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ABSTRACT 

Background:  

Due to the lack of a feasible screening strategy, aortic stenosis (AS) is often 

diagnosed after the development of clinical symptoms, representing advanced 

stages of disease. Portable and wearable devices capable of recording 

electrocardiograms (ECGs) can be used for scalable screening for AS, if the 

diagnosis can be made with a single-lead ECG, despite potentially noisy acquisition.  

Methods: Using electronic health records and imaging data from a large, diverse 

hospital system (2015-2022), we developed a deep learning-based approach to 

detect moderate/severe AS using a single-lead ECG. We used ECGs paired with 

echocardiograms obtained within 30 days of each other to develop the model. We 

extracted lead I signal data from clinical ECG and augmented it with random 

Gaussian noise. We trained a convolutional neural network (CNN) to identify TTE-

confirmed AS using noisy single-lead ECGs. Finally, we used the CNN model 

probabilities, along with patient age and sex, as predictive inputs to train an extreme 

gradient boosting (XGBoost) model to detect moderate/severe AS. 

Results: The model was developed in 75,901 ECGs/35,992 patients (median age 61 

[interquartile range (IQR) 47-72] years, 54.3% women, 9.5% Black) and validated in 

3,733 patients (median age 61 [IQR 47-72] years, 53.4% women, 9.7% Black). In the 

held-out validation set, the ensemble XGBoost model achieved an AUROC of 0.829 

(95% CI: 0.800-0.855), with a sensitivity of 90.4% and specificity of 58.7% for 

detecting moderate/severe AS. For detecting severe AS, the model's AUROC was 

0.846 (95% CI, 0.778-0.899), with a sensitivity of 94.3% and specificity of 57.0%. In 

the test set with a 4.5% prevalence of moderate/severe AS, the model had a PPV of 

9.3% and an NPV of 99.2%. In simulated cohorts with 1% and 20% prevalence of 

moderate/severe AS, the model's NPVs varied from 99.8% to 96.1%, and PPV from 

2.2% to 35.4%, respectively. 

Conclusion: We developed a novel portable- and wearable-adapted deep learning 

approach for the detection of moderate/severe AS from noisy single-lead ECGs. Our 

approach represents a highly sensitive, feasible, and scalable strategy for 

community-based AS screening. 
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BACKGROUND 

Aortic stenosis (AS) poses a significant burden of cardiovascular morbidity and 

mortality that is potentially treatable, but the lack of a feasible strategy for early 

detection of disease challenges the identification of individuals before the onset of 

symptoms. Prevalence of AS increases with advancing age, with a prevalence of 10-

15% among individuals over 70 years of age.1–4 The clinical progression of AS is 

associated with worsening obstruction of left ventricular outflow, an associated 

decrease in exercise capacity, and the increased risk of exertional angina, syncope, 

heart failure, and sudden cardiac death.5 Furthermore, severe AS poses a 

substantial burden on health systems globally, with substantial quality-adjusted life 

years (QALY) lost as well as nearly $30,000, per patient, in healthcare expenses 

attributable to AS annually.6 This is despite the presence of effective treatment with 

aortic valve replacement (AVR), including with a low-risk transcatheter approach 

(TAVR).7,8 Moreover, AS is often diagnosed after the development of clinical 

symptoms, representing advanced stages of disease.9,10 This is because the 

diagnosis of AS relies on echocardiographic Doppler imaging, which requires access 

to specialized imaging equipment and trained personnel, limiting its scalability. 

While echocardiography remains impractical as a screening strategy, the 

application of artificial intelligence algorithms on ECGs (AI-ECG) has been proposed 

for the automated detection of AS.11–14 However, the current AI-ECG approaches 

rely on the use of 12-lead clinical ECGs, which do not allow their use as a 

community-based screening modality. Using portable and wearable devices capable 

of capturing single lead ECGs can facilitate large-scale cardiovascular screening.15–

17 However, these devices are often prone to the introduction of noise during ECG 

acquisition.16,18 Thus, the advancement of scalable strategies for AS detection 
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requires development of noise-resilient AI-ECG models capable of detecting AS from 

single-lead ECGs. 

In this study, we use data from a diverse patient population for the 

development and validation of a deep learning-enabled strategy for the screening of 

AS using noisy single-lead ECGs.  

 

METHODS 

The Yale Institutional Review Board approved the study protocol and waived the 

need for informed consent as the study involves secondary analysis of pre-existing 

data.  

Data Source and Study Population 

We used voltage data for lead I extracted from 12-lead ECGs obtained at the Yale 

New Haven Hospital (YNHH) during 2015-2022. These ECGs were acquired during 

routine clinical practice as standard 10-second 12-lead ECGs at a sampling 

frequency of 500 Hz. We included ECGs from patients who received a transthoracic 

echocardiogram (TTE) within 30 days before or after obtaining the ECG. TTEs were 

conducted by cardiac sonographers and interpreted by expert cardiologists at the 

YNHH. We utilized TTEs conducted in an outpatient setting and encompassing a 

complete structural assessment of the heart, given that inpatient TTEs are more 

likely to be affected by a patient’s evolving condition during hospitalization. 

Moreover, we excluded TTEs that were conducted after undergoing cardiac surgical 

procedures, such as coronary artery bypass grafting, valve replacement procedures, 

left ventricular assist device implantation, heart transplant, alcohol septal ablation, 

and ventricular myectomy, or for acute indications, including myocardial infarction, 

stroke, pulmonary edema, and decompensated heart failure. This ensures the model 
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learns the pathological ECG signatures relevant to detecting AS in a population 

without prior cardiac assessment. Demographics, ECG, and TTE data were 

extracted from the YNHH electronic health record. 

 

Study Outcome 

The severity of AS was graded by the reading expert cardiologist as sclerosis without 

stenosis, mild, moderate, and severe stenosis according to the European 

Association of Cardiovascular Imaging and the American Society of 

Echocardiography recommendations.19 Briefly, a peak aortic velocity of ≥4.0 m/s, a 

mean gradient of ≥40 mmHg, or an aortic valve area of <1 cm2 were considered as 

severe AS, while mild AS was defined as a peak aortic velocity between 2.6 and 2.9 

m/s, a mean gradient of <20 mmHg, or an aortic valve area of >1.5 cm2. Moderate 

AS was identified when echocardiographic measures did not meet the criteria for 

mild or severe cases. Aortic sclerosis without stenosis was characterized by a peak 

aortic velocity of ≤2.5 m/s, despite presence of aortic sclerosis. We defined any 

moderate or severe AS as the primary study outcome. We also reported the model 

performance for detecting severe AS. 

 

Signal Preprocessing 

We extracted the signal data from lead I of 12-lead ECG recordings, which 

represents the standard lead captured by wearable devices. Our signal 

preprocessing strategy involved median pass filtering, scaling, normalizing, and 

winsorizing for each lead. Median filtering was conducted by subtracting a one-

second median filter from the acquired signals to eliminate baseline drift. ECG 

signals were divided by 1000 to scale them to millivolts. Next, we normalized every 
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signal data point by computing the difference between the data point and the mean 

of voltage signals, divided by the standard deviation of voltage signals in each lead. 

We then winsorized voltage values by removing values that fell outside the 1st or 99th 

percentile in each lead. Ultimately, we isolated preprocessed signal data from lead I 

ECG. 

 

Noising Strategy 

To construct algorithms resilient to the noise introduced during acquisition of ECGs 

obtained from wearable and portable devices, we artificially incorporated noises into 

the model development process, as described previously.16 Briefly, we augmented 

ECGs in the training set using random Gaussian noises, while we tested the model 

on clean ECGs without incorporating noises. We isolated 4 distinct noises from a 5-

minute random Gaussian noise within 4 frequency ranges of 3-12 Hz, 12-50 Hz, 50-

100 Hz, and 100-150 Hz, each corresponding to the frequency range of a specific 

type of real-world noise. Each ECG in the training set was included 2 times with 

different random noises in training the model. This augmentation involved a random 

type of noise and a random signal-to-noise ratio (SNR). For this purpose, we first 

randomly selected 1 of the 4 abovementioned distinct random Gaussian noises. 

Finally, the selected noise was introduced to the ECG waveform with a random SNR 

ranging from 0.5 to 1.25, representing a heavy and a light burden of noise in ECGs, 

respectively. 

 

Model Development 

We randomly split the included ECG-TTE pairs into training, validation, and test sets 

with a ratio of 85:5:10 at the patient level. To allow for the broadest training set, we 
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used all ECG-TTE pairs for a patient in the training set. The validation and test sets 

included only one random ECG per patient. We used transfer learning to train a CNN 

model to detect the presence of moderate/severe AS on noisy single-lead ECGs. 

Next, we trained an extreme gradient boosting (XGBoost) classifier model using the 

CNN model probabilities and the patient’s age and sex as predictive features. 

For transfer learning, we first trained a CNN model to detect left ventricular 

systolic dysfunction (LVSD; defined as left ventricular ejection fraction < 40%). 

Subsequently, weights from the LVSD model were used to initialize the training for 

the model for AS detection. We evaluated multiple convolutional neural network 

(CNN) architectures, experimenting with the number and size of convolutional layers 

as well as dropout and learning rate. The architecture with the highest area under 

the receiver operating characteristic curve (AUROC) for detecting LVSD – a 

commonly hidden label on ECGs – in the validation set was selected as the final 

architecture for training. This final architecture comprised an input layer with 

dimensions of (5000, 1, 1), representing a 10-second, 500 Hz, lead I ECG. The input 

layer was followed by seven 2-dimensional convolutional layers, progressively 

increasing the number of filters from 16 to 64 while incorporating varying kernel sizes 

(7x1, 5x1, and 3x1) to capture different levels of feature abstraction. A batch 

normalization layer, a ReLU activation layer, and a 2-dimensional max-pooling layer 

with different pool sizes (2x1 and 4x1) followed each convolutional layer. Next, the 

output of the 7th convolutional layer was used as the input for a fully connected 

network that included two dense layers. Each dense layer was followed by a batch 

normalization layer, a ReLU activation layer, and a dropout layer with a rate of 0.5. 

Finally, the model output was a dense layer with a single class and a sigmoid 

activation to generate the output probability of the label. The loss function was 
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adjusted by calculating model weights using the effective number of samples class 

re-weighting approach to ensure that the learning is not impacted by the differential 

prevalence of positive and negative labels.16  

 The model training was stopped when the validation loss did not improve for 

10 consecutive epochs. After the completion of model training, the optimal epoch 

was selected based on low validation loss and high validation area under the 

receiver operating characteristic curve (AUROC). 

For training the XGBoost model, patient age and the CNN model output 

probabilities were standard scaled to achieve a mean of 0 and a variance of 1 before 

being included as features in the model. The model hyperparameters were finetuned 

using Scikit-learn’s GridSearchCV. Then, the XGBoost model performance was 

evaluated in the test set. Finally, we evaluated SHapley Additive exPlanations 

(SHAP) values in the held-out test set to explain the interpretability of the final 

ensemble model.20 

 

Statistical Analysis 

Continuous variables were reported as mean (standard deviation [SD]) or median 

(interquartile range [IQR]), as appropriate, and categorical variables as number 

(percentage%). The model’s performance was presented as AUROC and area under 

the precision-recall curve (AUPRC). Furthermore, we reported sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), and F1 score of the 

model across the thresholds and specifically for the threshold for optimizing 

sensitivity at 90%. The 95% confidence intervals (CI) for AUROC and AUPRC were 

calculated using bootstrapping with 1000 iterations. We computed 95% CI for 

sensitivity, specificity, PPV, NPV, and F1 score using the standard error formula for 
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proportion. Finally, we calculated the model’s PPV in simulated screening scenarios 

with varying prevalence of moderate/severe AS, and severe AS using the threshold 

for optimizing sensitivity at 90%. The statistical significance level was set at P≤0.05. 

All statistical analyses were executed using Python 3.11.2, and R version 4.2.0.  

 

RESULTS 

Study Population 

From September 2015 to January 2022, we included 528,603 ECGs from 131,804 

patients with a TTE obtained within a 30-day window of the ECG at YNHH. After 

retaining TTEs with a complete assessment of the aortic valve and applying other 

eligibility criteria, we included 75,901 ECG-TTE pairs, representing 35,992 unique 

patients, for the model development. 

The study population had a median age of 61 (IQR, 47-72) years and included 

19,488 (54.3%) women, 3,276 (9.5%) of non-Hispanic Black race, 2,922 (8.5%) of 

Hispanic ethnicity, and 742 (2.2%) of Asian race. There were 5,782 (7.6%) ECG-TTE 

pairs with moderate/severe AS, including 4,056 (5.3%) with moderate AS and 1,726 

(2.3%) with severe AS, representing 1,544 (4.3%), 1,189 (3.3%), and 355 (1.0%) 

unique patients (Table 1). The training set comprised 30,403 patients with 64,343 

ECG-TTE pairs. The validation and held-out test sets included 1,856 patients and 

3,733 patients, respectively, with one ECG per patient. 

 

Detection of Moderate/Severe AS, and Severe AS 

The 1-lead ECG-only CNN model achieved an AUROC of 0.755 (95% CI, 0.722-

0.789) and an AUPRC of 0.126 (95% CI, 0.101-0.164) for detecting moderate/severe 

AS with a prevalence of 4.5% in the held-out test (Figure 2). For detecting severe 
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AS, the 1-lead ECG-only CNN model demonstrated an AUROC of 0.809 (95% CI, 

0.726-0.889) and an AUPRC of 0.065 (95% CI, 0.035-0.136) with a prevalence of 

severe AS of 0.9% in the test set. The composite XGBoost model that included age 

and sex achieved an AUROC of 0.829 (95% CI, 0.800-0.855) and an AUPRC of 

0.166 (95% CI, 0.134-0.215) for detecting moderate/severe AS, and an AUROC of 

0.846 (95% CI, 0.778-0.899) and an AUPRC of 0.068 (95% CI, 0.032-0.144) for 

detecting severe AS (Figure 2). 

The highest F1 score and Youden's index of the XGBoost model were 0.277 

and 0.529, respectively, in the held-out test set. At the threshold for optimizing 

sensitivity at 90%, and at a prevalence of 4.5%, the model showed a sensitivity of 

0.904 (95% CI, 0.895-0.914), specificity of 0.587 (95% CI, 0.571-0.603), PPV of 

0.093 (95% CI, 0.084-0.102), and NPV of 0.992 (0.990-0.995) for detecting 

moderate/severe AS (Table 2, Figure 3). For detecting severe AS, at the same 

threshold, the model had a sensitivity of 0.943 (95% CI, 0.935-0.950), specificity of 

0.570 (95% CI, 0.554-0.586), PPV of 0.020 (95% CI, 0.016-0.025), and NPV of 

0.999 (95% CI, 0.998-1.000). Using the threshold for optimizing both sensitivity and 

specificity, the model achieved a sensitivity of 0.760 and a specificity of 0.769 for 

detecting moderate/severe AS, and a sensitivity of 0.800 and a specificity of 0.750 

for detecting severe AS. At the threshold for optimizing the F1 score, the model 

demonstrated a sensitivity of 0.563 and a specificity of 0.883 for detecting 

moderate/severe AS, and a sensitivity of 0.657 and a specificity of 0.868 for 

detecting severe AS. 

 

Simulated Screening Scenarios 
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In simulated screening scenarios, at the threshold for optimizing sensitivity, the 

model achieved a PPV ranging from 2.2% to 35.4% for detecting moderate/severe 

AS considering a prevalence of 1% to 20% in simulated populations, respectively 

(Table 3). For severe AS, we considered simulated populations with a prevalence 

ranging from 0.1% to 10%, where the model demonstrated a PPV ranging from 0.2% 

to 19.6%, respectively. The NPV was greater than 99% in all scenarios for detecting 

severe AS. 

 

DISCUSSION 

We developed a noise-adapted deep learning strategy for detecting advanced AS 

from noisy single lead ECG using data from a diverse population at a large US 

health system. The model achieved a high sensitivity of greater than 90% and 

modest specificity of 59% for detecting moderate/severe AS using single-lead 

portable ECG signals, accounting for their real-world noisy acquisition. The approach 

may represent an ideal first-stage community-based screening for moderate/severe 

AS, where the low prevalence of the condition makes echocardiographic screening 

infeasible.  

 Our study expands on the existing literature on using deep learning for 

electrocardiographic detection of advanced AS in two significant ways. First, we 

introduce a model capable of detecting moderate/severe AS from single-lead ECGs, 

adapting to their quality obtainable on portable and wearable devices. Second, our 

model development approach addresses the challenge of noisy ECG acquisition 

using wearable and portable devices. Previous studies have developed AI models to 

detect severe AS using clinical 12-lead ECGs, demonstrating AUROCs ranging from 

0.87-0.9111–14 However, our algorithm achieves an AUROC of 0.85 for detecting 
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severe AS, while relying solely on data from lead I ECG. Consequently, our model’s 

proposed use on portable device-acquired ECGs represents an accessible approach 

for detecting moderate/severe AS in the community, as these portable devices are 

widely available, and easily deployable.15,21 Finally, our model incorporates real-

world noise during the model training, which enhances the model's ability to identify 

the pathological disease signature even in the presence of noise in portable ECG 

acquisition.13,16 

 The morbidity and mortality arising from AS is treatable with recent advances 

in transcatheter aortic valve replacement, making AS management safer and more 

feasible.22–24 However, the diagnosis of AS is frequently missed in routine care, with 

only 10 to 20% of people with moderate/severe AS in the community being 

identified.25–27 Despite the highlighted importance of AS screening, widespread use 

of TTE does not represent a feasible screening strategy for AS.16,28–31 Thus, the 

application of deep learning on ECGs (AI-ECG) and point-of-care ultrasonographic 

images (AI-POCUS) have been proposed as modalities for the detection of AS.32 

While AI-POCUS represents an easy-to-operate and accurate strategy for 

automated AS detection, its deployment in a community setting may still be limited 

by the access to handheld echocardiographic devices. Alternatively, the application 

of our model using portable ECG devices can represent a highly scalable and 

sensitive strategy for finding people with undiagnosed AS in the community.  

This screening test can be followed by AI-POCUS or TTE for screen-positive people 

to detect AS, particularly among older adults who are at higher risk of AS.1  

Our study has several limitations. First, the development set's composition 

may not fully represent a real-world screening population. The study population 

underwent TTE in close proximity to their ECG acquisition, which is not necessarily 
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reflective of routine clinical practice where TTE might be conducted at varying time 

intervals. However, since model development in a screening population setting is 

impractical, and would require protocolized TTE to be performed in a large cohort, it 

is essential to prospectively validate the current strategy before widespread 

deployment. Second, our model was developed using data from a single tertiary 

health system. However, YNHH serves a diverse population with a catchment area 

spanning across multiple states. Moreover, the New Haven county is one of the most 

representative of the adult US population,33 thus enabling model generalizability 

across a wide population. Third, we trained our model using lead I ECG data 

extracted from 12-lead ECGs, as portable or wearable ECGs paired with TTE are not 

available for model development. This might limit the model’s applicability to 

scenarios involving real-world portable and wearable ECG devices. However, we 

augmented single-lead ECGs with random Gaussian noises during the model 

training to enable identification of pathological electrical signature from noisy ECGs, 

that could represent real-world acquisition. 

 

CONCLUSION 

We developed a highly sensitive noise-adapted AI-ECG algorithm that detects 

moderate/severe AS using single-lead ECG acquired by a portable device. The 

model holds the potential for AS screening to address the undiagnosed, yet treatable 

burden of AS in the community.  
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FIGURES 

Figure 1. Model Development for Detecting Multiple Structural Heart Diseases. 

Abbreviations: AS, aortic stenosis; CNN, convolutional neural network; ECG, 

electrocardiogram; XGBoost, extreme gradient boosting. 
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Figure 2. Receiver Operating Characteristic Curves for Detecting 

Moderate/Severe Aortic Stenosis, and Severe Aortic Stenosis Across Model 

Architectures. Abbreviations: AS, aortic stenosis; AUROC, area under the receiver 

operating characteristic curve; CNN, convolutional neural network; Mod/Sev, 

moderate/severe; Sev, severe; XGBoost, extreme gradient boosting. 
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Figure 3. Model Performance Measures Across Thresholds for Detecting (A) 

Moderate/Severe Aortic Stenosis, and (B) Severe Aortic Stenosis. 

Abbreviations: AS, aortic stenosis; NPV, negative predictive value; PPV, positive 

predictive value. 
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TABLES 

Table 1. Demographics and Prevalence of Aortic Stenosis in the Development 

Set at Patient- and ECG-level. Abbreviations: AS, aortic stenosis; ECG, 

electrocardiogram. 

Characteristic* Patients ECGs 

Number 35,992 75,901 

Demographics   

Age (years) 61 [47-72] 64 [52-74] 

Female Sex 19,488 (54.3%) 37,828 (49.9%) 

Race and Ethnicity   

   White 27,055 (78.7%) 57,419 (78.5%) 

   Black 3,276 (9.5%) 7,790 (10.7%) 

Hispanic 2,922 (8.5%) 5,830 (8.0%) 

Asian 742 (2.2%) 1,290 (1.8%) 

   Other 371 (1.1%) 776 (1.1%) 

Moderate AS 1,189 (3.3%) 4,056 (5.3%) 

Severe AS 355 (1.0%) 1,726 (2.3%) 

Moderate/Severe AS 1,544 (4.3%)  5,782 (7.6%) 

*Data are presented as median [interquartile range], or number (percentage%). 
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Table 2. Performance Measures of the Model for Detecting Moderate/Severe 
Aortic Stenosis and Severe Aortic Stenosis Across Thresholds in the Held-out 
Test Set. Abbreviations: AS, aortic stenosis; NPV, negative predictive value; PPV, 
positive predictive value. 

Threshold 
Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

PPV (95% CI) NPV (95% CI) 

Moderate/Severe AS 

90% Sensitivity 
0.904 (0.895-

0.914) 
0.587 (0.571-

0.603) 
0.093 (0.084-

0.102) 
0.992 (0.990-

0.995) 
Optimal 
Youden Index 

0.760 (0.747-
0.774) 

0.769 (0.755-
0.782) 

0.133 (0.122-
0.144) 

0.986 (0.982-
0.989) 

Optimal F1-
score 

0.563 (0.547-
0.579) 

0.883 (0.872-
0.893) 

0.184 (0.171-
0.196) 

0.977 (0.973-
0.982) 

90% Specificity 
0.491 (0.475-

0.507) 
0.900 (0.891-

0.910) 
0.187 (0.175-

0.200) 
0.974 (0.969-

0.979) 

Severe AS 

90% Sensitivity 
0.943 (0.935-

0.950) 
0.570 (0.554-

0.586) 
0.020 (0.016-

0.025) 
0.999 (0.998-

1.000) 
Optimal 
Youden Index 

0.800 (0.787-
0.813) 

0.750 (0.736-
0.764) 

0.029 (0.024-
0.035) 

0.997 (0.996-
0.999) 

Optimal F1-
score 

0.657 (0.642-
0.672) 

0.868 (0.857-
0.879) 

0.045 (0.038-
0.052) 

0.996 (0.994-
0.998) 

90% Specificity 
0.571 (0.556-

0.587) 
0.887 (0.877-

0.897) 
0.046 (0.039-

0.052) 
0.995 (0.993-

0.998) 
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Table 3. Performance Metrics for Detecting Moderate/Severe Aortic Stenosis, 
and Severe Aortic Stenosis in Simulated Screening Scenarios at the Threshold 
for 90% Sensitivity. Abbreviations: AS, aortic stenosis; NPV, negative predictive 
value; PPV, positive predictive value. 
*Prevalence of SHD in the held-out test set. 

Simulated 
Prevalence 

F1 Score PPV NPV 

Moderate/Severe AS 

20% 0.509 0.354 0.961 

15% 0.426 0.279 0.972 

10% 0.322 0.196 0.982 

4.5%* 0.169 0.093 0.992 

2% 0.082 0.043 0.997 

1% 0.043 0.022 0.998 

Severe AS 

10% 0.181 0.196 0.989 

5% 0.095 0.103 0.995 

2% 0.039 0.043 0.998 

0.9%* 0.018 0.020 0.999 

0.5% 0.010 0.011 0.999 

0.1% 0.002 0.002 1.0 
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