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Abstract 

Graft failure after renal transplantation is a multifactorial process.  Predicting the risk of graft 

failure accurately is imperative since such knowledge allows for identifying patients at risk and 

treatment personalization.  In this study, we were interested in predicting the temporal evolution 

of graft function (expressed as estimated glomerular filtration rate; eGFR)  based on pre-

transplant data and early post-operative graft function.  Toward this aim, we developed a 

tailored approach that combines a dynamic GFR mathematical model and machine learning 

while taking into account the corresponding parameter uncertainty.  A cohort of 892 patients 

was used to train the algorithm and a cohort of 847 patients for validation.  Our analysis 

indicates that an eGFR threshold exists that allows for classifying high-risk patients.  Using 

minimal inputs, our approach predicted the graft outcome with an accuracy greater than 80% 

for the first and second years after kidney transplantation and risk predictions were robust over 

time. 

 

Keywords: kidney, transplantation, GFR, renal graft function, kidney graft survival, risk 

estimation.  

 

1. Introduction 

The challenge in the management of patients with chronic organ disease is to prevent 

progressive organ deterioration and ultimate failure.  Most chronic diseases are characterized 

by a dynamic process of injury and repair responses inherent to the specific disease present.  

This natural course may be modulated by a complex, time-variant interplay of disease-

modifying factors, co-morbidity conditions, and potential clinical interventions. Rational 

appreciation of this complex interplay is the key for an individualized patient treatment in terms 

of diagnostic measures and therapeutic decisions.  This includes recognition and weighing of 

relevant causative and non-causative risk factors, their potential interaction, and estimation of 

putative therapeutic effects with respect to the clinical disease course and the mid- and long-

term outcomes1.  

Kidney transplantation is a prime paradigm of a complex chronic disease with a dynamic 

course.  For patients with end-stage renal failure, kidney transplantation is the optimal choice 
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of treatment as it restores renal function significantly.  The degree of renal function is usually 

estimated by the glomerular filtration rate (GFR)2. In particular, the GFR is determined by the 

quality of the transplanted organ.  After transplantation, various factors determine the further 

evolution of GFR, including peri- and post-operative complications and successful treatment 

of these complications.  In an uneventful post-transplant course, kidney grafts can last several 

decades without relevant loss of GFR3.  However, in many cases, repeated injuries lead to 

irreversible graft injury and progressive loss of GFR4,5.  Injuries to the graft include acute and 

chronic T cell- and antibody-mediated rejection, drug toxicity, infections, recurrence of renal 

disease, and effects from patients’ co-morbidities which may have a cumulative impact on the 

transplantat outcome.  Appropriate therapeutic intervention may successfully treat these 

complications but often leads only to partial or no improvement.  Hence, despite all previous 

diagnostic and therapeutic progress, the mean kidney graft survival is limited to approximately 

15 years6,7. Thus, besides timely recognition of the injuries to the graft, the challenge is to have 

a precise understanding of the nature and extent of heterogenous and complex injury factors on 

the outcome, in this case, the graft function (GFR).   

Common computational approaches for the assessment of chronic disease risk factors and 

outcomes are regression analysis and Cox proportional hazard analysis, which assign a certain 

effect value to the putative risk factors and numerically estimate the outcome of interest in a 

given study population8. In such approaches, the patient’s status is captured at a specific point 

in time by choosing particular risk factors, and in turn, an estimate for the future course is 

predicted.  By nature, these approaches cannot truly integrate time-variant, sequential events of 

dynamic disease processes into the model, besides from condensing these multiple events into 

suitable factor variables.  Also, the appropriate estimation of potential interactions between 

different factors that modulate the GFR is challenging. Armero et al. developed a model for 

predicting the GFR in children with chronic kidney disease. A Bayesian analysis estimated the 

joint model's parameters, hyperparameters, and random effects9. The drawback of the proposed 

model is its struggle to accurately predict disease progression for children with serious or 

irregular profiles due to the complex and variable nature of chronic kidney disease, as evidenced 

by its deficiency in identifying such cases and its inability to fully explain the observed 

variability in progression patterns. Limitations of this model included inaccurate prediction of 

disease progression in children with severe graft impairment or with irregular functionional 

changes and latent disease states, thus making identification of these cases virtually impossible 

despite application of advanced approaches like Markov Mixture Models. 

Recently, a sequence-to-sequence deep learning algorithm was developed to predict the patient-

specific expected reference range of the GFR by using serial GFR measurements from the first 

3 months posttransplantation10  The algorithm was shown to be helpful identifying GFR 

deviations in the individual that indicated truly anomalous values and thus, need of potential 

further diagnostic work-up.  Yet, a large number of patient’s GFR measurements was required 

for this assessment and the algorithm could not estimate the stability properties of this value, 

i.e. whether the GFR will change over time or stay invariant.    

Using data from a large cohort of kidney transplant patients and employing machine learning 

algorithms11, we aimed to build a dynamic and expandable model of the graft function after 

kidney transplantation.  In this paper, we developed a framework that assesses the risk of graft 

failure in the first and second year using a small number of pre-operative clinical data and two 

consecutive GFR measurements after transplantation.   
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2. Results 

2.1.  Donor’s age, post-operative GFR values and GFR speed provide a satisfactory 

estimate of the first-year graft function. 

Table 1 and Table 2 include the patients’ clinical information for the training and validation 

groups, respectively.  We have tested the difference of  our variables between different patient 

groups using the χ2 test for categorical variables and Mann-Whittney test for continuous 

variables with p-value ≤ 0.05.  In the training group, patients with rejection were younger, had 

a lower GFR within the first six weeks after transplantation and had more often pre-formed 

antibodies at transplantation. In the validation cohort, patients with rejection were older, were 

more often retransplanted and received more often organs from older and deceased donors.  

Patients with one or multiple rejections received more often organs from a female donor, and 

patients with one rejection were more often male. Patients without rejection had a more 

favorable immunological risk profile, with fewer HLA mismatches and lower prevalence of 

preformed antibodies and blood transfusions before transplantation. Patients with rejection 

more often lacked immediate graft function after transplantation and had a lower GFR within 

the first six weeks.  

 

First, we attempted to predict the GFR at 365 days post-transplantion in the training cohort.  

We used a linear regression analysis, which allowed not only to predict but also to identify the 

important determinant variables. Our results show that the highest GFR within the first 6 weeks  

and the GFR speed along with the donor’s age are sufficient to predict the GFR at 365 days.   

The R2 values of the multi-linear regression results were 0.68 for the non rejection patients, 

0.57 for patients with one rejection, and 0.49 for patients with multiple rejections. Details 

regarding the regression approach are included in Section 2 of the SI (Section 2 of the SI 

including Figures S.1.-S.4.  and Tables S.1.  and S.2.). 

 
 

 

2.2. A GFR threshold exists with respect to graft survival 

Our GFR predictive model invoked the existence of a critical GFR threshold that is related to 

graft loss. To our knowledge, in the current literature the existence of a critical GFR threshold 

has not been investigated. Here, we use a survival random forest analysis for 15 years developed 

by Scheffner et al. where the graft survival was evaluated (these data are from an unpublished 

analysis which applied the same approach and cohort that was used in the study on patient graft 

survival from Scheffner et al11). Among one of the pivotal graft failure/success factors was first-

year GFR.  

Here, we model the patient graft survival probability as a sigmoidal function reading: 

𝑃𝑟𝑜𝑏{𝑔𝑟𝑎𝑓𝑡 𝑠𝑢𝑐𝑐𝑒𝑠𝑠} =
𝑎0

1 + 𝑒𝑥𝑝(−𝑎1𝐺𝐹𝑅365𝑑 − 𝑎2)
 (1) 

where a0 is the averaged maximum graft survival probability, and α1, and α2 arrange the shape 

of the function.  The GFR values at the inflection point of the sigmoidal curve are considered 

as graft failure clinical thresholds for the different populations (GFRfail level).   
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Table 1: Baseline characteristics of study participants in the training group (N1).  Parentheses 

show the proportions. 

 No rejection One rejection Multiple rejections p-values 

N 362 187 343  
Recipient age (yrs) 51.21 ± 12.94 50.24 ± 13.21 48.00 ± 13.21 0.00 

Recipient sex     
Male 212 (59) 115 (61) 202 (59) 0.17 

Female 150 (41) 72 (39) 141 (41) 0.19 

Donor age (yrs) 47.82 ± 15.69 49.02 ± 16.29 49.18 ± 15.07 0.48 

Donor's sex     
Male 192 (53) 99 (53) 170 (50) 0.18 

Female 170 (47) 88 (47) 173 (50) 0.17 

Origin of the renal graft      
Deceased 305 (84) 162 (87) 291 (85) 0.07 

Living 57 (16) 25 (13) 52 (15) 0.48 

Cold Ischemia Time (hrs) 14.14 ± 7.18 14.79 ± 7.32 14.79 ± 7.68 0.66 

Initial function of the graft     
No 82 (23) 50 (27) 127 (37) 0.15 

Yes 280 (77) 137 (73) 216 (63) 0.07 

HLA-missmatch at locus A     
0 171 (47) 80 (43) 149 (43) 0.15 

1 142 (39) 72 (38) 145 (42) 0.21 

2 49 (14) 35 (19) 49 (14) 0.85 

HLA-missmatch at locus B     
0 124 (34) 56 (30) 104 (30) 0.24 

1 158 (44) 93 (50) 157 (46) 0.32 

2 80 (22) 38 (20) 82 (24) 0.36 

HLA-missmatch at locus DR     
0 165 (46) 67 (36) 103 (30) 0.09 

1 147 (41) 91 (49) 178 (52) 0.21 

2 50 (14) 29 (15) 62 (18) 0.52 

Level of pre-formed antibodies (%)     
>0% 23 (6) 11 (6) 30 (9) 0.62 

0% 339 (94) 176 (94) 313 (91) 0.05 

Blood transfusions before transplantation     
unknown 54 (15) 20 (11) 60 (17) 0.31 

yes 107 (30) 49 (26) 99 (29) 0.27 

no 201 (55) 118 (63) 184 (54) 0.28 

Number of pregnancies      
no pregnancies 248 (69) 142 (76) 241 (70) 0.16 

yes 101 (28) 41 (22) 88 (26) 0.24 

unknown 13 (4) 4 (2) 14 (4) 0.72 

Previous transplantations      

1-2 45 (12) 17 (9) 55 (16) 0.33 

none 317 (88) 170 (91) 288 (84) 0.07 

Highest GFR within 6 weeks after 

transplantation 61.13 ± 24.08 62.00 ± 23.16 55.89 ± 24.68 0.00 
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Table 2: Baseline characteristics of study participants in the validation group (N2).  Parentheses 

show the proportions. 

 No rejection One rejection Multiple rejections p-values 

N 426 159 262  
Recipient age (yrs) 49.75 ± 14.08 53.14 ± 12.86 50.69 ± 13.73 0.045 

Recipient sex     
Male 267 (63) 105 (66) 161 (61) 0.01 

Female 159 (37) 54 (34) 101 (39) 0.05 

Donor age (yrs) 51.19 ± 14.74 52.56 ± 15.76 53.73 ± 15.32 0.10 

Donor's sex     
Male 200 (47) 65 (41) 105 (40) 0.01 

Female 226 (53) 94 (59) 157 (60) 0.05 

Origin of the renal graft      
Deceased 201 (47) 125 (79) 185 (71) 0.35 

Living 225 (53) 34 (21) 77 (29) 0.00 

Cold Ischemia Time (hrs) 9.11 ± 6.06 9.72 ± 5.09 9.09 ± 5.49 0.22 

Initial function of the graft     
Yes 378 (89) 139 (87) 211 (81) 0.00 

no 48 (11) 20 (13) 51 (19) 0.44 

HLA-missmatch at locus A     
0 172 (40) 52 (33) 69 (26) 0.01 

1 182 (43) 76 (48) 132 (50) 0.09 

2 72 (17) 31 (19) 61 (24) 0.40 

HLA-missmatch at locus B     
0 111 (26) 34 (21) 45 (17) 0.05 

1 196 (46) 78 (49) 115 (44) 0.04 

2 119 (28) 47 (30) 102 (39) 0.17 

HLA-missmatch at locus DR     
0 165 (39) 54 (34) 66 (25) 0.01 

1 195 (46) 71 (45) 132 (50) 0.04 

2 66 (15) 34 (21) 64 (25) 0.52 

Level of pre-formed antibodies (%)     
>0% 61 (14) 22 (14) 41 (16) 0.36 

0% 365 (86) 137 (86) 221 (84) 0.00 

Blood transfusions before transplantation     
unknown 68 (16) 23 (14) 60 (23) 0.28 

yes 82 (19) 36 (23) 52 (20) 0.34 

no 276 (65) 100 (63) 150 (57) 0.01 

Number of pregnancies      
no pregnancies 313 (73) 114 (72) 183 (70) 0.00 

yes 85 (20) 38 (24) 58 (22) 0.36 

unknown 28 (7) 7 (4) 21 (8) 0.51 

Previous transplantations      

1-2 41 (10) 18 (11) 36 (14) 0.60 

none 385 (90) 141 (89) 226 (86) 0.00 

Highest GFR within 6 weeks after 

transplantation 66.24 ± 25.50 63.29 ± 23.25 58.79 ± 23.63 0.00 
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Initially, we have calculated the survival probabilities of training cohort (N1) using a random 

forest survival model.  Eq. 20 was fitted for all of the patients in the training group, regardless 

of rejection incidence.  A safe range for failure critical threshold might be considered to be 

between 30 and 50 ml/min/1.73 m2 by comparing the likelihood of survival at 50% across all 

patient categories.  All figures can be found in the Section 5 of  SI (Figures S.6 – S.9). 

 

2.3. Individualized prediction of critical GFR thresholds. 

An important task for our framework is the estimation of the individualized critical GFR 

threshold. The parameters of the Duffing oscillator (Eqs. 1-4) were estimated for all patients 

that belong to the group without rejection. As long as the conditions in Eqs. 5-8 were satisfied, 

the a, b, and θ parameters of the model were calculated by Eqs. 9-11. In turn, we drew the λ 

damping parameter from the empirical distribution found in Sec.3 SI.  

In addition, from the prediction of GFR at 365 days and the use of the detailed mathematical 

analysis presented in section 2.3, the critical threshold can be estimated.  Figure 1 contains the 

distribution of the personalized threshold θ in patients without rejection, one rejection, and 

multiple rejections for the training group.  Statistical difference exists between the patients 

without rejection and patients with multiple rejections, and the patients with one and multiple 

rejections. The population with multiple rejections had smaller θ values in comparison with the 

other two patient groups. The average critical value for the three categories is 37±12 

mL/min/1.73m2.  In the following section, we will show the existence of such a critical GFR 

threshold with respect to graft survival. 

 

 

Figure 1:  Distributions of critical GFR thresholds in patients with and without rejection in 

the training group. 
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2.4. Our algorithm satisfactorily predicts graft failure among all patient groups 

Our regression analysis for predicting a patient’s GFR at 365 days postransplantation resulted 

in a prediction interval of ±18 units, across all three patient categories (Figures S2, S3, and S4 

from supplementary material).  The variation of GFR value between a minimum (GFRmin) and 

maximum (GFRmax) value led to the estimation of two more respective parameter sets of (α, b, 

θ) but the damping factor could remain uncertain.  As stated above, the damping parameter λ 

was fitted from the non-rejection patient ensemble, including derivation of the corresponding 

probability distribution.  Since for the parameter λ only the empirical distribution was known, 

we generated an ensemble of simulations for λ’s drawn from this distribution and a probability 

of graft failure was calculated (see Figure 2Error! Reference source not found.).  This a

nalysis was applied for the two populations (N1 and N2) predicting the graft risk for 365 days 

and 730 days post-transplantation.   

 

Figure 2:   (A) The figure depicts the GFR dynamics in an example of a patient for a fixed (α, 

b, θ) parameter set, and (B) shows the 362 different values of λ drawn from the patient ensemble 

distribution.  (C) The patient had a low probability of kidney failure, since most of the simulated 

trajectories landed above the critical threshold θ, implying a successful transplantation. 

 
According to the steps discussed in section 2.4, we tested our risk assessment algorithm in the 

two groups N1 and N2. Starting from the training group N1 in Figure 3A and assuming a 

maximum predicted one-year GFR value, we obtained an over 80% area under the curve (AUC) 

across different GFR thresholds. To further validate the performance of our proposed 

methodology, the independent cohort group N2 was used, where all the computational 

procedures and the associated parameters remain the same.  Figure 3A indicates that the N2 

group has a similar AUC trend as the N1 group.  Figure 3B shows the AUC in both groups.  It 

is noticeable that their AUC values are all consistently above 0.8, reaching even values higher 
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than 0.9, and the AUCs are close to each other between the two groups and across the categories 

of rejection/no rejection when the maximum threshold 50 mL/min/1.73 m2 was assumed.  

Finally, by using the threshold concept, we examined if state-of-the-art classification methods 

such as XGBoost and Random Forest could outperform our algorithm.  In particular, XGBoost 

was performing around 0.73 on average across patient groups and for different thresholds and 

Random Forests around 0.74 (for details see section 6 of SI).  Therefore, the coupling of 

regression, mathematical modeling and uncertainty analysis had a better accuracy with respect 

to patient classification.  

 

2.5. The graft risk prediction is robust in time 

We attempted to explore the robustness of the prediction over time.  A basic property of our 

mathematical model is that the functional state is a steady state, i.e. it is robust in time.  This 

implies that the prediction of a patient classified as low risk using the GFR at 365 days should 

theoretically be consistent if applied to a later GFR measurement. We used the GFR values at 

730 days and recalculated our predictions. Figure 4A depicts the AUC for different annual 

predicted GFR values at two years in both the training and validation groups.  Figure 4B shows 

the AUC for both groups for patients with and without rejection, which is around 0.8.  Indeed, 

the prediction performance was similarly good compared with the one-year prediction, 

suggesting that the prediction of graft risk failure is rather robust.  Later time points of 

prediction were not tested as these may be affected by unforeseeable events, such as viral 

infections, that may deteriorate the graft function. 

 

(A)  (B)  

 

Figure 3: (A) Averaged AUC at 365 days with standard deviation in patients of  both the training 

and validations groups (N1 and N2) over the different predicted GFR values in the critical 

thresholds ranging from 30-50 mL/min/1.73 m2. (B) averaged AUC with standard deviation of 

patient groups in N1 and N2 with and without rejection when critical thresholds ranged from 30-

50 mL/min/1.73 m2. 
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(A)  (B)  

 

Figure 4: (A) Averaged AUC with standard deviation at 730 days post transplantation in patients 

of both the training and validation groups (N1 and N2) over the different predicted GFR values in 

the critical thresholds ranged from 30-50 mL/min/1.73 m2.  (B) averaged AUC with standard 

deviation of the patient groups N1 and N2 with and without rejection when critical thresholds 

ranged from 30-50 mL/min/1.73 m2. 
 

 

 
3.  Discussion 

This research introduces a framework for evaluating the graft function and risk of graft failure 

in kidney transplant patients using limited pre- and post-operative data. Utilizing state-of-the-

art feature selection techniques, we have identified the key measurements that have the most 

significant impact on GFR after one year. The donor's age, the highest GFR within 6 weeks 

after donation, and the percentage change in GFR at 100 days were found to be the most critical 

clinical parameters. 

When we trained the regression model using data only from patients without rejection, we 

obtained reasonably predictive results for patients with and without rejection. However, we 

went further to enhance our model by developing a dynamic model capable of capturing GFR 

fluctuations and corresponding long-term GFR behavior. A critical assumption in our approach 

is the existence of a GFR threshold value that distinguishes successful grafts from failing ones. 

By utilizing survival functions from the N1 group, we were able to estimate this threshold. 

It's important to note that investigating the biological mechanisms underlying this threshold is 

beyond the scope of this paper. We used regression analysis to estimate model parameters, 

assuming it provides a robust estimate of individualized functional GFR (first-year value). Our 

proposed algorithm, trained on the N1 group without rejection, exhibited high AUC values for 

predicting graft risk at 365 and 730 days for all patients, both with and without rejection. This 

demonstrates the robustness of our method in distinguishing between low and high-risk patients 

regarding graft failure, even without providing exact GFR value predictions. Similar results 

were obtained when our algorithm was applied to the validation dataset (N2). Ultimately, we 

discovered that our method outperforms state-of-the-art classification methods, such as 

XGBoost and Random Forests, in predicting the fate of grafts. 
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While our current modeling approach describes individually expected GFR trajectories based 

on cases without rejection, our model can be expanded and refined to incorporate additional 

factors, such as different rejection phenotypes or other clinical complications mentioned earlier. 

This extension may help modulate the individual GFR trajectory. Additionally, variations in 

anti-rejection therapies and their responses can be incorporated into our proposed model. 

However, due to sample size limitations, we were unable to precisely determine the impact of 

different therapies. We are currently developing a stochastic model that incorporates time-

varying factors to simulate and predict the temporal evolution of graft function more accurately. 

The introduction of stochasticity/noise will necessitate the use of Monte-Carlo simulations12 

and Kramer's theory to determine the graft's fate. In addition, improved predictions could be 

made by applying regression analysis to real-time measurements more frequently and by 

updating the model parameters13.   

Our approach has several limitations. The data used for model development and validation were 

collected from a single center, primarily serving patients of Caucasian origin. This homogeneity 

ensures consistency in treatment and patient responses but may reduce generalizability to ethnic 

groups and clinical practices. In addition, our modeling focused solely on rejection as the prime 

factor in graft injury and failure, omitting other significant factors like infections, drug toxicity, 

and relevant co-morbid conditions. Moreover, we did not further differentiate rejections in 

terms of severity, antibody- and T cell-mediated mechanisms, or responses to anti-rejection 

treatment. Finally, GFR formulae based on serum creatinine inherently possess errors and 

inaccuracies. Therefore, our approach may be more suitable for establishing an intra-individual 

relative range of variance in graft function rather than absolute GFR values. 

Our current mathematical model describes the temporal GFR evolution in a somewhat 

phenomenological manner. The Duffing oscillator employs a third-order polynomial forcing 

term to represent the expected bistability between stable and failing grafts. A more biologically 

relevant model could enhance interpretability by explicitly modeling the involved 

pathophysiological processes, thus enabling the investigation of novel intervention strategies. 

As an example, graft injury of different causes may result in progressive organ fibrosis as 

suggested by our in vitro/in silico model (Setten at al14 which simulated the interplay of 

fibroblasts and macrophages under different oxygen stress and inflammatory conditions as 

function of  a as a bistable state of injury and repair.  This and the works of U. Alon in the 

topic15,16 could offer a solid starting point to develop biologically consistent alternative to the 

Duffing oscillator forcing term. 

Our study serves as an example of combining dynamic modeling and machine learning to 

address a biomedical problem17,18. This is an emerging research field, with two distinct 

approaches: (i) data-driven derivation of dynamic models and (ii) data-assisted model 

predictions. In the former category are methods like SiNDy19 and Koopman operator learning 

approaches20. In the latter, the most prominent method is physics-informed neural networks21, 

which require knowledge of reliable dynamic models. In cases of model structural uncertainty, 

methods such as BAM22 are recommended. Finally, when dealing with noisy continuous 

measurements, data assimilation methods, with the Kalman filter23 being the most prominent, 

combine model predictions and statistical inference. Our approach relates to the specific 

problem of functional evolution of kidney grafts but should also be applicable to other settings 

of chronic disease with deteriotion of organ function.   
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4. Online Methods 

4.1. Approach rationale 

Our approach aims to calculate and estimate the individualized risk of graft failure for patients 

with a kidney graft.  For this, we develop a mathematical model to predict the temporal GFR 

dynamics of a specific patient.  The ingredients of the dynamic model are: (i) the oscillatory 

behavior of the GFR and (ii) the existence of two steady graft states.  The former intends to 

model the fluctuations observed in GFR trajectories.  The latter models the failed and the 

functional graft state, respectively.  It is important to note that these states are assumed to be 

stable, which allows not only to make a temporal prediction but also to gain knowledge of the 

temporal persistence of the predicted state.  This model involves a critical threshold GFR value 

(unstable) that separates the failed and functional graft states.  

The challenge is the individualized parameter calibration of the model. In this regard, we 

employ the assumption that the first-year GFR value can be considered as a good proxy of the 

functional graft performance3, where the failed state can be assumed as null GFR.  Using as a 

training set a cohort of patients, which represents the natural, undisturbed transplant course 

(patients without a rejection) as a training set, we employ a linear regression analysis to estimate 

the first-year GFR based on pre-operative patient data and two postoperative GFR 

measurements, namely the highest GFR measurement within six weeks after the transplantation 

and the value of GFR at one hundred days.  Using these data, we estimate the individual 

patient’s model parameters (details in Materials & Methods).   

The most important model parameter is the GFR threshold value. GFR values above it imply a 

successful transplantation with a stable functioning graft, whereas values below indicate a high 

risk of graft failure. Using uncertainty analysis techniques, we calculate a probability for the 

risk of graft failure. Finally, we validate our predictions in two independent data sets, consisting 

of patients with no, one, or multiple rejections by using a small number of inputs. The model 

was calibrated only for patients without rejection in order to avoid any data leakage.  Our 

strategy is succinctly described in Figure 5. 
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Figure 5:  Steps followed from experimental measurements to the classification of the 

patients. 

 

 

4.2. Clinical data  

Data was taken from adult patients who received a kidney transplant alone or combined with 

another solid organ between 2000 and 2015 at Hannover Medical School and participated in 

our protocol biopsy program.  Data collection and analysis were performed with the informed 

consent of the patients and with the approval of the institutional review board (no 2765).  Two 

different patient sets were used in this study.  The training group N1 and the validation cohort 

N2 consisted of  892 and 847 patients, respectively.  In the training group, 362 patients had no 

rejection, 187 patients had one rejection, and 343 patients had multiple rejections.  In the 

validation cohort, 426 patients had no rejection, 159 patients had one rejection, and 262 patients 

had multiple rejections.  Protocol biopsies were collected six weeks, 3, and 6 months after 

transplantation.  Also, data collection was performed before and at transplantation.  Data of 

additional biopsies for cause, performed upon unexplained graft deterioration (at any time), 

were also recorded.  Biopsies were evaluated according to the Banff classification valid at the 

time of biopsy24.  

Anti-thymocyte globulin was used in sensitized patients and for combined kidney/ pancreas 

transplantations.  The standard maintenance therapy consisted of a calcineurin inhibitor, 

mycophenolate mofetil, and prednisolone.  Until the end of 2004, patients with low 

immunological risk (i.e., first kidney transplant from deceased donors in patients without panel-

reactive antibodies) received a dual maintenance therapy with a calcineurin inhibitor and 

prednisolone.  Tacrolimus gradually replaced cyclosporine A over the years.  
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Acute T cell-mediated rejections (TCMR), including borderline cases were treated with steroid 

boli, with the exception of subclinical borderline cases in protocol biopsies, defined by an 

increase in serum creatinine over baseline by <20% at biopsy.  In addition, mycophenolate 

mofetil was added in patients on a dual immunosuppressive maintenance therapy.  Patients with 

TCMR occurring at 6 months or later or with vascular TCMR at any time point were switched 

from cyclosporine A to tacrolimus.  Acute antibody-mediated rejection (ABMR) was treated 

with steroid boli, plasma exchange, rituximab, immune globulins, and a switch to or increase 

in tacrolimus when full histopathomorphological criteria of the rejection were present (with or 

without donor-specific antibodies), interstitial fibrosis and tubular atrophy was <25%, and 

baseline estimated glomerular filtration rate (eGFR) before the rejection was >25 ml/min.  In 

all other cases, individual treatment decisions were made, mostly consisting of steroid boli, 

immune globulins, a switch to or increase in tacrolimus, or no treatment in cases with minor 

findings of glomerulitis and peritubular capillaritis.  No standardized treatment was defined for 

BK polyomavirus nephropathy or other findings (e.g., acute tubular injury, tubulointerstitial 

fibrosis/tubular atrophy, glomerulonephritis).  

The glomerular filtration rate was calculated with the Cockcroft and Gault formula, and then 

GFR was estimated in units mL/min/1.73 m2 body surface. The criteria for delayed graft 

function were <500 mL urine within the first 24 hours post-transplantation and/or dialysis 

treatment necessary within the first week 

 

4.3. Prediction of first-year graft function  

Initially, only patients without rejection from the training group were used for feature selection 

and multilinear regression to predict the GFR at 365 d.  The multilinear regression model 

included pre-transplantation data and modellable parameters, including 1) the age of the patient, 

2) the sex of the patient, 3) the donor's age, 4) the donor's sex, 5) deceased donor/living donor 

graft, 6) cold ischemia time (hours), 7) presence or absence of delayed graft function, 8) HLA-

mismatch at locus A, 9) HLA-mismatch at locus B, 10) HLA-mismatch at locus DR, 11) level 

of pre-formed antibodies at transplantation, 12) blood transfusions before transplantation, 13) 

the number of pregnancies before transplantation, 14) the number of previous transplantations, 

15) the highest GFR achieved within six weeks after transplantation, and 16) the percentage of 

change between the highest GFR within six weeks and the GFR at 100 d.  Since GFR 

measurement times were non-uniform i.e., GFR was sampled at various post-operative times, 

we have interpolated the GFR values for every 10 days for the first 100 days. 

A sequential forward selection was performed using the Akaike criterion (AIC), the Bayesian 

information criterion (BIC), and the adjusted R squared for the best model selection25. The 

regression coefficients represented the importance of the underlying features.  The derived 

multilinear model was assumed to be applicable to all other patient groups with one rejection 

and multiple rejections.  

 

4.4. Mathematical modeling of GFR evolution 

GFR dynamics of patients are typically characterized by a growth phase in a short period  after 

transplantation3.  In individual patients, the dynamics in GFR evolution may show weak and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 2, 2023. ; https://doi.org/10.1101/2023.10.01.23296293doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.01.23296293
http://creativecommons.org/licenses/by-nc-nd/4.0/


damped oscillations toward a specific GFR value or a decreasing trend that may result in graft 

failure (see Figure 6).   

 
Figure 6:  Examples of different graft function time courses of individual patients. 

 

 

(A)  (B)  

 

 

Figure 7: (A) Patient trajectories illustrated on the Duffing oscillator potential.  (B) 

Model calibration approach for our GFR dynamic model combining the contribution of 

6 weeks-best GFR (42 days) and 100 days GFR by regression analysis. 

 

 

We modeled this GFR oscillatory behavior with a phenomenological Duffing oscillator (Figure 

7A). Our selection is justified by the existence of two equilibria, i.e., the failed and the 

functional kidney state (Figure 7A).  These equilibria are typically separated by a GFR 

threshold θ which is mathematically characterized asa saddle-node (unstable). Finally, the 

functional steady-state is estimated as the predicted first-year GFR for each patient using a 
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regression approach. The failed graft steady-state is assumed as GFR=0 mL/min/1.73 m2.  The 

Duffing oscillator model is described by the following  ordinary differential equations (ODEs): 

 

𝑑2𝐺𝐹𝑅

𝑑𝑡2
− 𝜆

𝑑𝐺𝐹𝑅

𝑑𝑡
= 𝐹(𝐺𝐹𝑅) 

(2) 

  

  
Where specifically we have: 

𝑑𝐺𝐹𝑅

𝑑𝑡
= 𝑣 

(3) 

𝑑𝑣

𝑑𝑡
= −𝜆 𝑣 − 𝐹(𝐺𝐹𝑅) 

(4) 

𝐹(𝐺𝐹𝑅) = 𝑎𝐺𝐹𝑅3 + 𝑏𝐺𝐹𝑅2 + 𝛾𝐺𝐹𝑅 (5) 

 

 
The variable v(t) is the GFR speed (rate of change), GFR(t) denotes the temporal evolution of 

GFR (ml/min/1.73 m2 body surface) and dGFR/dt denotes the time-derivative (speed) of the 

GFR.  The parameter λ controls the amount of damping.  The right hand side is a “forcing” 

term, which phenomenologically lumps the underlying biological processes responsible for 

GFR production. The simplest choice of function F is assumed to be given by a third-order 

polynomial. α, b, and γ are model parameters which are estimated individually.  

 

The steady states of the Duffing oscillator are related to GFR values of the failed, functional 

and the threshold (saddle-node) state.  To explicitly calculate the afore-mentioned steady states, 

regarding the threshold θ, we set:  

 

𝐹(𝐺𝐹𝑅 = 𝜃) = 0 (6) 

Which leads to:  

𝑎𝜃2 + 𝑏𝜃 + 𝛾 = 0 (7) 

And we also set at 365 days 

𝐹(𝐺𝐹𝑅365) = 0 (8) 

Where GFR365 is the GFR at 365 d.  Eq. 7 leads to:  

𝑎𝐺𝐹𝑅365
2 + 𝑏𝐺𝐹𝑅365 + 𝛾 = 0 (9) 

 

Combining Eqs. 6 and 8, with γ estimated parameter values, a, b, and θ parameters are 

approximated to: 

𝑎 ≈
𝛾

𝐺𝐹𝑅365 
2  (10) 

𝑏 ≈ −3√
𝑎𝛾

2
 

(11) 
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𝜃 ≈
𝐺𝐹𝑅365 

3
+

𝛾
𝑎

3 𝐺𝐹𝑅365 
≈

2

3
𝐺𝐹𝑅365  

(12) 

 
Section 1 of the Supplementary Material includes details for all the steps needed for the 

parameter approximations. 

 

The GFR value at 365 days (GFR365) was predicted for all patients in the groups with and 

without rejection by the regression model trained by the patient cohort without any rejection 

episode (Section 2 of the SI including Figures S.1.-S.4.  and Tables S.1.  and S.2.). When 

patients with relevant complications which are known to affect the graft (rejection, BK virus 

nephropathy, glomerulonephritis, urinary tract infections, other severe infections and other 

severe extra-renal diseases) were excluded the annual rate of change was 1.58 ml/min/1.73 m2 

(Table S.3 in the Section 3 of SI). The whole cohort of patients had an average annual GFR loss 

of 2.07 ml/min/1.73 m2 (Table S.4 in the Section 3 of SI). Thus, γ could be estimated equal to 

10-4 d-2 (Section 3 in the SI).  

 

With the individualized parameters calibrated as described above and starting with the GFR at 

six weeks, the initial condition of the model (1) can be set for each individual patient. Then, 

using the patient cohort without rejection as a training set again, the λ parameter was estimated 

individually from the clinical measurements with the particle swarm optimizer algorithm 

(PSO)26.  PSO belongs to stochastic, population-based computer algorithms.  The main concept 

of this method is that each parameter which is considered as a particle, is a design point and is 

available to move in multi-dimensional space for finding the best solution 27.  Thus, the time-

evolution of the GFR can be simulated for each patient, when a λ is selected from the obtained 

distribution (details in Section 4 of SI).  This procedure of parameter calibration is shown in 

Figure 6B for a hypothetical patient.  Finally, having all model parameters estimated, a 

personalized GFR threshold can be approximated from Eq. 11.   

 
  

4.5. Individualized graft failure risk assessment  

Our goal is to use the calibrated model to calculate the individual graft failure risk. Initially, a  

range for the predicted GFR value at 365 d was defined, taking into account the regression 

mean square error for all different patient groups with and without rejection.  According to the 

individualized minimum, mean, and maximum GFR predictions from the regression model, the 

parameters α, b, and θ  were calibrated.  The parameter λ was drawn from an empirical 

distribution calculated from the patient cohort without rejection, as this population’s GFR 

values were less affected by anti-rejection treatments.  

 

Each i-th patient GFR was simulated n times for the 3 different (𝛼𝑖
(𝑘)

, 𝑏𝑖
(𝑘)

, 𝜃𝑖
(𝑘)

 ) parameter sets 

for t1 = 365 d, or t2 = 730 d.  An ensemble of n simulations was defined, where for each j-th 

simulation a λj value was drawn from the corresponding distribution.  A simulated graft was 

considered failed, when the GFR at the end of the simulation was less than the threshold θi, i.e., 

GFRi(t)<θi (Figure 7). Finally, a failure probability was calculated as the fraction of “failed” 

simulated grafts.  More precisely, the steps are given in the box below. 
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4.6. Validation process 

In turn, the receiver operating characteristic curve (ROC) was created by setting a threshold 

probability (pthr) range from 0 to 1, and comparing the actual values with the real kidney 

transplantation outcomes.  More precisely, regarding the low and high risk for each patient at 

365 d and at 730 d, the true success, the false failure, the false success, and the true failure were 

estimated as follows: 

• True success (right low risk patient prediction): 

𝑖𝑓 𝑃𝑖
(𝑘)

≤ 𝑝𝑡ℎ𝑟 𝑎𝑛𝑑 𝐺𝐹𝑅𝑖,𝑟𝑒𝑎𝑙 ≥ 𝐺𝐹𝑅𝑓𝑎𝑖𝑙 𝑙𝑒𝑣𝑒𝑙 (15) 

 

• The false failure (false high risk patient prediction): 

𝑖𝑓 𝑃𝑖
(𝑘)

> 𝑝𝑡ℎ𝑟 𝑎𝑛𝑑 𝐺𝐹𝑅𝑖,𝑟𝑒𝑎𝑙 > 𝐺𝐹𝑅𝑓𝑎𝑖𝑙 𝑙𝑒𝑣𝑒𝑙 (16) 

 

• The false success (false low risk patient prediction): 

𝑖𝑓 𝑃𝑖
(𝑘)

< 𝑝𝑡ℎ𝑟 𝑎𝑛𝑑 𝐺𝐹𝑅𝑖,𝑟𝑒𝑎𝑙 < 𝐺𝐹𝑅𝑓𝑎𝑖𝑙 𝑙𝑒𝑣𝑒𝑙 (17) 

 

• The true failure (true high risk patient prediction): 

𝑖𝑓 𝑃𝑖
(𝑘)

> 𝑝𝑡ℎ𝑟 𝑎𝑛𝑑 𝐺𝐹𝑅𝑖,𝑟𝑒𝑎𝑙 < 𝐺𝐹𝑅𝑓𝑎𝑖𝑙 𝑙𝑒𝑣𝑒𝑙 (18) 

 

The ROC was ploted bases on true success and false success rates, which are equal: 

𝑇𝑟𝑢𝑒 𝑠𝑢𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝑇𝑟𝑢𝑒 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑖𝑙𝑢𝑟𝑒
 

(19) 

𝐹𝑎𝑙𝑠𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑎𝑙𝑠𝑒 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝐹𝑎𝑙𝑠𝑒 𝑆𝑢𝑐𝑒𝑠𝑠 + 𝑇𝑟𝑢𝑒 𝐹𝑎𝑖𝑙𝑢𝑟𝑒
 

(20) 

 

• A parameter set (𝛼𝑖
(𝑘)

, 𝑏𝑖
(𝑘)

, 𝜃𝑖
(𝑘)

 ), k = {min, mean, max} is estimated 

for each i-th patient. 

• For every t ∈{t1 = 365 d, t2 = 730 d}, and λj ∈{ λ1, …, λn}, where n number 

of samples drawn, the 𝐺𝐹𝑅𝑖,𝑗
(𝑘)(𝑡) is estimated 

• Assumed indicator function I, where: 

𝐼 ቀ𝐺𝐹𝑅𝑖,𝑗
(𝑘)(𝑡)ቁ = ቊ

1, 𝐺𝐹𝑅𝑖,𝑗
(𝑘)(𝑡) < 𝜃(𝑘)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

• The probability of failure is calculated as: 

𝑃𝑖
(𝑘)

=
σ 𝐼 ቀ𝐺𝐹𝑅𝑖,𝑗

(𝑘)(𝑡)ቁ𝑛
𝑗=1

𝑛
 (14) 
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The corresponding area under the curve (AUC) was calculated for each ROC in order to select 

the best parameter set that represents the individualized risk. 
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