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ABSTRACT  

Objective: TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration 

with TDP-43 (FTLD-TDP), and limbic-predominant age-related TDP-43 encephalopathy, encompass a spectrum of 

clinical and neuropathological traits. Despite mounting evidence for shared genetic risk across TDP-43 proteinopathies, 

the modifiers of individual-level traits are unknown. We aimed to identify polygenic contributions to trait heterogeneity 

across TDP-43 proteinopathies.  

Methods: We used weighted correlation analysis of GWAS summary statistics for ALS, FTLD-TDP, and hippocampal 

sclerosis of aging (HS-Aging) to identify data-driven modules of highly correlated single nucleotide polymorphisms 

(SNPs). We performed gene ontology enrichment analysis for each identified module. We derived module-specific 

polygenic scores and evaluated their association with clinical and neuropathological traits in an independently evaluated 

sample of individuals who met neuropathological and/or genetic criteria for FTLD-TDP or ALS (n=260). 

Results: We identified 5 distinct data-driven modules, including 3 GWAS phenotype-specific modules (FTLD-TDP, 

ALS, HS-Aging) and 2 modules representing the overlap between a pair of GWAS phenotypes (ALS-FTLD and FTLD-

HS). Pathway analysis revealed biologically meaningful associations including distinct GWAS phenotype-specific 

processes within modules. Module-specific ALS and FTLD-TDP polygenic risk each associated with individual-level 

clinical traits, even within the context of autosomal dominant mutation carriers, where higher ALS polygenic risk 

associated with neuromuscular impairment and higher FTLD-TDP polygenic risk associated with cognitive-behavioral 

impairment.  Moreover, higher FTLD-TDP polygenic risk associated with higher TDP-43 burden within characteristic 

FTLD-TDP brain regions. 

Interpretation: We suggest that there are polygenic modifiers of clinical and neuropathological traits across TDP-43 

proteinopathies that may contribute to individual-level differences, including likelihood for developing FTLD or ALS. 
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INTRODUCTION  

TAR DNA-binding protein ~43kDa (TDP-43) inclusions are the pathological hallmark of frontotemporal lobar 

degeneration with TDP-43 (FTLD-TDP), >98% of amyotrophic lateral sclerosis (ALS), and ~90% of hippocampal 

sclerosis of aging (HS-Aging).4–7 Despite shared neuropathological traits, individuals with TDP-43 proteinopathies 

present with heterogeneous clinical traits including neuromuscular impairments (i.e., ALS) and cognitive-behavioral 

impairments (i.e., FTLD-TDP). TDP-43 pathology and neurodegeneration are observed in characteristic neuroanatomical 

regions that correlate with clinical traits. Some individuals present with both neuromuscular and cognitive-behavioral 

impairment (i.e., ALS-FTD) which, together with the shared neuropathological traits support the notion that FTLD-TDP 

and ALS are part of a clinicopathologic spectrum.8 Alternatively, individuals with HS-Aging typically present with an 

amnestic syndrome with an older age of onset.9–11 Many efforts have focused on the identification of genetic variants that 

predispose individuals to FTLD-TDP, ALS, or HS-Aging. However, the contribution of genotypes to the shared and 

disparate clinical and neuropathologic traits observed across TDP-43 proteinopathies is unclear. 

Large scale case-control genome wide association studies (GWAS) have focused on the identification of single 

nucleotide polymorphisms (SNPs) associated with risk for ALS,1,12  FTLD-TDP,2 or HS-Aging.3,6 Several large-scale 

GWAS established ALS as a complex, polygenic disease.1,12,13 The first GWAS in FTLD-TDP cases identified three 

SNPs spanning TMEM106B that reached genome-wide significance and several studies have validated the importance of 

these loci in FTLD pathogenesis.14–19 GWAS of HS-Aging have also implicated several SNPs, including those in 

TMEM106B.3,6 Additional efforts have aimed to uncover a shared genetic basis to explain the biological mechanisms that 

drive susceptibility in FTLD-TDP and ALS. A meta-analysis that jointly analyzed ALS and FTLD-TDP cases identified 

significant associations in UNC13A20 which had previously only been identified as a susceptibility SNP for ALS and has 

since been implicated in an FTLD-TDP GWAS.21 Another study used a genetic enrichment approach that found an up to 

300-fold enrichment of the ALS GWAS phenotype as a function of the increased association with the FTLD-TDP 

GWAS phenotype, indicating these GWAS phenotypes are genetically related.22 However, conjunction analyses 

performed to identify which SNPs were jointly associated with increased risk for ALS and FTLD-TDP only revealed a 

SNP that is used as a surrogate marker for C9orf72 repeat expansions, which can cause FLTD-TDP and/or ALS even 

within the same family.23,24  
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Despite mounting evidence for shared genetic risk, considerably less effort has focused on the modifiers of individual-

level traits. Rather than focusing only on overlapping risk factors, identifying disparate risk alleles may reveal specific 

neuroanatomic and/or cellular vulnerabilities that contribute to our understanding of trait-specific drivers. Using existing 

GWAS summary statistics with novel bioinformatics strategies, we aimed to identify polygenic contributions to 

individual-level clinical and neuropathological traits.  

We compared the relative associations of case-control GWAS summary statistics for ALS, FTLD-TDP, and HS-aging to 

identify data-driven modules of highly correlated SNPs that may contribute to clinical and neuropathological trait 

heterogeneity across these neurodegenerative diseases. We identified the biological pathways associated with these 

modules. We then related these module SNPs to individual-level clinical and neuropathological traits within a 

neuropathologically and/or genetically defined sample of ALS and FTLD-TDP cases, including the presence of 

neuromuscular impairment and/or cognitive-behavioral impairment and the burden of TDP-43 pathology across brain 

regions, in a well-characterized sample of more than 250 individuals with ALS and/or FTLD-TDP, through the 

construction of module-specific polygenic risk scores (PRS). We identified modules of genotypic contributions to 

selective vulnerability in the anatomic distribution of TDP-43 associated disease, and, for the first time, established 

potential genetic contributions to risk for either neuromuscular or cognitive-behavioral impairments within individuals 

with C9orf72 repeat expansions.  

 

SUBJECTS/MATERIALS AND METHODS 

Module identification and annotation   

Summary Statistic Data   

To derive modules of associated SNPs, we performed weighted correlation analysis on publicly-available summary 

statistics for reported case-control ALS,1 FTLD-TDP,2 and HS-Aging3 (which is enriched for TDP-435–7) GWAS. The 

ALS GWAS included a combined discovery sample of 20,806 sporadic and familial ALS cases. 12,577 cases were 

included from summary statistics downloaded from van Rheenen et al13. The remaining 8,229 cases were of non-

Hispanic white race/ethnicity and were diagnosed with ALS according to the El Escorial criteria25. The FTLD-TDP 
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GWAS included 515 FTLD-TDP individuals of European descent with dementia (with or without MND) and either a 

pathological diagnosis of FTLD-TDP (n=499) or, in the case of living individuals, a pathogenic GRN mutation (n=16). 

The HS-Aging GWAS evaluated 310 cases of HS-Aging as defined by presence vs. absence at pathological evaluation.  

To harmonize summary statistics across GWAS, we only evaluated SNPs that were commonly genotyped across GWAS. 

FTLD-TDP summary statistics were transformed from NCBI36/hg18 into GRCh37/hg19 using liftOver26 for comparison 

with the ALS and HS-Aging summary statistics. Following alignment, we identified 494,417 SNPs commonly 

genotyped across these GWAS summary statistics. GWAS statistics for each of the three studies were transformed into 

z-scores to reduce the effects of sample size differences, and only the absolute value of the z-score was used for analysis. 

For the ALS GWAS, z-scores were calculated as the effect divided by the standard error. For the FTLD-TDP and HS-

Aging GWAS, z-scores were calculated as |z|=|Φ−1(p/2)| where Φ−1 is the inverse cumulative distribution function of 

the normal distribution, and p is the p-value. The top 1% of SNPs with the strongest associations to any GWAS 

phenotype (by |z|, n= 4,945) were selected for analysis (Fig. S1). 

Weighted Correlation Analysis 

The WGCNA package in R27 was used to perform WGCNA. This approach uses the patterns of associations of SNPs 

with the respective GWAS phenotypes to identify correlations between SNPs and construct modules based on those 

correlations. First, an adjacency matrix is constructed using the strength of the association between each SNP and 

GWAS phenotype. From the adjacency matrix values, a topological overlap matrix is created to alleviate the effect of 

noise, and this is converted into a distance matrix which is used as the basis for clustering. Modules are identified with 

unsupervised clustering (i.e., without the use of a priori defined gene or SNP sets), specifically hierarchical clustering, 

along with dynamic tree cut.  

As only SNPs that were common across GWAS were considered for analysis, there were 0 SNPs removed due to 

missingness. Modules were constructed with a minimum module size of 30 SNPs. Modules whose distance was less than 

0.25 were merged. To test for module robustness, we created 100 samples, each containing a random 80% of the SNPs 

selected for weighted correlation analysis, without replacement (Fig. S2). For each resample, WGCNA was performed as 

in the full sample.  
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After modules were identified, multialleleic SNPs and SNPs with > 10% sample missingness in the individual level 

genotype data (see Genotype Data) were removed, and SNPs were pruned within modules using an R2 threshold of 0.3 

with LDlinkR.28 

Module Annotation 

To annotate, module SNPs were mapped to overlapping genes using the biomaRt package in R29, specifically 

ENSEMBL_MART_SNP. A gene ontology enrichment analysis for biological processes was performed separately for 

each module using gprofiler2. 30 

Enrichment was determined by overrepresentation test, which calculates an expected value by matching the proportion of 

genes in a particular annotation data category in the human genome reference list to the number of genes provided and 

calculates a fold enrichment value by comparing the true number of genes in a particular annotation data category to the 

expected value. A p-value was calculated for each term with the hypergeometric test followed by correction for multiple 

testing using the False Discovery Rate (FDR), calculated by the Benjamini-Hochberg procedure. Pathways that met FDR 

p<.05 were examined for each module. 

Individual- level data in a neuropathologically and/or genetically defined sample 

Case selection 

To ensure a TDP-43 proteinopathy, we selected 260 individuals who met neuropathological criteria for FTLD-TDP 

(n=75) and/or ALS (n=105) or had a pathogenic mutation associated with TDP-43 (n=135, including those who met 

neuropathological criteria) to include for analysis, described in detail below. SOD1 ALS cases and VCP tauopathy cases 

were excluded to focus on TDP-43 proteinopathy.  

Genotype Data   

Individual level imputed genotype data, derived from a variety of prior GWAS array genotyping chips, was available in 

the Penn Integrated Neurodegenerative Disease Database31. To harmonize data, we performed imputation of allele 

dosages on samples passing QC using the Michigan Imputation Server32 with the TOPMed reference panel based on 

>97K sequenced samples.33 Prior to genotype analyses or imputation, all genotype data were QCed using standard 
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metrics including but not limited to sex discrepancy, sample relatedness, heterozygosity, and Hardy-Weinberg 

equilibrium.34  

Genetic Sequencing 

DNA was extracted from peripheral blood or frozen brain tissue following the manufacturer’s protocols (QuickGene 

DNA whole blood kit (Autogen) for blood, and QIAamp DNA Mini Kit (Qiagen) for brain tissue). All individuals were 

tested for C9orf72 hexanucleotide repeat expansions using a modified repeat-primed PCR as previously described 35 and 

screened for mutations associated with FTD and/or ALS using whole exome/genome sequencing, and/or a custom 

targeted multi neurodegenerative disease sequencing panel 36 which included SOD137, TBK138, TARDBP 39, VCP 40, and 

GRN41,42). The sequencing data was analyzed using Geneticist Assistant software (Soft Genetics, State College, PA). 

Polygenic risk score calculation  

The Weighted correlation network analysis identified 5 modules of correlated SNPs (see Data-driven modules of 

correlated SNPs identified using summary statistics). We limited our analysis to modules associated with a single GWAS 

phenotype (M1 ALS, M2 FTLD-TDP, and M3 HS-Aging) in an effort to focus on GWAS phenotype-specific drivers. 

Due to a lack of directionality information in the provided summary statistics, we were unable to calculate a PRS for M3 

HS-Aging.  

Module-specific PRS were constructed for M1 ALS and M2 FTLD-TDP as the weighted sum of alleles per SNP per 

module for each individual, using z-score transformed associations with the respective GWAS phenotype, ALS or 

FTLD-TDP. The effect allele was labelled as ‘Allele1’ in the ALS summary statistics and was the minor allele in the 

FTLD-TDP summary statistics. Here, we assigned minor allele using the European 1,000 Genomes sample allele 

frequencies. The direction of the weight for each SNP was determined by whether the dose of the effect (direction 

consistent with summary statistic) or non-effect (direction flipped) allele was provided in the individual-level data.  

Each PRS was centered using the European 1,000 Genomes sample allele frequencies and mean scaled. Missing allele 

dosages were replaced with the European 1,000 Genomes sample average. SNPs without allele frequency information 

were removed. The M1 ALS PRS included 1021 SNPs and the M2 FTLD-TDP PRS included 1013 SNPs. Individuals 

with >10% SNP missingness for either PRS were removed. This resulted in the removal of 130 individuals. 
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PRS were tested for association with clinical and neuropathological traits using one-way ANOVAs controlling for age at 

last contact and sex. Some individuals in the sample were included in a prior ALS or FTLD-TDP GWAS for which 

summary statistics were used to generate the modules (Table 1). Therefore, inclusion in a prior ALS or FTLD-TDP 

GWAS was additionally controlled for in all ANOVAs.  

Clinical Traits 

Within known TDP-43 proteinopathy cases, individuals were characterized based on clinical traits of neuromuscular 

impairment (MND-only), cognitive-behavioral impairment (Cog-only), and any evidence of a combination of 

impairment (Cog+MND) at any point in the natural history of disease determined through clinical and research chart 

review. 

Neuropathological Traits  

Detailed neuropathological assessments were performed using established and uniform methods of fixation, tissue 

processing, IHC with well-characterized antibodies, and current neuropathological criteria, as has been described in 

detail elsewhere.36,43,44 Briefly, 15 brain regions from one hemisphere, alternating right and left at random, are routinely 

sampled at autopsy, formalin-fixed, and processed for immunohistochemical staining using 1D3 for phosphorylated 

TDP-43. Each brain region was semi-quantitatively scored for the burden of TDP-43 (0, absent; 0.5, rare; 1, mild; 2, 

moderate; 3, severe). ALS was diagnosed based on the presence of upper and lower motor neuron degeneration, and 

TDP-43 subtypes were determined based on TDP-43 immunohistochemistry as previously described.45 

 

RESULTS 

Data-driven modules of correlated SNPs identified using summary statistics 

Weighted correlation network analysis identified 5 modules of correlated SNPs associated with either a single GWAS 

phenotype (accordingly referred to as M1 ALS, M2 FTLD-TDP, and M3 HS-Aging from now on) or a pair of GWAS 

phenotypes (accordingly referred to as M4 ALS-FTLD and M5 FTLD-HS from now on, Fig. 1). Module assignment was 

robust, particularly for SNPs associated with a single GWAS phenotype where >97% of SNPs were assigned to the same 
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module (M1 ALS, M2 FTLD-TDP, or M3 HS-Aging) when WGCNA was performed 100 times, each time including a 

random 80% of the 4,945 SNPs (Fig. S2). After modules were identified, SNPs were LD pruned within modules to 

reduce redundancy. After pruning, M1 ALS contained 1,025 SNPs, M2 FTLD-TDP contained 1,021 SNPs, M3 HS-

Aging contained 646 SNPs, M4 ALS-FTLD contained 80 SNPs, and FTLD-HS contained 72 SNPs (Fig. S3). In the 

remaining sections we identify the biological pathways associated with these module SNPs and test for individual-level 

associations between module-specific polygenic risk and clinical and neuropathological traits of individuals who met 

neuropathological and/or genetic criteria for FTLD-TDP or ALS. 

Pathway analysis revealed biologically plausible associations for module SNPs 

Beyond individual SNPs, it is likely that biological pathways are involved in the development of complex 

neurodegenerative diseases. To investigate the biological pathway associations of each of our identified modules, we 

performed a gene ontology enrichment analysis for each module using gprofiler2.30 Enrichment was determined by 

overrepresentation test, which calculates an expected value by matching the proportion of genes in a particular 

annotation data category in the human genome reference list to the number of genes provided. Module-specific 

overrepresented pathways suggest the identified modules are biologically meaningful (FDR p<.05, Fig. 2 and Data file 

S1). Notably, M1 ALS uniquely included pathways related to motor neurons and spinal cord, while neurogenesis-related 

terms were among the top overrepresented pathways in M3 HS-Aging. Additionally, many pathways that were common 

across modules related to nervous system processes that may be broadly implicated across neurodegenerative diseases 

(Fig. S4). Together, these pathway associations support the presence of differentiated and biologically meaningful 

genetic contributions within the identified modules. Further, they reinforce the potential for shared susceptibility across 

diseases, while pointing to potential disparate drivers of ALS, FTLD-TDP, and HS-Aging.  

Module-specific polygenic risk associated with individual-level clinical and neuropathological trait heterogeneity 

While the identified data-driven modules suggest GWAS phenotype-specific SNPs which may contribute to our 

understanding of clinical and neuropathological trait heterogeneity across TDP-43 proteinopathies, these summary-level 

results alone cannot address individual-level risk. We focused on these GWAS phenotype-specific SNPs and 

hypothesized that they would contribute to individual-level differences in both clinical and neuropathological traits 

within the ALS-FTD clinicopathologic spectrum, where individuals have heterogeneous clinical, neuropathological, and 
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genetic traits. Module-specific PRS were constructed for M1 ALS and M2 FTLD-TDP as the weighted sum of alleles per 

SNP per module for each individual, centered and mean scaled. The difference between an individual’s M2 FTLD-TDP 

risk and M1 ALS risk was evaluated to assess relative risk.  

Polygenic risk associates with clinical traits within mutation carriers at risk for neuromuscular and cognitive-

behavioral impairment 

To assess whether relative polygenic risk was associated with clinical trait heterogeneity across the ALS-FTD spectrum, 

the difference between M2 FTLD-TDP risk and M1 ALS risk was tested for association with clinical traits. A one-way 

ANOVA revealed that M2 FTLD-TDP risk, relative to M1 ALS risk, was higher in individuals with cognitive-behavioral 

impairment than those with MND, controlling for last contact age, sex, and inclusion in the prior ALS or FTLD-TDP 

GWAS (F(2,248)=[7.18], p<0.001), Fig. S5). Pairwise t-tests revealed an FDR-adjusted significant difference in the 

relative polygenic risk between the Cog-only and MND-only groups. This suggests that genetic variation associates with 

individual-level differences in clinical traits.  

As our sample contained both sporadic and familial cases, polygenic risk was subsequently specifically tested for 

association with clinical trait heterogeneity within known C9orf72, GRN, TARDBP, TBK1, and VCP mutation carriers, 

where autosomal dominant inherited mutations may primarily drive disease more than underlying polygenic risk. As the 

Cog+MND group did not differ in relative risk from either the Cog-only or the MND-only group in the full sample, we 

tested module-specific polygenic risk against its corresponding trait, cognitive-behavioral impairment or neuromuscular 

impairment. One-way ANOVAs revealed that the M1 ALS PRS was higher in mutation carriers with MND (MND-only 

or Cog+MND, compared to Cog-only; F(1,125)=[6.87], p=0.01), while the M2 FTLD-TDP PRS was higher in mutation 

carriers with cognitive-behavioral impairment (Cog-only or Cog+MND, compared to MND-only; (F(1,125)=[12.47], 

p<0.001), controlling for last contact age, sex, and inclusion in the prior ALS or FTLD-TDP GWAS, respectively (Fig. 

S6). This suggests that even in the context of autosomal dominant disease, genetic variation associates with risk of a 

specific impairment including M1 ALS risk for neuromuscular impairment and M2 FTLD-TDP risk for cognitive-

behavioral impairment. 

Further limiting the sample to C9orf72 cases which can develop ALS, FTLD-TDP, or both, a one-way ANOVA revealed 

that the M1 ALS PRS was higher in C9orf72 carriers with MND (MND-only or Cog+MND, compared to Cog-only 
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(F(1,104)=[4.2], p=0.04), while the M2 FTLD-TDP PRS was higher in C9orf72 carriers with cognitive-behavioral 

impairment (Cog-only or Cog+MND, compared to MND-only; F(1,104)=[8.62], p=0.004), Fig. 3), controlling for last 

contact age, sex, and inclusion in the prior ALS or FTLD-TDP GWAS, respectively. This provides individual-level 

evidence that each module independently contributes to risk for a neuromuscular impairment or a cognitive-behavioral 

impairment in the context of a C9orf72 expansion. 

Polygenic risk associates with regional neuropathological traits 

TDP-43 inclusions are observed in characteristic anatomic regions correlating with clinical traits. To assess whether 

relative polygenic risk was associated with regional neuropathological traits across the ALS-FTD spectrum, the 

difference between M2 FTLD-TDP risk and M1 ALS risk was tested for association with the burden of TDP-43 

pathology across brain regions. First, this was done in characteristic FTLD-TDP regions, specifically the cingulate gyrus, 

angular gyrus, middle frontal cortex, and superior/middle temporal cortex (Fig. S7). One-way ANOVAs revealed that 

higher M2 FTLD-TDP risk, relative to M1 ALS risk, was associated with higher TDP-43 burden in each FTLD-TDP 

characteristic region (all FDR adjusted p < .05, Fig. 4), controlling for age at death, sex, and inclusion in the prior ALS 

or FTLD-TDP GWAS. Second, we tested whether relative polygenic risk was associated with TDP-43 burden in 

characteristic ALS regions, motor cortex and spinal cord. However, no significant differences in relative PRS by TDP-43 

burden were observed in either ALS characteristic region. These observations suggest that these data-driven module-

specific polygenic risk scores relate to characteristic individual-level differences in the anatomic distribution of TDP-43 

within the ALS-FTD clinicopathologic spectrum. 

 

DISCUSSION 

In this study, we hypothesized that both shared and disparate genetic variants would be identified across TDP-43 

proteinopathies which contribute to the heterogenous individual-level clinical and neuropathological traits of ALS and 

FTLD-TDP. We identified data-driven modules of correlated SNPs that were either GWAS phenotype specific (M1 

ALS, M2 FTLD-TDP, and M3 HS-Aging) or shared across TDP-43 proteinopathy GWAS phenotypes (M4 ALS-FTLD 

and M5 FTLD-HS). Leveraging commonly genotyped SNPs across existing independent GWAS allowed for the 

identification of patterns of correlations between SNPs and the respective GWAS phenotypes. Though performed at the 
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summary statistic level, this analysis suggested GWAS phenotype-specific module SNPs which were then shown to 

associate with clinical and neuropathological traits at the individual level, including neuromuscular impairment and/or 

cognitive-behavioral impairment and the burden of TDP-43 pathology across brain regions. 

Gene ontology enrichment analysis of module SNPs provided plausible reinforcement for the presence of both shared 

and GWAS phenotype-specific biological pathways across TDP-43 proteinopathies. Terms relevant to nervous system 

development, such as neuron projection development and morphogenesis, as well as those related to synapse structure, 

organization, activity, and assembly were common across M1 ALS, M2 FTLD-TDP, and M3 HS-Aging, as would be 

expected in neurodegenerative diseases. However, top overrepresented pathways also support disease-specific drivers. 

Several of the top overrepresented pathways in M1 ALS related to the selective vulnerability of motor neurons and spinal 

cord in ALS. Among these were terms related to motor neuron migration, including spinal cord motor neuron migration 

and lateral motor column neuron migration. This analysis also identified several terms in M1 ALS related to 

axonogenesis, including central nervous system projection neuron axonogenesis and specifically spinal cord ventral 

commissure morphogenesis, as well as anterior/posterior axon guidance and negative regulation of collateral sprouting. 

Further, detailed molecular studies have identified inflammatory responses following neurodegeneration in ALS,46,47 and 

have implicated inflammatory pathways as contributors to further neurodegeneration.48,49 Gene expression studies in 

ALS have identified an upregulation of immune and inflammatory genes in disease relevant regions50–53. Here, we 

observed pathways related to the response to cytokines in M1 ALS, including gene ontology terms such as response to 

stem cell factor, cellular response to stem cell factor stimulus, cytokine-mediated signaling pathway, Kit signaling 

pathway, response to chemokine, and the regulation of chemokine-mediated signaling pathway. The top overrepresented 

pathway in M1 ALS was positive regulation of retrograde transport, endosome to Golgi. Golgi changes are well 

documented in ALS and one of the most consistent pathologic findings in motor neuron disease.54–56 Finally, M1 ALS 

included terms related to the regulation of metabolic process, including regulation of kinase activity, regulation of 

hexokinase activity, and regulation of glucokinase activity. Several lines of evidence support the role of kinases in ALS 

pathogenesis, including the identification of kinase-encoding genes such as TBK1, mutations in which can cause ALS.57 

In M2 FTLD-TDP, several of the top overrepresented pathways related to cytoskeleton organization, including actin 

filament network formation, actin filament bundle organization, and actin filament bundle assembly. Differential 

expression of genes relating to the structure and function of the cytoskeleton have been observed in FTLD-TDP, and the 

cytoskeleton has been implicated more broadly in aging and neurodegeneration.58–61 For M3 HS-Aging, we observed 
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several overrepresented terms related to neurogenesis and neuron development, including neuron recognition, which was 

among the top overrepresented pathways for this module. As the hippocampus is the site of adult neurogenesis, the 

inclusion of these pathways align with the selective vulnerability of the hippocampus in HS-aging.62,63 

It is currently unknown why some individuals with TDP-43 pathology develop neuromuscular impairments while others 

develop cognitive-behavioral impairments. Both the M1 ALS PRS and the M2 FTLD-TDP PRS showed associations 

with clinical traits, even within known mutation carriers where disease may be less influenced by underlying polygenic 

risk. Strikingly, even within individuals with a C9orf72 repeat expansion, for which there is no current way to predict the 

development of ALS, FTLD-TDP, or both, the M1 ALS PRS and M2 FTLD-TDP PRS associated with individual-level 

clinical traits. While further validation is required, this observation has important implications for predictive genetic 

testing and management of clinical care. Moreover, current clinical trials focus on either ALS or FTLD-TDP populations 

in the absence of knowledge about individual risk. These novel PRS may therefore be important for prognostication and 

stratification in the context of interpreting outcomes in a combined trial. 64–67   

Within the ALS-FTD spectrum, the genetic architecture is complex. In addition to shared causal mutations, such as the 

C9orf72 repeat expansion, shared significant associations have been identified in UNC13A.20,23,24 Similarly, TMEM106B 

has been implicated for risk in both FTLD-TDP and HS-Aging.2,3,6 Combined studies across TDP-43 proteinopathies 

have largely focused on identifying shared genetic risk factors that would explain susceptibility across GWAS 

phenotypes through a common underlying biological mechanism. However, the identification of GWAS phenotype-

specific module SNPs allowed us to demonstrate the contribution of several genetic variants to individual-level clinical 

and neuropathological traits through the construction of module-specific PRS. Specifically, PRS analyses showed that 

higher M2 FTLD-TDP risk, relative to M1 ALS risk, was associated with higher TDP-43 burden in FTLD-TDP 

characteristic regions including cingulate gyrus, angular gyrus, middle frontal cortex, and superior/middle temporal 

cortex. Orbito-frontal regions are affected early in FTLD-TDP, even when the overall burden of pathology is lower, 

though more widespread cortical pathology is observed in advanced cases.68 In contrast, these regions are either spared 

or affected later in the course of ALS, where pathology spreads from motor neurons.69 While no significant differences 

in relative PRS by TDP-43 burden were observed in either ALS characteristic region evaluated, it is possible that this is 

confounded by neuron loss, particularly for the spinal cord where neuronal dropout can lower TDP-43 burden.  
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This study is limited by the complexity of diagnosis across TDP-43 proteinopathies. A more complete clinical evaluation 

of neuromuscular impairment in suspected FTLD-TDP cases and cognitive-behavioral impairment in ALS cases is 

needed to better characterize these individuals. Additional challenges to complete, accurate diagnoses in the FTD-ALS 

spectrum include a lack of TDP-43 biomarkers and often rapid progression which may preclude evaluation of the full 

clinical picture. Thus, there is a reliance on autopsy. However, the regional distribution of pathology alone cannot 

determine the presence of a secondary neuromuscular or cognitive-behavioral impairments within FTLD-TDP or ALS. 

Therefore, our individual-level analyses focused on clinical traits (neuromuscular impairment and/or cognitive-

behavioral impairment) and neuropathological traits (burden of TDP-43 pathology across brain regions) rather than 

separate diagnostic groups.  

Further, even though the vast majority of HS-Aging cases have TDP-43 pathology, the pathological definition does not 

require the presence TDP-43. The more recently defined Limbic-predominant age-related TDP-43 encephalopathy 

(LATE) relies only on the presence of TDP-43 in the amygdala and subsequently hippocampus and middle frontal 

gyrus.70 As hippocampal sclerosis is neither sufficient nor necessary for a LATE diagnosis, future work including a 

LATE GWAS is needed to disentangle the genotype associations with HS-aging from limbic TDP-43. In the present 

study we were unable to evaluate the relationship between M3 HS-Aging SNPs and individual-level differences in either 

clinical or neuropathological traits due to a lack of directionality information in the published GWAS summary statistics.  

The threshold for inclusion of SNPs initially selected for analysis from the GWAS summary statistics was arbitrary. This 

threshold (the top 1% of SNPs with the strongest associations to any GWAS phenotype) is lenient by GWAS standards, 

including SNPs with summary statistic p-values as high as 0.003. However, strict GWAS correction would leave too few 

SNPs to compare across GWAS phenotypes, and sub-threshold associations are still likely informative. However, 

relaxing the threshold beyond a certain point would introduce non-meaningful SNPs which have no associations with 

any of the GWAS phenotypes. Importantly, we show that the SNPs chosen at this threshold are biologically meaningful 

with converging evidence from our summary statistic and individual level results.  

Finally, similar to limitations of the vast majority of PRS studies, the module-specific polygenic scores were both 

predominantly derived from and tested on individuals of European ancestry. Therefore, future work is required to 

validate the broader applicability of these findings in a diverse population. 
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Overall, examining summary statistics revealed modules of both shared and disparate correlated SNPs across GWAS 

phenotypes associated with TDP-43 proteinopathies. These modules have biologically plausible pathway associations, 

and module SNPs relate to individual-level clinical and neuropathological traits providing suggestive evidence of a 

potentially predictive and prognostic genetic marker of neuromuscular and/or cognitive-behavioral impairment risk. We 

suggest that there are polygenic modifiers of clinical and neuropathological traits across TDP-43 proteinopathies that 

may contribute to individual-level differences, including the likelihood for developing FTLD or ALS. 
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TABLES 

Table 1. Sample Characteristics. 

 

MND-only Cog+MND Cog-only 

n 125 31 104 

Sex (Male, %) 72 (57.6) 17 (54.8) 59 (56.7) 

Education (mean (SD)) 14.88 (3.09) 14.43 (2.66) 15.67 (3.36) 

Deceased (%) 121 (96.8) 31 (100.0) 86 (82.7) 

Age at last contact (mean (SD)) 62.16 (10.21) 60.42 (8.55) 68.54 (8.47) 

Race (%) 

     Asian 0 (0.0) 0 (0.0) 1 (1.0) 

   Black or African American 3 (2.4) 1 (3.2) 1 (1.0) 

   More than one race 0 (0.0) 0 (0.0) 1 (1.0) 

   White 121 (96.8) 30 (96.8) 99 (95.2) 

   Unknown or not reported 1 (0.8) 0 (0.0) 2 (1.9) 

Ethnicity (%) 

     Hispanic or Latino 2 (1.6) 0 (0.0) 1 (1.0) 

   Not Hispanic or Latino 120 (96.0) 31 (100.0) 101 (97.1) 

   Unknown or not reported 3 (2.4) 0 (0.0) 2 (1.9) 

Mutation (%) 

     No known mutation 77 (61.6) 7 (22.6) 41 (39.4) 

   C9orf72 47 (37.6) 24 (77.4) 42 (40.4) 

   GRN 0 (0.0) 0 (0.0) 17 (16.3) 

   TARDBP 1 (0.8) 0 (0.0) 0 (0.0) 

   TBK1 0 (0.0) 0 (0.0) 2 (1.9) 

   VCP 0 (0.0) 0 (0.0) 2 (1.9) 

Prior GWAS Case* (%) 

     No prior GWAS inclusion 64 (51.2) 15 (48.4) 82 (78.8) 
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   ALS GWAS 61 (48.8) 12 (38.7) 0 (0.0) 

   FTLD-TDP GWAS 0 (0.0) 4 (12.9) 22 (21.2) 

TDP Type (%) 

     A 4 (4.4) 2 (11.8) 26 (39.4) 

   B 6 (6.6) 9 (52.9) 12 (18.2) 

   C 0 (0.0) 0 (0.0) 23 (34.8) 

   D 0 (0.0) 0 (0.0) 2 (3.0) 

   E 5 (5.5) 1 (5.9) 2 (3.0) 

   Not specified 76 (83.5) 5 (29.4) 1 (1.5) 

 

Demographic, genetic, and pathological data for individuals with neuromuscular impairment (MND-only), cognitive-
behavioral impairment (Cog-only), or any evidence of a combination of impairment (Cog+MND) within the sample. 

*Inclusion in either the ALS1 or FTLD-TDP2 GWAS for which summary statistics were used to generate the modules.  
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FIGURE LEGENDS 

  

Fig. 1. WGCNA revealed modules of correlated SNPs across GWAS phenotypes associated with TDP-43 
proteinopathies. Module SNPs are plotted by relative associations (by |z|) to (A) FTLD-TDP and ALS, (B) HS-Aging 
and ALS, or (C) HS-Aging and FTLD-TDP GWAS. SNPs mapping to GWAS significant genes1–3,6,13,21,71 are labelled.   
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Fig. 2. WGCNA-derived modules have biologically plausible pathway associations. The top 20 overrepresented 
pathways by fold enrichment that met FDR-adjusted p<.05 are displayed for (A) M1 ALS, (B) M2 FTLD-TDP, and (C) 
M3 HS-Aging. 
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Fig. 3. M1 ALS and M2 FTLD-TDP associate with individual-level clinical traits in C9orf72 cases. The (A) M1 

ALS and (B) M2 FTLD-TDP PRS were tested for association with neuromuscular or cognitive-behavioral impairment or 

in C9orf72 mutation carriers. 
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Fig. 4. Relative polygenic risk associates with regional neuropathological traits. The difference between an 
individual’s M2 FTLD-TDP risk and M1 ALS risk was tested for association with the burden of TDP-43 pathology in 
FTLD-TDP characteristic regions (top row: cingulate gyrus, angular gyrus, middle frontal cortex, and superior/middle 
temporal cortex), and ALS characteristic regions (bottom row: motor cortex and spinal cord). The FDR adjusted p-values 
for each ANOVA are displayed by region. Asterisks represent FDR-adjusted significant pairwise t-tests within region. 

  


