract genetic instruments for the exposure, where we selected LD-

independent (--clump-kb 10,000 --clump-r2 0.001) SNPs reaching genome-wide significance 

(p<5x10-8). We only performed MR for exposures with at least five genetic instruments. Tests 

of causality were performed using the inverse-variance weighted (IVW) MR estimator, where 

the reporting error GWA output was included as the outcome. To facilitate comparability of 

the results, we standardized the SNP effects (βSTD) prior to conducting MR. βSTD per SNP j was 

obtained by dividing the z-score per SNP [Zj=β(SNPj)/SE(SNPj)] by the square root of the 

sample size [βSTD(SNPj)=Zj/√N]. The results were corrected for multiple testing using FDR 

correction (controlled at 5%), correcting for the total number of performed tests per 

downstream analysis (LDSC and MR). 



Assessing the link between reporting error and UK Biobank participation 

To explore patterns of covariation between reporting error other participatory behaviours 

that are known to bias genome-wide estimates, we also included ‘UKBB participation 

probabilities’ in the analytical pipeline described above. This trait was derived as part of a 

previous study10 focusing on the impact of participation bias on genome-wide findings. In 

brief, the participation probabilities are the predicted probabilities of UKBB participation 

(with 1= individuals taking part in the UKBB and 0=individuals taking part in a representative 

reference sample), based on 14 harmonized demographic, social and lifestyle variables. 

Phenotypically, we estimated the level of covariation between the reporting error summary 

score and the UKBB participation probability. In addition, we obtained the standardized 

coefficients of the 14 baseline variables predicting UKBB participation (representative 

sample = 0; UKBB = 1) as done in our previous work10, to compare the coefficients to those 

obtained when including the reporting error summary score as the outcome. The total 

variance explained by the 14 predictors was obtained from LASSO regression (fivefold cross-

validation) in glmnet22, which also included all possible two-way interaction terms among the 

categorical (dummy) and continuous variables. To assess if UKBB participation and reporting 

error share similar genetic and causal structures, we applied the same genome-wide pipeline 

as described above (i.e., performing LDSC regression and MR analyses) to UKBB participation 

(n=283,749) as the outcome of interest. The summary statistic file from the GWA on UKBB 

participation is accessible via the GWAS catalogue (accession number GCST90267294).  

Finally, within a regression framework, adjustment for selective participation (unequal 

inclusion probabilities) and reporting error (unequal error variances, heteroskedasticity) can 

be achieved by the implementation of weights, where over-represented/reporting error-

prone individuals are down-weighted and under-represented/reporting error-free individuals 

are up-weighted. To assess how weighting informed by participation and/or reporting error 

affect phenotype and sample characteristics, we derived reporting error weights (𝑤!"), 

indexed as the inverse of the error variance [𝑤!" = 1/(1 + 𝜎!"# )]. 𝜎!"#  was obtained by 

taking the average of the reporting error variances (𝑉𝑎𝑟$)	across the time-invariant 

phenotypes (P) selected for PCA: 𝑉𝑎𝑟$ = (𝑃%# − 𝑃%#/ )#, where 𝑃%#/  are the fitted values from 

a model regressing the standardized phenotype assessed at follow-up (𝑃%#) on the 

standardized phenotype assessed at baseline (𝑃%&). We then assessed changes in sample and 

phenotype characteristics following inverse probability/variance weighting, where we 



included either the UKBB participation weights (𝑤$), the error weights (𝑤!") or the error-

adjusted participation weights (𝑤$×!" = 𝑤$ 	× 𝑤$). Change was assessed at the level of (a) 

measurement repeatability in time-invariant phenotypes (i.e., comparing estimates of R2 

obtained in an unweighted versus weighted sample) and (b) means in continuous phenotypes 

known to link to UKBB participation (i.e., comparing the weighted and unweighted means 

obtained for years of education and age). 

 

Simulations 

To illustrate the individual and combined impact of reporting error and participation bias on 

exposure-outcome associations in a realistic setting, we simulated data for two phenotypes 

included in exposure-outcome linear regression models (education, BMI), the two 

participation behaviours of interest (reporting error, study participation), and modelled the 

relationships among these variables. The two phenotypes of interest, BMI and education, 

were chosen as these represent two continuous traits with different measurement properties 

(reporting error-free versus reporting-error prone measure, respectively) and have been 

linked to UK Biobank participation10. 

The following simulation scenarios were tested: a) the ground truth, where the causal effect 

of the exposure on the outcome was estimated in a representative sample, and the exposure 

and outcome were measured without error, b) reporting error only scenario, where reporting 

error was present in the exposure or outcome measure (but no participation bias) c) 

participation bias only scenario, where we introduced participation bias (but no 

measurement error) and d) reporting error and participation bias scenario, where both 

reporting error and participation bias were introduced. These scenarios were then simulated 

within a bi-directional framework, testing the effects of (error-free) BMI on (error-prone) 

education and vice-versa. The data-generating mechanisms are depicted in the directed 

acyclic graphs (DAG) shown in Figure 5.  

The coefficients used in the simulation scenarios were derived as follows from the UKBB 

data: For UKBB participation, we used the standardized coefficients for education (𝛽"()) and 

BMI (𝛽*+,) on UKBB participation as estimated in MR (described above). To obtain the 

coefficients required to simulate reporting error in self-reported years of education, we 

regressed the reporting error score for education (RESEDU, as described above) onto 



education (E) and BMI (B) and extracted the standardized effect estimates: 𝑅𝐸𝑆"() =

𝛼"()𝐸 + 𝛼*+,𝐵 + 	𝜖.  

The obtained coefficients were then used to simulate the data, where biases were 

introduced as follows: for participation bias, we first generated the simulated participation 

probabilities, 𝑃-,+ = &
&./01	(4(5!.	5"#$	"	.	5%&'	*))

, where E and B denote the simulated 

variables for years of education (E) and BMI (B), respectively. The variables were simulated as 

𝐸	~	𝑁(0,1) and 𝐵	~	𝑁(0,1) when included as the exposure and as 𝐸 = 	𝑣𝐵 + 	𝜖 and 𝐵 =

	𝑣𝐸 + 	𝜖 when included as the outcome, where 𝜖~𝑁(0,1 − 𝑣#) and 𝑣 denotes the true 

causal effect of the exposure on the outcome. The coefficient 𝛽7 was set to mimic the UKBB 

response rate, where around 5.5% of the 9,000,000 individuals initially invited to take part 

were recruited in the study17 [𝛽7 = −log	(|1 − &
7.799

|)]. Subjects were then assigned a 

random number U from the uniform distribution 𝑈	~	𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) and were classified as 

either respondent (U < PSIM) or nonrespondent (U > PSIM).  

Reporting error was generated for one self-report measure (education, E), and was simulated 

as heteroskedastic error. Heteroskedasticity in this context refers to error in the measured 

phenotype (Emeasured) that is nonconstant and varies across individuals: 𝐸:;<=>?;@ =	𝐸A?>; +

𝜖"(), where 𝜖"()~	𝑁(0, R).  R was simulated as 𝑅-,+ = 𝛼"()	𝐸 + 𝛼*+, 	𝐵 + 	𝜖, which was 

then scaled to have a standard deviation of 1 and values of 𝑅 > 0	[𝑅 = (𝑅-,+ +

|min(𝑅-,+)|)/𝑠𝑑(𝑅-,+)]. BMI was modelled as an error-free measure in all simulation 

scenarios [𝐵:;<=>?;@ =	𝐵A?>;].  

The impact of reporting error and selective participation was assessed in terms of bias (i.e., 

beta coefficients of the exposure-outcome association) and root-mean-square error (RMSE), 

an index that captures both the severity of the bias and the variance of the estimator: 

𝑅𝑀𝑆𝐸 = Q&
B
	∑ (	𝑣BS − 𝑣)#B , where 	𝑣BS  is the estimated effect of the exposure-outcome 

association at simulation 𝑘 and 𝑣 is true causal effect of the exposure on the outcome. We 

performed	𝑘 = 1000 simulations and true causal effect was set to	𝑣 = −0.2. 

 

Impact of reporting error on SNP effects and trait heritability  

To explore the impact of reporting error on genome-wide quantities, we compared the 

results from GWA tests on error-corrected versus error-prone versions of the same 



phenotype. We derived error-corrected phenotypes by taking the mean across multiple 

measurement occasions (e.g., mean in self-reported childhood height), as the within-person 

average reduces the random error in a variable. The baseline phenotype assessed in the 

same subset of UKBB participants was used as the error-prone counterpart (e.g., baseline 

self-reported childhood height). Genome-wide tests using REGENIE were then performed on 

both the repeated-measure and the single-measure phenotype. LD-independent SNPs 

reaching genome-wide significance (p < 5×10−8) were selected via clumping (clump-kb, 250; 

clump-r2, 0.1), and the explained variance per SNP j was obtained by squaring standardized 

beta (βSTD). We estimated SNP heritability for both the single-measure (h2
S) and the repeated-

measure GWA (h2
R) and calculated the difference (h2

DIFF= h2
R - h2

S) using the following test 

statistic:  

𝑍!! =	
ℎ"#$%%

𝑆𝐸(ℎ"#$%%)
 

𝑆𝐸(ℎ"#$%%) = )𝑆𝐸(ℎ&")" + 𝑆𝐸(ℎ'")" 	− 2𝑟	𝑆𝐸(ℎ&")	𝑆𝐸(ℎ'") 

The correlation coefficient r(h2
R, h2

S) was obtained from 200-block jackknife analysis, where 

we split the genome into 200 equal blocks of SNPs and removed one block at a time to 

perform jackknife estimation. h2
DIFF was obtained for traits with at least 2% SNP heritability. 

 

 

Results 

Indexes of reporting error in the UK Biobank 

As shown in Figure 1 (sTable 2, Supplement), reporting error (RE) was present across all of 

the 33 assessed UK Biobank time-invariant phenotypes, with a mean error estimate of 0.232 

[possible range: 0 (absence of error) to 1]. High levels of measurement repeatability were 

present for self-reports providing information about major life events, such as date of birth 

(R2>0.99), number of children (R2=0.99), country of birth (R2=0.99). A substantial proportion 

of self-reports showed questionable levels of repeatability, notably variables relying heavily 

on recall of childhood histories, such as childhood sunburns (R2=0.11) or comparative 

childhood body size (R2=0.47). Figure 1 also illustrates the level of repeatability for variables 

containing error due to misreporting and/or temporal variability. Here, self-report measures 

subject to temporal instability showed particularly low levels of repeatability, notably diet 

(e.g., sodium and vitamin D intake in last 24 hours) and other lifestyles (e.g., physical activity 



in last 24 hours). Five UKBB phenotypes had data from directly comparable objective and 

subjective measures. Estimation of R2 revealed that the concordance between the two data 

sources (objective versus subjective) was low, ranging from R2=0.002 (vitamin D, self-report 

versus blood measure) over R2=0.031 (sleep, self-reported versus accelerometer derived) to 

R2=0.252 (first child’s birthweight, self-reported versus hospital records) (sFigure 2 and 

sTable 3, Supplement). 

Next, we generated the reporting error scores (RESi, illustrated in Figure 2A), indexing the 

level of reporting inconsistency per phenotype and UKBB participant. sFigure3-4 

(Supplement) summarize the contribution of baseline age, follow-up time, their interaction 

(age x follow-up time) and sex on the reporting error scores, highlighting that the scores 

varied mostly as a function of follow-up time and its interaction with age. In addition, 

reporting error was more prevalent among males, as 12 (70.59%) of the 17 reporting error 

scores showing significant sex-differential effects were higher in males than in females. The 

largest sex-differential effect was present for self-reported mother’s age at death, where 

females showed substantially lower levels of reporting error. 

Assessing the correlations among reporting error scores (Figure 2B), we found that the 

majority of correlations were small but positive [159 (96.36%) out of the 165 significant 

correlations]. The largest positive correlations were present among measures tapping into 

similar constructs, such as the r(mother's age at death, father's age at death)=0.37 or 

r(comparative body size at age 10, comparative height size at age 10)=0.15. Including five of 

the reporting error scores with n>50,000 in principal component analysis (years of education, 

age when started wearing glasses, father’s age at death, age at first sexual intercourse, year 

of birth), the first principal component (PC1) explained 21% of the variance. The individual 

reporting error scores all loaded positively on PC1 (Figure 2C). 

 

Assessing the link between reporting error and UK Biobank participation 

To examine if reporting error varied as a function of sample representativeness, we first 

assessed the level of covariation between reporting error and UKBB participation. 

Phenotypically, we found a negative correlation (rPEARSON= -0.10) between the reporting error 

summary score and UKBB participation, indicating that a greater willingness to participate in 

the UKBB links to more consistent self-reporting. Similarly, we observed negative genetic 

correlations between reporting error and other participatory behaviours, including the UKBB 



participation probability (rg = -0.86, 95%CI -1.01; -0.72), re-contact availability in the UKBB (rg 

= -0.73, 95%CI -0.88; -0.58) and follow-up (mental health survey) participation (rg = -0.64, 

95%CI -0.79; -0.49) (cf. Figure 4 and sTable 4).  

To assess shared and non-shared characteristics between reporting error and UKBB 

participation, we then tested for associations between a number baseline characteristics and 

the two outcomes (Figure 3A, sTable 5). Here, significant predictors differentially linked to 

the two outcomes, where female participants with higher levels of education and lower BMI 

showed less reporting errors but a higher willingness to take part in the UKBB. Only age 

predicted the two outcomes in the same direction, such that older individuals tended to 

show more reporting errors and were also more likely to participate in the UKBB. Including all 

predictors simultaneously in LASSO regression explained around 12% of the variance in UKBB 

participation and 6% in reporting error. 

The weighted reporting error summary scores (RESUM) showed low but significant levels of 

SNP heritability (h2
RESUM=2.63%, 95% CI 1.22%-4.04%). In line with the phenotypic 

correlations, reporting error and UKBB participation differentially correlated with most of the 

socio-educational and behavioural variables included in LD score regression (Figure 3B, 

sTable 4). These included intelligence (rgReporting= -0.9, rgParticipation=0.62), years of education 

(rgReporting= -0.87, rgParticipation=0.85) and income (rgReporting= -0.76, rgParticipation=0.75). Similarly, 

applying Mendelian Randomization analysis to identify causal factors contributing to 

reporting error, we find that reporting error and UKBB participation were explained by mostly 

socio-educational variables, where higher income, years of education and intelligence reduce 

self-report errors (standardized effect αIncome= -0.36, αEducation= -0.33, αIntelligence= -0.25) but 

increase the probability of UKBB participation (αIncome=0.54, αEducation=0.59, αIntelligence=0.32) 

(sTable 6, Supplement). 

Figure 4 shows the distribution of the participation (inverse probability) weights and 

reporting error (inverse variance) weights. The performance of the inverse variance weights 

was assessed in terms of reporting error reduction in eight phenotypes, including those used 

in PCA and three additional phenotypes showing the largest degree of reporting error (Figure 

1, i.e., body size at age 10, age when started smoking, number of childhood sunburns). Both 

the inverse variance weights and the participation weights performed as intended, in that 

they reduced the error variance in the eight variables inspected for measurement 

inconsistencies (i.e., increasing the level of measurement repeatability R2, Figure 4B) and 



made the sample more representative (i.e., lowering the mean age and mean level of 

education, Figure 4C), respectively. As the variability among the participation weights was 

large (indicating likely risk of bias due to selective participation), its application resulted in a 

substantial loss in effective sample size (62%, from n=63898 to nEFF=24,438, Figure 4A). In 

contrast, the reporting error weights showed little variability, causing a minimal loss in 

effective sample size (2%, from n=63,898 to 62,627). The reporting-error adjusted 

participation weights (inverse variance weights × participation weights) no longer reduced 

reporting error in all instances, and re-introduced a slight shift towards non-

representativeness, resulting in a slight increase in effective sample size when compared to 

the unadjusted participation weights (24,438 versus 24,623). 

 

Simulations 

We tested eight simulation scenarios to illustrate the individual and combined impact of 

reporting error and selective participation on exposure-outcome associations (Figure 5). The 

following standardized beta coefficients for education and BMI on reporting error (R) and the 

participation probabilities (P) were estimated and used to simulate the data: 𝑅-,+ =

	−0.42𝐸 + 	0.02𝐵 + 	𝜖 and  𝑃-,+ = &
&./01	(4(4#.CD.	7.9E"	47.##*))

.  

We found that deviations from the true causal effect resulted from both selective 

participation and reporting error in the exposure, in both cases leading to downward bias in 

the effect estimate (Panel C, Figure 5). RMSE was most strongly increased by reporting error 

in the exposure (Panel D, Figure 5), reflecting a large bias in the effect estimate towards the 

null. While reporting error in the outcome did not induce bias in the effect estimate, the 

increased uncertainty in parameter estimates also raised the RMSE, a measure that combines 

both bias and variance. 

 

Impact of reporting error on SNP effects and trait heritability  

To assess the impact of reporting error on genome-wide results, we compared the output 

obtained from genome-wide analyses on single-measure phenotypes (e.g., self-reported 

childhood height assessed at baseline) versus repeated-measure phenotypes (using the 

average across multiple measurement occasions) (Figure 6). In total, 417LD-independent 

SNPs reached significance (p < 5×10−8) in genome-wide scans on the 12 traits, of which 79 



(18.94%) were only identified in repeated-measure GWA. Among the identified SNPs, the 

explained variance increased following error-correction for 285 SNPs (68.35%). While the 

beta estimates obtained from the two sets of GWA were the same (sTable 7, Supplement), in 

accordance with the simulations demonstrating that reporting error in the outcome does not 

induce bias, the reduced error in the phenotype value narrowed the standard errors of the 

effect estimates, thereby boosting power for genome-wide discovery. 

Finally, with respect to SNP-based heritability estimates, we find that enhanced phenotype 

resolution increased h2 estimates. Overall, the degree of h2-disattenuation was proportional 

to the degree of reporting error per phenotype [r(h2
DIFF, R2

Repeatabiliy)= -0.77], where the 

largest notable downward bias in h2 estimates was present for self-reported height size at 

age 10 (R2
Repeatabiliy=0.55, h2

single-measure =23% versus h2
repeated-measure=30%). The complete set of 

results is included in the Supplement (sFigure 5, sTable 7-8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion  

Phenotyping based on short self-report measures is common practice in biobank schemes, 

which has paved the way for large-scale genome-wide discovery studies involving millions of 

individuals. While such assessments are cost-effective and minimize the invested time of the 

participants, they are particularly prone to errors resulting from misreporting. In this study, 

we quantified the extend of reporting error for commonly studied UK Biobank (UKBB) 

phenotypes, assessed its properties and links with other participation behaviours, and 

evaluated its impact on exposure-outcome and genotype-phenotype associations. 

Overall, we found that reporting error is non-negligible for many commonly studied self-

report measures, notably those relating to early life histories (e.g., puberty, education, 

childhood height/weight), common environmental exposures (e.g., number of sunburns) or 

lifestyles (e.g., age when started smoking). Consequently, exploiting large biobank samples 

does not necessarily enhance the signal-to-noise ratios for these phenotypes, as loss of 

power resulting from reporting error may equate to discarding up to half of the sample*. 

Considerations on statistical power and sample size requirements should therefore not only 

focus on the genetic architecture of the trait and the study design, but also incorporate 

phenotype resolution as a parameter of interest. 

Examining factors contributing to reporting error, we found that reporting error varied 

systematically across sociodemographic groups. In particular, young, female participants with 

higher intelligence scores and those from a socio-economic favourable background (higher 

education and income) tended to provide the most accurate self-report information. This is 

consistent with the notion of heteroskedastic error, where the error variance depends on 

certain sample characteristics (e.g., the accuracy in reporting level of education depends on 

education itself, cf. Figure 5A). The impact of this error structure on study findings will 

depend on the research question of interest; if gene-discovery is the main goal, error in the 

phenotype reduces power and increases Type-II error rates. While increasing the sample size 

(i.e., reduced sampling error) could compensate for the loss of power, such efforts would not 

correct for the downward bias in estimates of variance components (e.g., SNP heritability, 

polygenic prediction) resulting from error in the phenotype. For example, for phenotypes 

 
* Assuming an r2

TM of 0.5,  where r2
TM is the square of the correlation between the true 

phenotype (pT) and the measured phenotype (pM)32 and n is the sample size. 
 



with high levels of reporting error, we observed relative h2-attenuation of up to 20% (cf. 

Figure 6A). As such, part of the missing heritability problem results from poor phenotype 

ascertainment, such as the use of minimal phenotyping or misclassification1. Similarly, the 

higher h2 observed for physical attributes (e.g., height, eye colour) than for socio-behavioural 

traits (e.g., smoking, SES) in the UKBB23 may not solely reflect a stronger genetic component, 

as measurement problems are mostly inherent to the latter traits.  

In classical observational analyses, bias will occur if reporting error is present in the exposure, 

which attenuates effect estimates towards the null (cf., regression dilution or attenuation 

bias24,25). In this scenario, the bias on parameter estimates can be particularly large, 

potentially exceeding bias resulting from other sources (e.g., selective participation, Figure 

6B). As such, while large-scale biobanks are imperative for the study of biological pathways of 

small effects, such minimally phenotyped convenience samples may not be a strong 

contender for classical (non-genetic) epidemiological research. For that, smaller but more 

representative samples with gold-standard measures are the potentially more trustful 

alternative.	 

Finally, we compared features underlying reporting error to those of other participation 

behaviours, here the UKBB participation propensity. We found that individuals with high self-

report quality were more likely to participate in the UKBB, and that the application of 

statistical tools designed to ensure sample representativeness (probability weighting) 

increased self-report errors. This finding is consistent with findings from survey research, 

where probability (i.e., representative) samples showed more measurement error than 

volunteer samples26, and where efforts to enhance data quality reduced sample 

representativeness27,28. Together, these results highlight that biases resulting from response 

and participation behaviours are not independent and operate in opposite directions, such 

that adjusting for one type of bias could aggravate bias resulting from other sources. 

Consequently, design considerations should also focus on finding an optimal trade-off 

between sampling bias and phenotype precision. For example, the application of reporting 

error (inverse-variance) weights enhanced phenotype resolution in the UKBB without further 

compromising the level of representativeness in the UKBB (Figure 4). Collecting quality 

indicators and metrics for phenotype precision (e.g., use of tools to screen for poor 

questionnaire responding29) in future biobanks may therefore prove useful to remove some 

of the noise in the phenotype. 



A key consideration when interpreting our results relates to the error structure examined 

here. More specifically, our work focused on inconsistent self-reporting over time (i.e., 

random fluctuations in the phenotype), rather than sources of consistent misreporting (i.e., 

systematic over- or underreporting, cf. sFigure 1D, Supplement). Systematic error, 

documented for numerous traits (e.g., self-reported weight, where overweight individuals 

tend to underreport30), can only be explored if error-free reference data is available. For that 

reason, it was also not possible to explore error in phenotypes subject to temporal variability 

(e.g., self-reported alcohol use), as the data at hand did not allow us to distinguish reporting 

error from environmental influences on the observed within-individual variability. Finally, the 

reporting error mechanisms identified in this work may not translate to other cohorts, as 

differences in recruitment schemes and population characteristics likely impact how error in 

self-report measures is expressed. 

In summary, our findings emphasize that both self-report data quality and sampling features 

are potential sources of poor reproducibility for biobank-scale research, leading to 

imprecision and bias that can complicate the interpretation of findings. Analogous to quality 

control procedures developed for the processing of genetic data, the application of tools 

designed to enhance phenotype resolution (e.g., repeat measurements, regression 

calibration16, imputation31, weighted regression) and sample representativeness (e.g., 

probability sampling or weighting) should therefore become an integral part of data 

collection, pre-analytic data handling and sensitivity checks. 

 

Data availability 

The reporting error genome-wide association statistics will be made available through the 

GWAS catalog. 

 
Code availability 

The following software was used to run the analyses:  

REGENIE (https://github.com/rgcgithub/regenie) 

TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/)  

GenomicSEM (https://github.com/GenomicSEM/GenomicSEM).  



All analytical scripts are available at 
https://github.com/TabeaSchoeler/TS2023_repErrorUKBB. 
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Figure 1. Measurement repeatability of UK Biobank self-report and objective measures 

R2=Variance explained by models regressing phenotype (P) measured at time point 2 (PT2, e.g., birth weight reported at follow-up) onto the phenotype assessed at time point 1 (PT1, e.g., self-
reported birth weight assessed at baseline), while controlling for follow-up time (timeT2-T1). Variables with R2 estimates above the grey line indicate variables with high levels of repeatability (R2 

>0.92). 
 

 

 

 

 

Ye
ar 

of 
bir

th 
(n=

12
12

48
)

Cou
ntr

y o
f b

irth
 (n

=2
82

27
)

Num
be

r o
f liv

e b
irth

s (
n=

39
26

7)

Ye
ar 

im
migr

ate
d t

o U
K (n

=1
32

2)

Age
 at

 fir
st 

live
 bi

rth
 (n

=2
59

42
)

Han
de

dn
es

s (
n=

27
56

5)

Moth
er'

s a
ge

 at
 de

ath
 (n

=4
21

33
)

Part
 of

 a 
mult

iple
 bi

rth
 (n

=2
77

95
)

Fa
the

rs's
 ag

e a
t d

ea
th 

(n=
54

44
7)

Ethn
ic b

ac
kg

rou
nd

 (n
=3

04
95

)

Num
be

r o
f o

lde
r s

ibli
ng

s (
n=

29
42

9)

Mate
rna

l sm
ok

ing
 ar

ou
nd

 bi
rth

 (n
=2

33
58

)

Birth
 weig

ht 
(n=

12
01

7)

Wea
rin

g g
las

se
s (

ag
e) 

(n=
62

84
7)

Birth
 weig

ht 
of 

firs
t c

hild
 (n

=3
03

05
)

Age
 fir

st 
sex

ua
l in

ter
co

urs
e (

n=
65

15
7)

Hair
 co

lou
r (r

ed
) (n

=2
81

80
)

Edu
ca

tio
n (

len
gth

) (n
=5

05
12

)

Hair
 co

lou
r (n

=2
77

89
)

Age
 st

art
ed

 or
al 

co
ntr

ac
ep

tive
 pi

ll (
n=

31
49

8)

Age
 whe

n p
eri

od
s s

tar
ted

 (m
en

arc
he

) (n
=3

77
96

)

Brea
stfe

d a
s a

 ba
by

 (n
=1

94
37

)

Age
 at

 m
en

op
au

se
 (n

=2
03

75
)

Hair
 co

lou
r (b

lon
de

) (n
=2

81
80

)

Hair
 co

lou
r (b

lac
k) 

(n=
28

18
0)

Hair
 co

lou
r (b

row
n) 

(n=
28

18
0)

Hyp
ert

en
sio

n (
ye

ar 
whe

n d
iag

no
se

d) 
(n=

12
36

7)

Skin
 pi

gm
en

tat
ion

 (n
=2

78
34

)

Com
pa

rat
ive

 he
igh

t s
ize

 at
 ag

e 1
0 (

n=
28

23
4)

Rela
tive

 ag
e o

f fi
rst

 fa
cia

l h
air

 (n
=1

29
05

)

Smok
ing

 (a
ge

 on
se

t) (
n=

18
27

7)

Com
pa

rat
ive

 bo
dy

 siz
e a

t a
ge

 10
 (n

=2
76

22
)

Child
ho

od
 su

nb
urn

s (
n=

18
38

2)

Smok
ing

 st
atu

s (
n=

15
82

92
)

Eve
r ta

ke
n o

ral
 co

ntr
ac

ep
tive

 pi
ll (

n=
39

18
2)

Smok
ing

 (fr
eq

ue
nc

y) 
(n=

16
32

2)

Eve
r s

mok
ed

 (n
=7

56
10

)

Alco
ho

l u
se

 (fr
eq

ue
nc

y −
 ov

era
ll) 

(n=
75

93
1)

Doc
tor

 di
ag

no
se

d a
sth

ma (
ba

se
line

) (n
=1

58
95

2)

Chro
no

typ
e (

n=
75

03
0)

Eas
e o

f s
kin

 ta
nn

ing
 (n

=2
68

54
)

Inc
om

e (
n=

65
08

5)

Tim
e s

pe
nt 

watc
hin

g t
ele

vis
ion

 (T
V) (n

=6
98

25
)

Diab
ete

s (
n=

18
94

06
)

Dep
res

sio
n/A

nx
iet

y (
n=

75
60

1)

Had
 m

ajo
r o

pe
rat

ion
s (

n=
36

29
1)

Can
ce

r (n
=7

56
48

)

Hea
rin

g p
rob

lem
s (

n=
69

61
5)

Risk
 ta

kin
g (

n=
71

73
1)

Ove
ral

l h
ea

lth
 (n

=7
57

29
)

Eve
r d

ep
res

se
d f

or 
a w

ho
le 

wee
k (

n=
32

57
1)

Fa
cia

l a
ge

ing
 (n

=6
53

19
)

Walk
ing

 pa
ce

 (n
=7

56
95

)

Hou
se

ho
ld 

siz
e (

n=
75

64
6)

Slee
p d

ura
tio

n (
n=

75
61

4)

Tim
e s

pe
nd

 ou
tdo

ors
 in

 su
mmer 

(n=
66

99
6)

Lo
ng

−s
tan

din
g i

llne
ss 

(n=
73

72
5)

Ins
om

nia
 (n

=7
58

86
)

Frui
t in

tak
e (

n=
75

76
8)

Tim
e s

pe
nt 

ou
tdo

ors
 in

 wint
er 

(n=
53

86
3)

Wee
kly

 ph
on

e u
sa

ge
 (n

=6
33

87
)

Alco
ho

l u
se

 (g
 − 

ye
ste

rda
y) 

(n=
12

68
00

)

Phys
ica

l a
ctiv

ity 
(n=

73
19

0)

Ve
ge

tab
le 

int
ak

e (
n=

75
23

8)

Vigo
rou

s p
hys

ica
l a

ctiv
ity 

(n=
12

68
09

)

Sod
ium

 (2
4h

 Diet
 re

ca
ll) 

(n=
12

68
09

)

Vita
min 

D (s
elf

−re
po

rte
d) 

(n=
12

68
00

)

Heig
ht 

(n=
74

88
0)

Weig
ht 

(n=
74

75
0)

Te
sto

ste
ron

e (
n=

14
18

6)

BMI (n
=7

47
07

)

HDL (
n=

13
42

8)

Sex 
ho

rm
on

e b
ind

ing
 gl

ob
ulin

 (n
=1

31
29

)

Red
 bl

oo
d c

ell 
co

un
t (n

=2
21

81
)

Han
d g

rip
 st

ren
gth

 (ri
gh

t) (
n=

74
41

5)

Ins
ulin

−lik
e g

row
th 

fac
tor

 1 
(n=

16
35

5)

Crea
tin

ine
 (b

loo
d) 

(n=
16

57
8)

Glyc
ate

d h
ae

mog
lob

in 
(H

bA
1c

) (n
=1

28
60

)

Plat
ele

t c
ou

nt 
(n=

22
18

4)

Whit
e b

loo
d c

ell 
co

un
t (n

=2
21

82
)

LD
L (

n=
16

53
6)

Fluid
 in

tel
lige

nc
e s

co
re 

(n=
84

11
1)

Syst
olic

 bl
oo

d p
res

su
re 

(n=
61

55
5)

Vita
min 

D (m
ea

su
red

) (n
=1

54
35

)

Res
tin

g h
ea

rt r
ate

 (n
=6

15
84

)

Rea
ctio

n t
im

e (
n=

72
66

0)

Gluc
os

e (
n=

13
40

9)

Spe
ec

h−
rec

ep
tio

n−
thr

es
ho

ld 
(SRT) (n

=3
13

24
)

Sod
ium

 (in
 ur

ine
) (n

=1
86

28
)

0.00

0.25

0.50

0.75

1.00

M
ea

su
re

m
en

t r
ep

ea
ta

bi
lity

 (R
2 )

RE (reporting error) RE−TV (reporting error − temporal variability) TV (temporal variability)



Figure 2. Weighted reporting error summary scores 

Panel A. Illustration of a reporting error score for a particular phenotype, derived as the residual scores from a model regressing the phenotype measured at time point 2 (PT2, e.g., birth weight 
reported at follow-up) onto the phenotype assessed at time point 1 (PT1, e.g., self-reported birth weight assessed at baseline), controlled for follow-up time (timeT2-T1). The reporting (residual) 
error scores are shown as the vertical deviations of the observed values (yi) around the fitted line. Panel B. Correlation matrix highlighting significant (p<0.05) Pearson correlation coefficients 
between the reporting error scores. Labels in bold highlight variables that were included in Principal Component Analysis. Panel C. Summary of results from Principal Component Analysis, 
highlighting the variance explained by the first principal component (PC1) and the loadings of the indicators on PC1. 
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Figure 3. Correlates and causes of reporting error and UKBB participation 

Panel A. Standardized coefficients (and 95% confidence intervals) of variables predicting reporting error (in dark turquoise) and UKBB participation (in light turquoise) in univariate regression 
models. Panel B. Genetic correlations (rg) and corresponding 95% confidence intervals of reporting error (n =62,131) and UKBB participation (n = 283,749) with other traits. Significant genetic 
correlations (pFDR<0.05) are highlighted with black borders. Panel C. Standardized estimates (αstd) obtained from Mendelian Randomization analyses on reporting error and UKBB participation 
as the outcomes. Significant MR estimates (pFDR<0.05) are highlighted with black borders. 
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Figure 4. Reporting error-adjusted participation weights 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Panel A. Truncated density curves of the 
normalized UK Biobank weights (w), 
estimated for n=63,898 participants. The 
effective sample size was estimated as 
n × {1/[Var(w) + 1]}. Panel B. R2=Variance 
explained by standard (ordinary least 
squares) regression models regressing 
phenotype (P) measured at time point 2 
onto the phenotype assessed at time point 
1, while controlling for follow-up time 
(timeT2-T1). R2

W=Variance explained by 
weighted (weighted least squares 
regression) models, incorporating UK 
Biobank weights to adjust for selective 
participation (top panel: unadjusted 
participation weights), reporting error 
(middle panel: reporting error weights) or 
both (bottom panel: reporting error-
adjusted participation weights). Positive 
values in R2

DIFF (R2- R2
W) index reduced 

measurement repeatability following 
weighting. Panel C. Change in means as a 
function of weighting, obtained for two 
continuous phenotypes known to link to 
UK Biobank participation (age, education). 
Change in means was expressed as a 
standardized mean difference, i.e., 
difference between the unweighted mean 
(m) and the weighted mean (mw), divided 
by the unweighted standard deviation 
(mw − m/sd). 
 



Figure 5. Simulations illustrating the impact of reporting error and/or selective participation on exposure-outcome associations 

Directed Acyclic Graphs (DAGs) illustrating the different simulation settings, where reporting error (DAGs highlighted in violet), participation bias (DAGs highlighted in green) or both (DAGs 
highlighted in orange) were present when assessing the effect of BMI on self-reported education (panel A) and the effect of self-reported education on BMI (panel B). The impact of the two 
participatory behaviours (reporting error, participation) was assessed in terms of in terms of bias (panel C, the beta coefficient of the exposure-outcome association) and root-mean-square 
error (RMSE, panel D). The true causal estimates was set to be -0.2 (grey line, panel C). 
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Figure 6. Impact of reporting error on SNP effects and trait heritability 

Panel A. Explained variance (βSTD
2) per SNP reaching genome-wide significance in error-corrected GWA analyses 

(y-axis, phenotype obtained using means across multiple measurement occasions) or error-uncorrected GWA 
analyses (x-axis, phenotype obtained from a single baseline measure). The colour scheme highlights in which 
GWA the genetic variant was identified, including error-corrected GWA (in red), error-uncorrected GWA (in 
green) or in both (blue). Panel B. The y-axis shows the differences in SNP heritability estimates obtained from 
error-corrected GWA analyses and error-uncorrected GWA analyses (h2

DIFF= h2
repeated-measure – h2

single-measure). The 
x-axis gives the degree of repeatability per phenotype, estimates as the variance (R2) explained by models 
regressing phenotype (P) measured at time point 2 on the phenotype assessed at time point 1, while controlling 
for follow-up time (timeT2-T1) and age.  
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