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Abstract

In the rapidly evolving landscape of modern healthcare, the integration of wearable and
portable technology provides a unique opportunity for personalized health monitoring in
the community. Devices like the Apple Watch, FitBit, and AliveCor KardiaMobile have
revolutionized the acquisition and processing of intricate health data streams that were
previously accessible only through devices only available to healthcare providers. Amidst
the variety of data collected by these gadgets, single-lead electrocardiogram (ECG)
recordings have emerged as a crucial source of information for monitoring cardiovascular
health. Notably, there has been significant advances in artificial intelligence capable of
interpreting these 1-lead ECGs, facilitating clinical diagnosis as well as the detection of
rare cardiac disorders. This design study describes the development of an innovative
multi-platform system aimed at the rapid deployment of AI-based ECG solutions for
clinical investigation and care delivery. The study examines various design considerations,
aligning them with specific applications, and develops data flows to maximize efficiency
for research and clinical use. This process encompasses the reception of single-lead ECGs
from diverse wearable devices, channeling this data into a centralized data lake, and
facilitating real-time inference through AI models for ECG interpretation. An evaluation
of the platform demonstrates a mean duration from acquisition to reporting of results
of 33.0 to 35.7 seconds, after a standard 30 second acquisition, allowing the complete
process to be completed in 63.0 to 65.7 seconds. There were no substantial differences
in acquisition to reporting across two commercially available devices (Apple Watch and
KardiaMobile). These results demonstrate the succcessful translation of design principles
into a fully integrated and efficient strategy for leveraging 1-lead ECGs across platforms
and interpretation by AI-ECG algorithms. Such a platform is critical to translating
AI discoveries for wearable and portable ECG devices to clinical impact through rapid
deployment.

1 Background

In the dynamic landscape of modern healthcare, the integration of wearable and portable
technology has heralded a revolution in personalized health monitoring. Wearable health
devices, such as the Apple Watch and Fitbit, and the portable AliveCor KardiaMobile
offer access to complex health data streams that previously required large and complex
devices for acquisition and processing. Among the various kinds of data collected by these
devices, single-lead electrocardiogram (ECG) recordings stand out as a vital source of
information for monitoring cardiovascular health. There has been a major development
of artificial intelligence with capacity to interpret these 1-lead ECGs for both clinical
diagnosis, as well as the detection of rare cardiac disorders (Dhingra andothers 2023).

Recognizing the significance of these data and the increasing adoption of wearable
and portable devices, we sought to develop and evaluate a centralized approach that
is capable to receive single-lead ECGs across various wearable devices, and enable
real-time inference from advance artificial intelligence (AI) models developed for ECG
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interpretation.

1.1 Wearable ECG Monitoring

The use of wearable devices for ECG monitoring enables access to an important modality
for informatoin on cardiovascular health. Devices like the Apple Watch, KardiaMobile,
and Fitbit are now equipped with advanced sensors capable of recording single-lead
ECGs. These ECGs capture the electrical activity of the heart, and with applications of
AI aloowing evlauations of cardiac structure and from electrocardiographic data (Attia,
Noseworthy andothers 2019, Attia, Kapa andothers 2019, Sangha andothers 2022,
Neri andothers 2023, Oikonomou and Khera 2023). While these devices empower
individuals to take charge of their health, harnessing the data consistently and translating
it into actionable insights remains challenging.

1.2 Need for a Unified ECG Dashboard

The CarDS-Plus ECG Dashboard is a platform designed to integrate ECGs from various
wearable devices. Patients, physicians, and healthcare providers increasingly require a
unified solution to consolidate data for comprehensive assessment of health, especially
with AI solutions allowing inference on multiple axes of health and outcomes.

In this design study, we describe the development of an innovative multi-platform for
rapid cycle deployment of AI ECG solutions for clinical investigation and care delivery.
We identify design considerations in light of the applications and define the data flow and
security from receiving single-lead ECGs across various wearable devices in a centralized
repository and real-time inference from advanced AI models developed for ECG interpretation.

2 Rationale and Guiding Principles

Cardiovascular disease remains a leading cause of mortality globally, necessitating innovative
approaches to enhance diagnostic accuracy and expedite treatment decisions. Traditional
ECG analysis methods, while effective, require specialized expertise and are limited
to gross abnormalities that are detectable by the human observer. Integrating AI
into portable ECG devices addresses these challenges, allowing for rapid and reliable
interpretation of ECG data as well access to AI-guided analytics, even in resource-
constrained environments. Moreover, the combination of smartphones and wearable
devices provides an opportunity to create a multiplatform toolkit that can be seamlessly
integrated into various healthcare settings, from remote clinics to emergency rooms.

2.1 Applications

• Early Detection of Cardiac Abnormalities: ECG models can detect subtle
patterns and irregularities in ECG data that may not be apparent to human
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observers. Deploying these models at scale can screen a large number of individuals
efficiently, identifying potential cardiac abnormalities. Early detection is crucial
for initiating timely interventions and preventing serious cardiac events.

• Remote Monitoring and Telehealth: Scalable ECG models enable remote
monitoring of patients’ heart health. This is especially valuable for individuals
with chronic conditions or those who live in remote areas with limited access to
healthcare facilities. Through wearable devices and mobile apps, patients can
record ECG data and have it analyzed by the models, providing real-time insights
to both patients and healthcare providers without the need for in-person visits.

• Standardization of Care: ECG models can provide consistent and standardized
interpretations of ECG data. This consistency is essential, especially in healthcare
systems with varying levels of expertise among clinicians. Standardized interpretations
help ensure that patients receive consistent care and reduce the likelihood of
misdiagnoses or missed abnormalities.

• Research and Development: Scalable ECGmodels contribute to the advancement
of medical knowledge. Researchers can analyze anonymized, aggregated ECG data
from diverse sources to identify new patterns, risk factors, and treatment strategies
for cardiac conditions. This can lead to the development of more effective therapies
and preventive measures.

• Patient Empowerment: Scalable ECGmodels can also be integrated into consumer-
facing applications and wearable devices, allowing individuals to monitor their own
heart health proactively. These models can provide users with insights, alerts, and
recommendations based on their ECG data, empowering them to take control of
their health and seek medical attention when needed.

2.2 Design Considerations

A few elements critical to design this unified platform to collect and analyze ECG data
from different devices include:

• Deployment at Scale: Deployment of machine learning (ML) models at scale is
crucial because it enables the practical application of AI technologies in real-world
scenarios. This scalability is essential for our use case, where large number of
ECG data samples are generated daily. Scaling ML models ensures that valuable
insights are leveraged, operational efficiency is improved, and informed decisions
are made in time.

• Multi-Device Compatibility: Our ECG Dashboard is compatible with a range
of popular wearable devices, including the Apple Watch, Kardia, and Fitbit. Users
can effortlessly connect and sync data from their chosen devices, allowing for a
holistic view of their heart’s performance over time. As far as we are aware, there
is no single platform that can collect ECG data from all three devices and run
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predictive models on them.

• Real-Time Data Visualization: The dashboard provides real-time visualization
of ECG data, enabling users to monitor their heart rhythms as they happen.
This capability empowers individuals to detect irregularities promptly and take
immediate action when necessary.

• Historical Data Analysis: In addition to real-time data, our platform stores
historical ECG recordings in compliance to the Health Insurance Portability and
Accountability Act, allowing users to track their heart health progress over days,
weeks, or months. This longitudinal perspective is invaluable for identifying trends
and patterns in cardiovascular health.

• Predictive Analysis: One of the most important features of our ECG Dashboard
is its predictive analytics engine. By leveraging advanced machine learning algorithms
and artificial intelligence, the dashboard can analyze ECG data and provide predictions
for various heart conditions within seconds. These predictions encompass several
conditions, ranging from the real-time monitoring of rhythm disorders, to dynamic
prediction of left ventricular function, development of valvular abnormalities and
response to novel disease-modifying therapies. This predictive capability empowers
users to proactively manage their heart health and seek medical attention when
necessary.

In an era where data-driven approaches play an important role in healthcare decision-
making, our ECG Dashboard bridges the gap between wearable technology and actionable
insights. By bringing together ECG data from multiple devices, offering real-time
monitoring, and predictive analytics, our platform empowers individuals to take control
of their heart health. It has the potential to support clinicians in making informed
decisions, and it contributes to the body of knowledge in cardiac health research.

3 Methods

The development of the deep learning tools were reviewed by the Yale Institutional
Review Boards (IRB), which approved the study protocol and waived the need for
informed consent as the study represents secondary analysis of existing data (Yale IRB
ID #2000029973). No patient data were used in the evaluation of the model, with only
deidentified recordings used in the time trials, and were not human subject research.

The objective of this design study was to create a seamless and accurate process for
collecting ECG data from wearable and portable devices, analyzing the data, making
predictions about heart conditions, and feeding the results into a data pipeline for
visualization on a dashboard. Below is a detailed step-by-step description of the proposed
method:

• Data Collection:
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– Data Sources: ECG data are collected from multiple wearable devices,
including the Apple Watch, Kardia and Fitbit. The process of collecting
data from each of these devices can vary substantially.

∗ Apple Watch: Out of the three devices our platform is compatible
with, collecting ECG data from Apple watches is a lengthy process.
There exist no single API that can fetch health data from a user’s Apple
Health Store. One way to mitigate this problem is by developing an iOS
application that, with the permission of the user to enable access to Apple
Health Store, can collect the data, and transmit it to our database where
predictive analysis will be run before displaying it on the dashboard, as
well as on the iOS app itself. Figure 3 shows a screenshot of our prototype
application, and its icon. The user will have the control of choosing which
ECG to submit for predictive analysis and displaying on the dashboard.

∗ Fitbit: Collecting ECG data from FitBit is a relatively more straightforward
process compared to Apple Watch. Google has its own FitBit API
(Application Programming Interface) that can be used to collect data
from the cloud. It however requires the permission of the FitBit user to
do so. Once the permission is granted, data can seamlessly be collected
from Google Cloud by using the FitBit ID of the user.

∗ Kardia: Collecting ECG data from Kardia is similar to that of Fitbit, but
does not require any explicit permission as far as the APIs are concerned.
The device will be registered to be used with our dashboard and data from
only those devices can be collected. Kardia has its own API which can
be used to query the required data.

– Data Transmission: Data collected are transmitted to a secure cloud-based
server or platform (AWS S3 bucket in compliance to HIPAA standards) in
real-time.

– Data Storage: ECG data is stored in a secure, scalable, and compliant
data storage system. A combination of relational databases and cloud-based
storage solutions, such as Amazon S3 and EC2 instances, are used to store
raw data and metadata.

• Data preprocessing:

– Data Cleaning: Raw ECG data often contains noise and artifacts. Data
cleaning processes, such as filtering and noise reduction, are applied to enhance
data quality. This is done according to established data preprocessing methods,
with the addition of noise adjustment tools developed by our team. (Khunte
andothers 2023)

– Data Integration: Data from different wearable devices may have varying
formats and standards. Data integration techniques are employed to standardize
and unify the data for consistent analysis.
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• Predictive Analysis:

– Machine Learning Models: Machine learning algorithms are trained on
historical ECG data with labeled outcomes to predict heart conditions. Models
may include binary classifiers (e.g., normal vs. abnormal) or multi-class
classifiers for specific conditions.

– Real-Time prediction:For real-time predictions, streaming data from wearable
devices is continuously analyzed by the trained models. Predictions are
generated as soon as new data becomes available and displayed on the dashboard
within a few seconds.

• Data Pipeline Integration:

– API integration: Predictions and analysis results are exposed through APIs
(Application Programming Interfaces) for seamless integration into the data
pipeline.

– Data Transformation: Predictions and results are formatted into a compatible
data structure for ingestion into the data pipeline. This may involve converting
results into JSON or XML formats.

– Data Pipeline Processing: The data pipeline, orchestrated using tools
like AWS Lambda, processes incoming data, including ECG predictions, and
routes it to the appropriate storage or database.

• Dashboard Integration:

– Data Dashboard Design: user-friendly dashboard is designed to visualize
ECG data and predictions. Dashboard is developed using HTML, CSS,
Bootstrap and Bulma for the frontend and a simple Python-Flask server for
the backend. All tasks are designed as microservices and serve this Flask
backend server.

– API Consumption: The dashboard consumes data from the API endpoints
where ECG predictions and analysis results are made available.

– Real-Time Updates: The dashboard is designed to provide real-time updates,
enabling users to monitor ECG data and predictions as they are generated.

• Data Security and Compliance:

– Data Privacy: Ensure compliance with data privacy regulations (e.g., HIPAA)
by implementing robust data anonymization and access control measures.
ECG data is stored with an anonymized identifier using the RedCap ID.

– Data Encryption: Data is encrypted during transmission and storage to
protect sensitive health information.

Refer to figure 1 for the whole system architecture.
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Figure 1: System Architecture

3.1 Predictive Models and Evaluation

Our predictive models give the predictive analysis for heart conditions such as structural
Heart Disease, LV Systolic Dysfunction (LVSD) and hypertrophic cardiomyopathy (HCM).
(Khunte andothers 2023) explains the model architecture for LVSD screening in detail.
As for HCM, an XGBoost Classifier ensemble layer is used on top of a fine-tuned CNN
architecture similar to the one used in (Khunte andothers 2023). The CNN architecture
consisted of a (5000, 1, 1) input layer, corresponding to a 10-s, 500Hz, Lead I ECG,
followed by seven two-dimensional convolutional layers, each of which were followed
by a batch normalization layer31, ReLU activation layer, and a two-dimensional max-
pooling layer. The output of the seventh convolutional layer was then taken as input into
a fully connected network consisting of two dense layers, each of which were followed by
a batch normalization layer, ReLU activation layer, and a dropout layer with a dropout
rate of 0.532. The output layer was a dense layer with one class and a sigmoid activation
function.

3.2 Dashboard and iOS Application

Representative images of the dashboard are presented in figures 4, 5, 6. Figure 3
demonstrates a screenshot of the iOS application developed to collect and submit an
ECG associated with a Study ID.
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3.3 Evaluation Approaches

To evaluate the performance of the architecture, five time tests were conducted to
determine the average latency and turnaround time for the entire process of recording
an ECG on two different devices (Apple Watch and Kardia). This evaluation has been
broken down into parts depending on the functionality, to get a better analysis of the
performance.

The backend of the dashboard checks for new Kardia and Apple Watch ECG data every
30 seconds. Any new data picked up, will be immediately pre-processed before running
the ML models on them. This adds to the overall overhead time taken to get predictive
analysis on the dashboard.

4 Results

4.1 Evaluation Against Source Data Compared One to One From a Single
User’s Watch and Kardia Acquisition

As described before, ECG data from the Apple watch can be acquired only through an
iOS application. Refer to 3 for the prototype iOS application we have developed for this
purpose. Apple watch records ECGs at 500Hz for a duration of 30 seconds. Once ECG
is recorded on the apple watch, the application takes about 2 seconds to convert the
recorded ECG into a numPy array and write it to the secure database. As for Kardia,
the ECGs are recorded for 30 seconds at 100Hz. It takes about 3-4 seconds for our
Kardia microservice to query the API to get the new ECG recording and add it to our
database.

Once a new ECG has been added to the database, the AWS Lambda job picks it up
and runs all the three predictive models on it. The results are stored in the database
with relevant metadata. Our dashboard is dynamic and updated in near-real time. So
as soon as the new predictions are available, it is updated with the ECG data, metadata
and the corresponding predictive analysis.

Refer to the figure 2 for the ECG recording and the predictive analysis of a user from
Kardia, as displayed in our dashboard.

4.2 Evaluation of time efficiency of the Platform

In the process of evaluation of the platform for time efficiency, we thoroughly assessed
the performance of the platform in terms of the time it takes from the moment of data
acquisition to the generation and reporting of results. This was done by running each
of the Apple Watch and KardiaMobile scenarios 5 times, and calculating the mean time
across these 5 trials. The mean duration observed in this process ranged from 33.0 to
35.7 seconds, after a standard 30-second data acquisition period. This efficiency enabled
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Time Efficiency (all time values in seconds)

Device Time to
record ECG

Mean time
for data to
be uploaded
to AWS S3

Mean time
for new
ECG data
to be picked
up by the
backend

Mean time
to run
predictive
models on
the data

Mean
turnaround
time for
results
to be
displayed
on the
dashboard

Mean
time for
the entire
process

Apple
Watch

30 0.7 19.17 13.51 2.35 65.73

Kardia 30 0 19.17 11.49 2.35 63.01

Table 1: Time efficiency of the entire architecture.

the entire procedure to be completed within a remarkably short timeframe, spanning
from 63.0 to 65.7 seconds.

After the 30s of acquisition on KardiaMobile, it took a mean of 19.17 seconds for the
backend to query the AliveCor API and pick up the new data, 11.49 seconds for running
the models, and 2.35 seconds to write the results back to the S3 storage and results to
be displayed on the dashboard, for a post-acquisition reporting time of 33 seconds, and
a total time inclusive of acquisition to reporting of 63.0 seconds.

After the 30s of acquisition on an Apple Watch, it took a mean of 0.7 seconds to write
the ECG XML file to an S3 bucket, 19.17 seconds for the backend to pick up the new
data and convert it into the desired JSON format, 13.51 seconds for running the models,
and 2.35 seconds to write the results back to the S3 storage and results to be displayed
on the dashboard, for a post-acquisition reporting time of 35.73 seconds, and a total
time inclusive of acquisition to reporting of 65.73 seconds.

Crucially, our evaluation revealed that there were no significant disparities in the time
taken for acquisition and subsequent reporting when using two different commercially
available devices, namely the Apple Watch and KardiaMobile. This uniformity across
these devices highlights the robustness and consistency of the platform’s performance.

5 Discussion

Through the convergence of wearable technology, data science, and predictive analytics,
we have developed a unified ECG platform that harmonizes data collection, analysis, and
visualization. Our prototype has been designed and developed with a special focus on the
needs of end-users as well as the digital health community, creating a unified platform
that can directly deploy and test at scale novel ECG-based screening, diagnostic and
predictive tools. It offers real-time monitoring in the community and further promotes
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equitable access to cardiovascular care.

The whole architecture involves collecting ECG data from multiple wearable devices,
employing data pre-processing techniques to ensure quality and consistency, leveraging
advanced machine learning models for predictive analytics, and integrating the results
into a robust data pipeline. All of the data is showcased on a dynamic and scalable
dashboard with emphasis on data security and privacy.

The innovative aspect of this architecture lies in combining together the three key steps
of collected data from various sources in near real-time, standardizing and deploying the
AI models on Cloud, and retrieving the results from the models and displaying it to the
end user almost instantly.

Such a platform offers a multitude of benefits, including but not limited to, early
intervention, remote monitoring, cost efficiency, and data-driven insights.
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Figure 2: Predictive analysis of one of the ECG recordings from Kardia
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Figure 3: Prototype of the iOS application to collect ECG data from Apple Watches
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Figure 4: Home page of the prototype dashboard

Figure 5: Apple watch ECG recordings
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Figure 6: Kardia ECG recordings
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