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Abstract: 

Background: On optical coherence tomography (OCT) scans of patients with inherited retinal 

diseases (IRDs), the outer nuclear layer (ONL) thickness measurement has been well 

established as a surrogate marker for photoreceptor preservation. Current automatic 

segmentation tools fail in OCT segmentation in IRDs, and manual segmentation is time 

consuming. 

Methods and Material: Patients with IRD and the availability of an OCT scan were screened for 

the present study. Additionally, OCT scans of patients without retinal disease were included, to 

provide training data for the artificial intelligence (AI). We trained a U-net based model on 

healthy patients and applied a domain adaption technique to IRD patients’ scans.  

Results: We established an AI-based image segmentation algorithm that reliably segments the 

ONL in OCT scans of IRD patients. In a test dataset, the dice-score of the algorithm was 98.7%. 
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Furthermore, we generated thickness maps of the full retinal thickness and the ONL layer for 

each patient. 

Conclusion: Accurate segmentation of anatomical layers on OCT scans plays a crucial role for 

predictive models linking retinal structure to visual function. The here-presented OCT image 

segmentation algorithm could provide the basis for further studies on IRDs. 

 

 

Introduction:  

Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to 

progressive degeneration of the retina. These diseases encompass a wide range of 

conditions such as Retinitis Pigmentosa, Leber’s Congenital Amaurosis, Stargardt 

disease, and many others. IRDs often lead to significant vision impairment and 

potentially blindness. In Europe, IRDs affect about 1:3000 individuals. Optical 

Coherence Tomography (OCT), as a noninvasive imaging test, has become an 

indispensable tool for diagnosing and monitoring the progression of retinal conditions for 

IRDs [1,2]. OCT imaging allows an analysis and measurement of the retina’s distinct 

layers, which can be crucial for confirming diagnosis, guiding treatment plans, and 

assessing response to therapies in the management of IRDs.  

With the advent of artificial intelligence (AI) and machine learning, there have been 

several studies aiming to help disease diagnosis based on OCT. However, compared to 

more common ophthalmological diseases like diabetic retinopathy (DR) [3], age related 

macular degeneration (AMD) [4] and glaucoma [5], AI studies specialized on IRDs are 
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still scarce. In this work, we initiated a study for a deep learning based retinal layer 

segmentation for IRD patients with a special focus on the outer nuclear layer (ONL). In 

IRDs, ONL thickness measurement has been well established as a surrogate marker for 

photoreceptor preservation. The goal of this work was to establish an AI-based image 

segmentation algorithm that reliably segments the ONL in OCT scans and provides a full 

retina and ONL thickness map of IRD patients. 

 

Methods and Material:  

 

Participants and imaging: 

The clinical research database of the Department of Ophthalmology was screened for 

patients with a confirmed IRD diagnosis and available OCT scans. Normal data was 

collected from healthy participants without retinal disease. From every individual both 

eyes were included in this study. Spectral domain optical coherence tomography (OCT) 

and near infrared (NIR) confocal scanning-laser ophthalmoscopy was performed using 

the Spectralis HRA+OCT platform (Heidelberg Engineering GmbH, Heidelberg, 

Germany). Each OCT scan consisted of either 49 or 97 slides (one slide refers to one 

2D image (B-scan) with a resolution of 496x512 pixels) and covers 20x20 degrees of the 

posterior pole centered to the fovea centralis. OCT scans were only included with a 

quality index of 20 or better and no blinking artifacts. OCT scans were exported as .dcm 

files from the manufacturer’s software Heidelberg Eye Explorer (Version 1.10.4.0, 

Heidelberg Engineering GmbH, Heidelberg, Germany). The local Ethics Committee of 

the Medical Faculty gave ethical approval for this work (identifier 23-0392). The study 

adhered to the tenets of the Declaration of Helsinki. 
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Manually annotated OCT-segmentation for training datasets: 

The annotations for the healthy retinal dataset were obtained from the software 

"OCTExplorer", which was developed by the IOWA University [6-8] and is free-to-use by 

academics. We used this software as its segmentation results on healthy retinal OCTs 

are reliable and only a small proportion of slides needed to be re-annotated by an 

expert. Furthermore, it is also possible to access the segmented files from the software 

to further process and transform the segmentation by a small helper function.  

However, in IRD patients, the existing automatic segmentation tools, including the 

above-mentioned "OCTExplorer", fail to reliably segment these scans, due to structural 

alterations caused by the degeneration of retinal layers. Examples of OCT Explorer 

segmentations are shown in Figure 1 and 2.  

Consequently, we had to rely on expert annotations as our ground-truth for IRD patients, 

which is a laborious and time-consuming process. OCT scans were graded from two 

expert ophthalmologists. For IRDs, the segmentation of the outer retinal layers, 

especially the outer nuclear layer (ONL), is essential to monitor structural degeneration 

over time. Thus, in our study, the focus was laid on a precise segmentation of the ONL. 

Within this work we will refer to the convex thickening of the ONL within the foveal pit as 

“ONL-hill” on central OCT slides as depicted in Figure 3. 

Development of the deep learning-based segmentation algorithm and statistical 

analysis: 

To our best knowledge all existing deep learning-based approaches to segment retinal 

layers of OCT scans are based on a U-net architecture, which was also the choice for 
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our model. Here, we rely on the Python module Tensorflow for our model definition and 

training. The versions of all packages we utilized can be found on GitHub in the 

requirements file. We ran the code within the de.NBI-cloud (Deutsches Netzwerk für 

Bioinformatik-Infrastruktur) to which we uploaded anonymized input images. The 

“de.NBI Cloud Berlin - Production” has provided us with sufficient compute instances for 

our project. 

Since our OCT scan has an an-isotropic resolution, we used 2D convolutional kernels 

rather than 3D kernels and processed the scan in a slide-by-slide fashion. Specifically, 

the backbone network consists of five symmetrical pairs of encoding and decoding 

blocks, which perform contraction and expansion operations, respectively, during the 

data feedforward process. Each encoding/decoding block is composed of two 

convolutional layers with (3 x 3) convolution kernels, followed by a batch normalization 

layer, an exponential linear unit (ELU) function and a (2 x 2) max-pooling operation with 

stride 2. The first encoding block results in 16 feature channels, and every subsequent 

encoding block doubles the number of channels. Each decoding block is symmetric with 

respect to the encoding block at the corresponding level, except that the max pooling 

layer is replaced with transposed convolutional layers to upsample the feature map. In 

the last decoding block, we added a (1 x 1) convolutional layer followed by Softmax 

activation function to map the 16 feature channels to a four-class probability map that 

softly assigns each pixel to the background or one of the three foreground retinal layer 

classes, namely the layers given in Table 1. The model architecture is very similar to [9], 

which has shown to work for the task of brain tissue segmentation of different modalities/ 

species. Instead of using a bottleneck dimension of 512, we have used a dimension of 

1024. Further we did not include the nonlocal attention block in our model as this 
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additional layer did not increase the model's performance in our task. Lastly, as data 

augmentation during training we have added random gaussian noise to the input 2D 

slides. 

Our objective loss function is a combination of the cross-entropy loss and the multiclass 

dice coefficient loss. For IRD patients, the ONL layer is much thinner as compared to 

healthy subjects. Therefore, we introduced a different weight for different layers within 

the loss function, penalizing the ONL layer 4 times higher than other layers for IRD 

patients, as our primary goal is to accurately segment the ONL. Here, we used one hot 

encodings of shape (4, 496, 512). The very last layer uses the Softmax activation 

function, returning the probability for each pixel belonging to one of the four classes.  

To compensate for the limited manual annotations available for IRD patients, we utilized 

the wealth of automatic annotations from normal OCT scans generated by 

"OCTExplorer". By employing domain transfer and transfer learning techniques, we 

bridged the gap between IRD and standard OCT scans. This domain transfer network 

was originally developed by Ziqi Yu et al. [9] for Brain MRI segmentation, as described in 

detail in [9]. Essentially, we repurposed the weights of the model trained on healthy 

patients - we have frozen the weights of all trainable layers, except for all batch 

normalization (Batchnorm) layers, resulting in adaptive Batchnorm modules. By adapting 

this approach, we successfully achieved efficient learning using a small number of 

annotations and overcame the domain shifts between IRD and normal OCT scans. 

However, we also compared models which did not freeze the weights of all layers. 

Results:  

Dataset characteristics: 
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OCT scans from 12 healthy control individuals without retinal disease were collected, 

two OCT scans each, one for the left and right eye, respectively. For the healthy control 

training dataset, 18 volume scans consisting of 49 B-scans each from 12 patients met 

the quality criteria and were included. For the IRD training dataset, 16 patients were 

selected from the database. Because some OCT volume scans failed to meet the quality 

criteria, we included 25 volume scans in total, each consisting of either 49 or 97 B-

scans. 

Due to the degenerative nature of IRDs, tissue loss becomes also evident by the 

unbalanced pixel-proportion of the total scan area for different retinal layers, as shown in 

Table 1. Particularly, the ONL is considerably reduced compared to healthy controls 

(from 4.0% to only 0.5%). 

For all results, we trained the U-net based model for 30 epochs with early stopping. For 

all models trained on healthy or diseased patients we used the same hold out validation 

and test sets. Furthermore, we split training, validation, and test sets by patient IDs, 

such that there was no overlap between training and validation sets. Lastly, we used 2D-

slides as input to the model. The test and validation set consisted for both, healthy and 

IRD datasets, each of scans of 2 patients’ volume scans, mostly including a scan of the 

left and right eye respectively. The codes and our trained models can be found on 

GitHub (https://github.com/peng-lab/retina-segmentation). 

 

Results on healthy patients:  

First, we trained a model on the full training dataset, consisting of OCT scans of healthy 

individuals. Here, our model resulted in a Dice Coefficient of 99,4% for a hold-out test 

set. Exemplary segmentation results are illustrated in Figure 4 and Figure 5. It is 
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noteworthy that we just included OCT scans which were labeled and verified by our 

expert annotators. 

We also trained models containing the nonlocal block, as described in [9], but it does not 

outperform the model not including this additional layer quantitatively. Further, it led to 

occasionally isolated misclassified pixels. Eventually we decided to not include the 

nonlocal block. 

 

Results on IRD patients:  

To segment retinal layers of IRD patients we tried a few different approaches: Model 1 

trained with the same loss function as for healthy patients with randomly initialized 

weights, (2) Model 2 trained by upweighting the ONL layer in the Cross-Entropy loss 

with randomly initialized weights, (3) Model 3 directly applying the learned model of 

healthy subjects on IRD patients and (4) Model 4 using domain adaption (DA) by 

freezing all weights apart of the Batch-Normalization layers of the model trained on 

healthy subjects (Adaptive Batchnorm)  and (5) Model 5 trained with transfer learning by 

reusing the weights of the model trained on healthy individuals for initialization, however, 

without freezing the weights of all layers. Notably, models reusing weights from the 

previous model were fitted faster. The corresponding Dice coefficients can be found in 

Table 2.  

Model 1 failed to correctly segment the middle slides with the convex curvature of the 

ONL within the foveal pit. Therefore, we have introduced a weighted loss for the ONL 

layer for all remaining models. We have found that a weight of 4 provides the best 

results to accurately segment the ONL. This determination was made through 

hyperparameter optimization. From Model 2 we concluded that upweighting the ONL 
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layer in the Cross Entropy loss helped to better capture and segment this layer and it 

further increased the overall Dice-coefficient. Without using the weighted loss, the model 

oftentimes did not capture the ONL layer at all for IRD patients, as this layer is nearly 

non-existent in many slides. Therefore, the model ended up not assigning any 

probability to the ONL layer.  

Furthermore, we could conclude that we needed two distinct models to segment OCT 

scans of IRD and healthy individuals. Directly applying the model trained on healthy 

individuals, i.e. Model 3, lead to poor performance compared to other models. The 

models that exhibited the highest performance were those that upweighted the ONL 

within the Cross-Entropy loss. However, by using the already learned features from the 

model trained on healthy control individuals, the model could increase its performance. 

Models 4 and 5 exhibited the highest Dice-scores while they were simultaneously 

trained more quickly in comparison to Models 1 and 2. The optimal performance was 

attained by the Domain adaption model, which uses the Adaptive Batchnorm approach. 

Consequently, we opted to use this model for visualization purposes. Figures 6, 7 and 8 

show segmentation results for input slides from our test set. Notably, if the quality of the 

scan is low, the model occasionally ended up misclassifying a few random pixels as 

depicted in Figure 9. 

We also worked on a grid-based visual analysis using the widely used ETDRS (Early 

Treatment Diabetic Retinopathy Study) regions as depicted in Figure 10. Based on the 

segmentation results, we calculated thickness maps of all retinal layers or of individual 

retinal layers. Exemplary thickness maps including the ETDRS regions/ grid are 

depicted in Figures 11 and 12. 
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Discussion:  

The aim of the present study was to build an AI-based tool for the segmentation of OCTs 

in IRD patients, where currently available algorithms fail. Additionally, we developed a 

full-retina and ONL thickness map, which provides a fast overview of the important 

retinal layers in IRD. 

With the advent of AI and machine learning, several studies aiming to enhance 

diagnosis, prognosis, and treatment options for ophthalmological diseases have been 

published [10-14]. Evaluation of retinal imaging is essential in the diagnosis of these 

diseases. It is a time-consuming process that requires specialists and may show 

variable interpretation depending on the examiner [14]. OCT allows non-invasive 

structural retinal imaging and generates important information about disease 

development and treatment response. AI-based accurate OCT analysis could be a huge 

advantage and potentially prevent individual interpretation errors depending on the 

investigator.  

However, compared to more common ophthalmological diseases, AI studies specialized 

on IRDs are still scarce. A systemic PubMed search found only two existing works for 

deep learning-based OCT studies on IRDs: Camino et al. [15] investigated the deep 

learning-based segmentation of preserved photoreceptors on OCT images in the two 

IRD subtypes choroideremia and retinitis pigmentosa. Zhao et al. [16] developed a few 

shot-learning approaches to classify OCT images of IRDs into disease subtypes. Miere 

et al. [17] used a convolutional neural network (CNN) to classify IRDs into subtypes by 

analyzing fundus autofluorescence images.  
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Deep Learning algorithms usually require a huge training set, or at least a sufficient 

number of train images, to result in good generalizable segmentations. However, in our 

study we exclusively incorporated meticulously chosen OCT volumes, which were 

characterized by their high quality in terms of having precise annotations. Therefore, we 

reason that our model performs very well on unseen data, as it was trained on two high 

quality datasets (healthy and IRD). This achievement was made possible due to the 

close collaboration between clinicians and AI experts. Subsequently, we could rely on a 

model [9] which has shown to work well without resorting to more complex architectures 

or deeper networks, clearly highlighting the strength of our results. 

OCT imaging has led to an abrupt and intense advancement of ophthalmological 

research, as it enabled retinal in-vivo imaging in a resolution that was formerly only 

known from histological tissue microscopy. While structural abnormalities such as 

intraretinal fluid accumulations are monitored in exudative retinal diseases, in IRDs, the 

focus lies on monitoring slowly progressive tissue loss which can be followed up over 

years. In IRDs of the retinitis pigmentosa type, the outer retinal layers are affected while 

the inner retinal layers are typically preserved. For IRDs, the segmentation of the outer 

retinal layers is essential to monitor structural degeneration over time and has been also 

applied in animal models of preclinical studies [18]. The preservation of outer retinal 

layers, especially the outer nuclear layer (ONL), in OCT scans has been shown to 

correlate with residual vision in dark-adapted visual fields in AMD patients [19]. In a 

study on patients with RPE65-related IRD by Jacobson and colleagues, 96% of retinal 

loci with residual light sensitivity had a measurable ONL while in 75% of retinal loci 

without residual sensitivity, no ONL was measurable [20]. Not only the “OCTExplorer'' 

used for this study, but also most other commercially available automated segmentation 
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tools fail to reliably segment the distinct layers in OCT scans of patients with IRDs, 

which results in time consuming manual correction and/or segmentation [19,21]. 

In 2017, voretigene neparvovec-rzyl (Luxturna), an adeno-associated virus (AAV) vector 

for gene augmentation therapy in patients with RPE65-related IRD, reached its primary 

endpoint in a phase III trial which marked a breakthrough in the field of gene therapy 

[22]. However, since then, other phase III trials on ocular gene therapy have failed to 

reach their primary endpoints, e.g., the XIRIUS study of an adeno-associated virus 

serotype 8 (AAV8) vector-based gene therapy, cotoretigene toliparvovec, targeting the 

RPGR gene in x-linked retinitis pigmentosa. One of the recurring key questions in all 

ophthalmological gene therapy studies therefore is: “How to measure success?” [23]. 

This question underlines the complexity and importance of a reliable and objective 

measurement of visual performance for gene therapy studies in IRDs and beyond. A 

huge advantage in the diagnostic toolbox for IRDs would be a correlation of structural 

OCT measurements and functional data. For structure-function prediction, reliable retinal 

layer segmentation is regarded as crucial. Hence segmentation algorithms like the one 

presented in this manuscript could play an important role in future studies.  

There are limitations of this study. In contrast to AMD or diabetic retinopathy, IRDs are 

rare diseases, which limits the sample size. Training of the AI was based on manual 

segmentation of image stacks by experienced ophthalmologists. Manual segmentation 

bears the risk of human error and may differ slightly between graders. To manually 

segment the OCT scans for AI training datasets, a minimum resolution quality is needed. 

However, in real life settings, imaging resolution in IRD patients may be low due to 

fixation problems and blinking artifacts. The present study was only performed with 
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Heidelberg Spectralis OCT scans, further investigations should confirm this AI-based 

tool with scans of other commercially available devices.  

In conclusion, AI-based tools are thought to be the key to boost efficiency for an 

objective assessment of rare diseases, where well-powered randomized controlled trials 

are almost impossible to conduct due to the limited sample size. The here-presented 

segmentation and thickness map tool may be a first step to AI-supported IRD 

diagnostics. It could enable structural disease monitoring in future gene therapy trials 

and provide the basis for predictive structure-functional modelling. 

 

Conclusion (bullet points): 

Already known: 

• Artificial intelligence has an increasingly important role in ophthalmology. To date, 

most research has focused on high prevalence ophthalmic diseases.  

• Our study addresses a critical relevant problem, focusing on reliable retinal layer 

segmentation for IRD patients. Accurate segmentation of anatomical layers in 

OCT scans plays a key role in the correlation of retinal structure to visual 

function.  

Newly described:  

• We have developed a deep learning algorithm that allows accurate segmentation 

of pathologically altered OCT scans in patients with inherited retinal diseases and 

generates a retinal thickness map.  
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• Future work will explore calculating retinal layer thickness and correlating it with 

functional data like visual fields. Our aim is to contribute to a greater 

understanding of disease, and to improve the evaluation of treatment outcomes in 

future. 

 

Figure and table legends 

Figure 1:  

OCTExplorer segmentation screenshot for a healthy patient. Bold: segmented outer 

plexiform layer (OPL)-Henle fiber layer.  

OCT = optical coherence tomography; IRD = inherited retinal disease 

Figure 2:  

OCTExplorer segmentation screenshot for an IRD patient. Bold: segmented outer 

plexiform layer (OPL)-Henle fiber layer. Note that the bold pink line for the segmentation 

of the OPL-Henle fiber layer boundary crosses over to the actual inner nuclear layer 

(white arrows). 

OCT = optical coherence tomography; IRD = inherited retinal disease 

Figure 3:  

(a) Exemplary slide in the middle of an OCT scan in a healthy patient with the ONL-’’hill’’ 

(b) Exemplary first slide of an OCT scan without ONL-’’hill’’. The same color codes for 

retinal layers will be used within this work. 

OCT = optical coherence tomography; ONL = outer nuclear layer 
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Figure 4:  

Slide containing the ‘’ONL’’ hill (a) Prediction of the model. (b) Ground truth. (c) Input 

slide. 

ONL = outer nuclear layer 

Figure 5:  

Regular slide. (a) Prediction of the model. (b) Ground truth. (c) Input slide. 

Figure 6:  

Trained model on the IRD dataset. (a) Prediction of the model. (b) Ground truth. (c) Input 

slide. 

IRD = inherited retinal disease 

Figure 7:  

Trained model on the IRD dataset where ONL hill is visible. (a) Prediction of the model. 

(b) Ground truth. (c) Input slide. 

IRD = inherited retinal disease; ONL = outer nuclear layer 

Figure 8:  

Trained model on a IRD dataset where ONL layer is almost vanished. (a) Prediction of 

the model. (b) Ground truth. (c) Input slide. 

IRD = inherited retinal disease; ONL = outer nuclear layer 

Figure 9:  

Trained model on a IRD dataset: Model has problems when quality is too low. White 

frame indicates some wrongly segmented pixels. (a) Prediction of the model. (b) Ground 

truth. (c) Input slide. 
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IRD = inherited retinal disease 

Figure 10:  

ETDRS regions. 

Figure 11:  

Thickness maps based on predicted segmentation of all retinal layers. (a) Thickness 

map of a healthy individual. (b) Thickness map of an IRD patient. Interestingly, the 

diseased individual has a similar full-retinal thickness. 

Healthy: C0 Average thickness: 274µm; S2 Average thickness 301µm; S1 Average 

thickness 354µm; N1 Average thickness: 352µm; N2 Average thickness: 325µm; I1 

Average thickness: 352µm; I2 Average thickness: 302µm; T1 Average thickness: 

348µm; T2 Average thickness: 294µm 

Diseased: C0 Average thickness: 281µm; S2 Average thickness 270µm; S1 Average 

thickness 359µm; N1 Average thickness: 369µm; N2 Average thickness: 310µm; I1 

Average thickness: 366µm; I2 Average thickness: 279µm; T1 Average thickness: 

343µm; T2 Average thickness: 278 

IRD = inherited retinal disease 

 

Figure 12:  

Thickness maps based on predicted segmentation of ONL layer. (a) Thickness map of a 

healthy individual. (b) Thickness map of an IRD patient. Evidently, the IRD patient has a 

thinner ONL thickness, especially at the non-central regions. 

Healthy: C0 Average thickness: 109µm; S2 Average thickness 80µm; S1 Average 

thickness 88µm; N1 Average thickness: 94µm; N2 Average thickness: 75µm; I1 Average 

thickness: 88µm; I2 Average thickness: 68µm; T1 Average thickness: 89µm; T2 Average 
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thickness: 76 µm 

Diseased: C0 Average thickness: 115µm; S2 Average thickness 37µm; S1 Average 

thickness 81µm; N1 Average thickness: 94µm; N2 Average thickness: 48µm; I1 Average 

thickness: 92µm; I2 Average thickness: 42µm; T1 Average thickness: 89µm; T2 Average 

thickness: 51 µmro 

IRD = inherited retinal disease 

Table 1:  

Proportion of pixels of retinal layers of the healthy vs. IRD patient’s datasets. As 

compared to healthy retinas, the ONL in IRD patients is considerably lower (4.0% vs.  

0.5%). Internal Limiting Membrane (ILM); Outer Plexiform Layer (OPL); Henle Fibre 

layer (HFL); Outer Nuclear Layer (ONL); Boundary of myoid and ellipsoid of inner 

segments (BMEIS); Outer boundary of retinal pigment epithelium (OB-RPE). 

Table 2:  

Dice-Coefficient results for segmentation on the IRD dataset 

IRD = inherited retinal disease 
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Table 1: Pixel proportion of retinal layers of healthy and IRD patients datasets 

Retinal layer Healthy OCTs IRD OCTs 

Background 83.8% 87.3% 

ILM-OPL-HFL 8.8% 10.3% 

ONL 4% 0.5% 

BMEIS-OB-RPE 3.3% 1.8% 
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Table 2: Dice-coefficients on IRD dataset 

Model  Description  Dice-
coefficient 

Dice-coefficient 
ONL 

Model 1 None-weighted ONL loss 98.5% 44.2% 

Model 2 Weighted ONL loss 98.5% 67.4% 

Model 3 Direct application of healthy model 92.1% 31.7% 

Model 4 DA by freezing trainable weights 98.8% 70.2% 

Model 5 Transfer learning without freezing 
weights 

98.8% 70.1% 
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