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Abstract
Biases in sample creation can arise at any study phase, including initial patient recruitment, exclusion
criteria, input-level exclusion and outcome-level exclusion, and often reflect the underrepresentation or
exclusion of demographic groups historically disadvantaged in medical research. The use of
non-representative samples to construct clinical algorithms in artificial intelligence (AI) and machine
learning (ML) applications may further amplify this selection bias. Building on the "Data Cards" initiative
for transparency in AI research, we advocate for the addition of a detailed participant flow diagram for AI
studies, emphasizing the need to detail excluded participant demographic characteristics at every study
phase. This tracking of excluded participants enhances understanding of potential algorithmic biases
before their clinical implementation, and thus deserves to be detailed in any medical AI study. We include
both a model for this flow diagram as well as a brief case study explaining how it could be implemented
in practice. Through standardized reporting of participant flow diagrams, we can better gauge the
potential inequity embedded in AI applications, facilitating more reliable and equitable clinical
algorithms.

Keywords: machine learning, selection bias, flow diagram, data cards, health equity

Introduction
An appropriate patient sample is essential to the integrity of any type of medical research. In
observational studies, using an inappropriate sample can result in spurious associations unable to be
replicated in prospective work. In randomized controlled trials (RCTs), testing an intervention on a
non-representative group of patients can result in gaps between the efficacy of a treatment as observed in
a trial and its effectiveness in clinical practice. Yet sample biases, often rooted in the historical exclusion
of certain demographic groups, including older adults [1], patients with low socioeconomic status (SES)
[2], racial minorities and women [3], tend to be consistent and pervasive. These exclusions are reflective
of broader structural disparities in the American healthcare system, which have been highlighted by the
Joint Commission as targets for assessment of quality of care [4] and by the Centers for Medicare and
Medicaid Services as factors in determining reimbursement [5].

Each step of the sample selection process, from initial patient recruitment to exclusion criteria and patient
attrition, holds both promise and peril for creating a representative sample. While strategies to create more
inclusive, diverse and equitable clinical trial recruitment and designs have been developed in response to
these failures [6]–[9], less work has focused on how samples can be fundamentally changed by the steps
that follow recruitment, and how these changes can propagate both structural and statistical bias.

As clinical artificial intelligence (AI) and machine learning (ML) applications surge in use, there is the
danger that these tools will inherit these biases if trained on nonrepresentative datasets or if they fail to
address these potential pitfalls of sample development. Many, for example, have highlighted instances of
algorithmic discrimination [10]–[12], which often results from a lack of population representativeness or
from the algorithm encoding structural biases already present in a dataset. An additional and
under-explored dimension in AI studies is the input-level exclusion of patients due to poor-quality or
missing data, which can lead to bias if there is a non-random disparity in data quality or availability
among groups. Yet despite the potential for selection bias to propagate within AI algorithms, there are no
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standardized protocols for reporting participant characteristics and sample creation in medical AI
research.

The introduction of "Data Cards" is a recent initiative aimed at changing this and enhancing transparency
in AI studies by providing standardized details about a dataset's background, origin, and purpose [11, 12].
These cards offer an in-depth overview of a dataset, encapsulating 31 distinct facets, which include a
variable list, descriptive statistics, and information about its intended application. Building on prior
endeavors to boost AI transparency [15]–[18], Data Cards are meant for general use in any AI project and
are not tailored specifically for medicine. Thus, while they provide highly valuable insights for medical
datasets, their approach could be enhanced by an additional component that meticulously tracks the
evolution of patient cohort composition throughout all phases of study sample selection. Many medical
studies employ tools like the CONSORT diagram for RCTs [19] and the STROBE diagram for
observational studies [20] to accomplish this type of tracking. While these tools are useful, they primarily
capture shifts in cohort size and do not track shifts in sample composition. Moreover, a dedicated tool that
suits AI studies specifically is needed.

In this article, we advocate for the integration of a detailed participant flow diagram into the current Data
Card framework for AI-based medical studies, enhancing its pursuit of transparency and promotion of
health equity. In this flow diagram, we argue that it is essential not only to track the number of
participants excluded at each phase of any study, but also to report changes in sociodemographic and
clinical characteristics relevant to the study question. By doing so, we aim to mitigate and better
understand potential statistical and structural biases in the application of AI. To illustrate the importance
of tracking excluded participant characteristics through a flow diagram, we walk through various
examples that demonstrate how biases can present in different stages of a study, from recruitment to
exclusion criteria to input-level omissions to participant attrition during a study. Finally, we present a
model for this updated flow diagram and an example of its implementation, envisioning this style of
diagram not only as an augmentation to the Data Card but also as an element in medical AI studies
generally. While we focus on the use of this flow diagram for AI-based studies here, the concept of
tracking cohort composition itself should be encouraged for any type of clinical study.

Statement of Significance
Problem: Selection biases generated through the process of cohort composition are often hidden sources
of bias that can be propagated by clinical algorithms.
What is Already Known: Previous studies have identified how sample biases can be generated, and others
have detailed their effects on medical AI algorithms. AI models built on non-representative data have
been shown to perform poorly for excluded groups, often with implications for health equity.
What This Paper Adds: This study provides a novel method of tracking how sample composition can
change as a study progresses via a standardized participant flow diagram with the aim of ensuring equity
and generalizability of results.

Phases of Sample Selection and Evolution
Recruitment
While a recruitment population itself cannot be fully captured in a participant flow diagram due to its
upstream nature, it is worth addressing how narrow study recruitment can lead to biased results. One
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possible example comes from a 2021 study examining COVID-19 mortality among patients admitted to
any Veterans Affairs (VA) hospital [21]. While this analysis was not the main objective of the study, a
proportional hazard analysis showed that a history of smoking or obesity were both protective against the
risk of dying from COVID-19 among this population (see Table 3 of the article) [21]. This correlation is
at odds with most of the COVID-19 research carried out during the pandemic, which identifies obesity
and a history of smoking as risk factors for COVID-19 related mortality [22-24]. In other words, the
findings from this sample of VA patients do not appear to be generalizable. One reasonable hypothesis for
this discrepancy in findings is that the characteristics of veterans, and particularly veterans whose illness
was severe enough to present to the hospital, differ from those of the broader population [21, 24]. For AI
models trained on a very specified population like this, the current Data Cards model would help flag this
type of upstream bias by explaining the purpose, origins and methods of data collection.

Exclusion Criteria
Exclusion criteria are a necessary element of any study design, AI-based or not, but they often limit
generalizability [26]. Such criteria can cause selection bias in the original dataset (prior to AI analysis),
but AI and machine learning studies themselves may impose additional exclusion criteria. In clinical
trials, a systematic review of RCTs found that three-quarters of all trials examined had eligibility criteria
that excluded over half of relevant patients, with notable exclusion rates of 83%, 96.0% and 84.3% for
hypertension, asthma and COPD, respectively [27]. More generally, frequently utilized exclusion criteria
like age, comorbidities, and co-prescribing often ensure that participants in studies are in better health at
baseline compared to the broader population [28].

Quantifying the impact of exclusion criteria can be challenging, as outcomes are rarely tracked and/or
reported for excluded groups, and exclusion criteria are often not reported [29], particularly in the case of
AI studies [30]. Thus, we provide two notable non-AI examples of subsequent analyses of heart disease
clinical trial data that show how exclusion criteria can affect a study population. One approach
re-analyzed data from the DANAMI-3 multicenter clinical trial investigating ST-elevation myocardial
infarction (STEMI) and compared outcomes of participants from comparable registries to those who were
not eligible for the trial [31]. They found that patients who were excluded had an approximately 3.42
times greater chance of mortality from a STEMI compared to the trial participants [31]. Similarly, a study
comparing 8,469 patients from the Global Registry of Acute Coronary Events registry found that trial
participants had lower mortality rates (3.6%) from acute myocardial infarction compared to excluded
patients (11.4%) [32]. If either of these datasets were used as part of an AI approach to predict risk of
myocardial infarction mortality, the algorithm would likely have an overly optimistic and biased
assessment of mortality risk.

Input-Level Exclusion
One type of exclusion that is more unique to AI studies is exclusion at the input-data level, which can
occur due to poor quality or missing data. Data that are missing can be grouped into distinct
classifications: data that are Missing Completely At Random (MCAR) has no systematic discrepancies;
Missing At Random (MAR) shows systematic absence in observed data but not in unobserved; and
Missing Not At Random (MNAR) displays a systematic pattern and can thus be a source of selection bias
[33]. In AI studies, there is often either a threshold of missingness allowed, or in some cases, patients with
missing data are removed altogether to create curated datasets for training and testing [34]. However,
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much of the time missing data is simply not addressed, with one study from 2017 finding that 49 out of
107 electronic health record-based risk prediction approaches evaluated did not mention missing data at
all [35].

Paying attention to missing rates is critical since they can and often do vary systematically across
populations and can thus be classified at MNAR. For example, patients with greater psychosocial needs
[36] and patients with low SES [37] are both more likely to seek care at multiple hospitals compared to
the average patient. Accordingly, these patients’ data may be spread across multiple health facilities,
increasing the likelihood of missing observations in a single-center machine learning dataset. Individuals
with low SES and racially minoritized individuals may also tend to use the healthcare system less often
due to structural barriers resulting in less access, including receiving less testing, so studies examining an
electronic health record would report more missing data for these patients [38].

A recent study using the Medical Information Mart for Intensive Care III (MIMIC-III) database
demonstrates that the addition of missing data tends to more negatively impact the performance of disease
prediction models for groups that have less access to healthcare [38]. Specifically, when stratified by
insurance status, patients insured by Medicare/Medicaid experienced a sharper drop in model
performance as the amount of missing data increased compared to those with private insurance [38].

Patient Attrition (Outcome-Level Exclusion)
Selection bias can also arise even after making final exclusions and inclusions of participants in a study.
This commonly happens when patients are lost to follow-up, but also if participants revoke consent or
experience a protocol deviation. In AI studies using clinical data, this would manifest as missing
outcomes data (as opposed to missing input data noted above).

The vast majority of medical datasets show patient attrition; among manuscripts published in
frequently-cited journals in 2014, missing outcomes data was present in nearly 95% of trials, with a
median 9% (range of 0-70%) of patients per trial with a missing outcome [39]. To address this issue,
researchers often employ techniques such as time-to-event modeling with censorship or utilize sensitivity
analyses, including the fragility index which gauges the minimal number of patient results that, if
changed, would reverse a study's statistical significance [40]. Intriguingly, an application of this index
found that in 53% of trials, the fragility index was fewer than the number of participants lost to follow-up
with some studies having fragility indices of only 1 participant [40].

Despite their utility in evaluating robustness of study findings, these approaches cannot capture how
disproportionate participant dropout by clinical or sociodemographic characteristics may affect either
study results or the subsequent bias of AI algorithms that filter out this missing outcomes data. This is an
issue given that in some clinical and research contexts, rate of attrition may differ by demographic and
clinical features. For example, non-white race, male sex, and lower functional status were all found to be
significantly associated with a higher probability of loss to follow-up after hip arthroscopy [41].
Furthermore, a review of HIV trials identified lower retention rates in Black patients [42] while another
approach found an association between speaking a language other than English and increased likelihood
of dropout in a cervical cancer clinical trial [43]. Ultimately, these examples suggest that missing
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follow-up data is often MNAR, which can lead to systematic bias in AI-based algorithms training on this
data.

Recommendations for AI Researchers
We have discussed how recruitment, exclusion criteria, input- and outcome-level exclusions can all lead
to selection bias, resulting in a study sample that is discordant from the target population. This selection
bias can then be encoded by an algorithm that trains on that clinical dataset, leading to models that
perform well on the types of patients it has seen but less so on those it has not, leading to inequity. Given
that medical AI approaches often utilize cohorts from RCTs and cohort studies and perform their own
processing steps before using them as training, validation and testing datasets, it is crucial to standardize
the reporting of these steps to inform readers and users of possible biases.

Before performing any data processing or modeling, we first recommend that AI researchers assess their
training and testing datasets and consider the ways in which they may be under-counting certain
populations including through previous application of exclusion criteria to the dataset. The Data Card
initiative can be a major part of this assessment, as it necessitates the reporting of dataset features,
including its origins, the populations represented, and its prior processing [13]. Furthermore, we strongly
recommend that researchers think critically about what sociodemographic and clinical factors are relevant
to be tracked for their study, balancing knowledge of structural disparities in health with
acknowledgement that characteristics like race and gender are socially constructed. Rather than serving as
passive reporters, researchers should seek to identify why disparities in study exclusion, treatment access,
and follow up occur, and how they can be prevented in the future.

The subsequent step involves monitoring how the composition of a cohort changes throughout an AI
study itself to prepare the data for modeling. We introduce an updated participant flow diagram tailored
for AI research that we hope to serve as a standardized best practice method for tracking sample
composition – see Figure 1. This approach not only complements the Data Card initiative but also has the
potential to be a benchmark reporting technique alongside the traditional “Table One” used in clinical
studies to outline the final and post-processed data characteristics. Specifically, we visualize cohort
composition and shifts in demographic details such as age, gender, socioeconomic status and race or
ethnicity. Depending on the study design, researchers could also choose to track selected clinical
characteristics through this diagram, such as the SOFA score in a critical care study, to ensure they are not
altered significantly.
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Figure 1: Template of the updated Participant Flow Diagram.

We further include the reporting of standardized mean difference (SMD) as a statistical method of
measuring effect size in the diagram to ensure that the demographics of the excluded patient population
do not differ in a clinically significant manner from the study sample after a given step [44]. Borrowing
from literature on inverse probability of treatment weighting, we suggest that a SMD greater than an
absolute value of 0.1 between steps may represent a meaningful change in sample composition [45].
Alternative methods of comparison such as significance testing may be considered by investigators,
however care should be taken to consider type II error in large analytic samples and type I error in small
samples when comparing changes in sample composition using p-values.

This standardized depiction not only showcases the evolution of a sample throughout a study but also
promotes the reporting of clinically-relevant characteristics that may serve as sources of confounding. The
routine use of this diagram can help to uncover many currently hidden biases that occur as a study
progresses and help to ensure that the results of a clinical algorithm are not improperly extrapolated to
excluded populations.

Example Case Study
Pulse oximetry is a prominent example of how racial and ethnic bias can manifest in critical care medical
equipment [46]. Underperformance of the pulse oximeter in patients with darker skin color has been
shown to result in events of hidden hypoxemia, which can be defined as SaO2 (measured by arterial blood
gas [ABG]) < 88%, but SpO2 (measured by pulse oximetry) ≥ 92% [45, 46].

We provide a hypothetical case study here of the development of an ML model to predict the likelihood of
the presence of hidden hypoxemia based on a patient's oxygen saturation trajectory since ICU admission.
Specifically, we discuss the sample selection process for training such a model using real data from the
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MIMIC-IV dataset [49]. However, the creation of such models can be limited by a disproportionate
absence of ABG measurements, resulting in a higher rate of exclusion of Black patients [50].

We focus on each individual step of the sample selection process below before illustrating how the
updated patient flow diagram can illuminate some of the issues that arise during this process.

1. Recruitment: The database selection serves as the Recruitment phase here. The first step is to
examine MIMIC-IV, a single-center Electronic Health Records (EHR) database from Boston,
captured between 2008 and 2019 [49]. This dataset comprises ICU patients – a population that
was able to reach the hospital to receive critical care in the first place – introducing a potential
selection bias that should be noted in any study using this dataset. Algorithms that are trained on
MIMIC-IV data should target a population that is adequately represented in the dataset, otherwise
both dataset and subpopulation shifts may occur [49, 50].

2. Exclusion Criteria: An SpO2 ≤ 92% should trigger supplemental oxygen administration in the
ICU. To have a model focused on patients at harm of developing hidden hypoxemia, we will limit
our cohort to patients with SpO2 > 92%.

3. Input-level exclusion: Patients with missing SpO2 values, outliers (e.g., out-of-range oxygen
saturation), or without relevant demographic information should be removed from the study.

4. Outcome-level exclusion: Patients without an ABG that can serve as the ground-truth for this
ML algorithm predicting future hidden hypoxemia should also be removed. The presence of
hidden hypoxemia is assessed when comparing SaO2 and SpO2 paired within 5 minutes; patients
will be excluded if the pairing is not possible.

The participant flow diagram describing these steps and their effects on the cohort composition is
depicted in Figure 2. Notably, the order of applying the aforementioned exclusion criteria is not fixed, and
depends on the data structure. In this case, for implementation efficiency, the criteria were applied in
reverse order, starting with the outcome-level exclusion.
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Figure 2: Example Case Study’s Participant Flow Diagram.

In the outcomes-level exclusion of this study (removing patients without an ABG), there is a clear shift in
the cohort composition with a change of 55.9% to 62.8% in the percentage of males as well a shift from
67.5% to 69.4% White patients (Figure 2; full data summary in Table 1). There is also a notable drop in
Black patients from 9.1% to 6.1% after this step (Table 1). The above shifts were flagged by our diagram,
and can be shown by the measured SMD for these two categories. These changes could result for a
number of reasons, which include certain demographics being less likely to receive an ABG measurement
in the hospital [50]. The participant flow diagram allows us to see the disproportionate dropout and to
inform the study and the findings, which could lead to an investigator adjusting the study as a whole to
lead to more inclusion or reporting this as a key limitation depending on the situation. Finally, this method
of tracking also has the potential to illuminate disparities and differences between populations we may not
have not known existed prior.

Conclusion
Our proposed approach and updated participant flow diagram aims to identify possible biases in AI data
processing, broaden the understanding of a study's applicability, and promote researcher accountability in
eliminating structural biases in biomedical research. We intend this to be a useful tool and overview of
ways that bias can enter studies at any stage, but we acknowledge this approach will not by itself remove
bias from studies. Further, a key limitation is that this approach will not address algorithmic encoding of
structural biases already present in a dataset, such as in the case of physician implicit bias [53]. Necessary
future work includes the development of an easily implementable tool that can generate this diagram
automatically and in a standardized manner for any study. Finally, while we discuss many of the
implications for AI and machine learning studies here, these same lessons of tracking excluded
participants apply equally to clinical RCTs and observational studies.
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Tables

Table 1. Auxiliary Table Showing Case Study Results.

Cohort Number (Step of the Flow Diagram) Effect Size

1 2 3 4 SMD
(1,2)

SMD
(2,3)

SMD
(3,4)

n 50,920 13,645 4,783 4,662

Race and
Ethnicity,
n (%)

Asian 1,496 (2.9) 332 (2.4) 112 (2.3) 112 (2.4)

.126 .032 .006

Black 4,640 (9.1) 838 (6.1) 320 (6.7) 311 (6.7)

Hispanic/
Latino 1,783 (3.5) 424 (3.1) 161 (3.4) 159 (3.4)

White 34,382 (67.5) 9,472 (69.4) 3,324 (69.5) 3,242 (69.5)

Unknown 8,619 (16.9) 2579 (18.9) 866 (18.1) 838 (18.0)

Sex,
n (%) Female 22,480 (44.1) 5,075 (37.2) 1,684 (35.2) 1,639 (35.2) .142 .041 .001

Age, median
[Q1,Q3] Admission 66.0 [54,78] 67.0 [57,77] 68 [59,77] 68 [59,77] .087 .062 .002
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