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Abstract

A fundamental question of any program focused on the testing and timely diagnosis of a communi-
cable disease is its effectiveness in reducing community transmission. Unfortunately, direct estimation
of this effectiveness is difficult in practice, elevating the value of mathematical modeling that can predict
it from first principles. Here, we introduce testing effectiveness (TE), defined as the fraction by which
transmission is reduced via testing and post-diagnosis isolation at the population scale, and develop a
mathematical model that estimates it from the interactions of tests, within-host pathogen dynamics, and
arbitrarily complex testing behaviors. While our model generalizes across pathogens, we demonstrate
its flexibility through an analysis of three respiratory pathogens, influenza A, respiratory syncytial virus
(RSV), and both pre-vaccine and post-vaccine era SARS-CoV-2, quantifying TE across post-exposure,
post-symptom, and routine testing scenarios. We show that TE varies considerably by strategy and
pathogen, with optimal testing depending on the number of tests available and when they are used. This
work quantifies tradeoffs about when and how to test, providing a flexible framework to guide the use
and development of current and future diagnostic tests to control transmission of infectious diseases.
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Introduction

Nearly four years after the emergence of SARS-CoV-2, a new status quo for test usage has emerged. Despite
documented successes of routine screening for SARS-CoV-2 in nursing homes [1], college campuses [2],
and even nations [3], regular screening via RT-qPCR or rapid diagnostic tests (RDTs) has given way to
elective testing after known exposures or symptom onset, typically with RDTs alone. At the same time, the
variety and targets of available diagnostics continues to grow, with numerous available RDTs for respiratory
syncytial virus (RSV; [4]) and influenza A [5], new RDTS for SARS-CoV-2 utilizing exhaled aerosols [6],
and simultaneous testing for all three viruses via both multiplex RT-qPCR [7] and rapid antigen lateral
flow “triple tests” [8]. Rapid diagnostics have proved valuable for non-respiratory pathogens too, including
HIV [9] and P. falciparum, with sufficient impact for the latter that rapid diagnosis and treatment have even
selected for RDT-escape mutations among P. falciparum parasites [10].

Mathematical models estimating the impacts of testing on transmission [2, 11–17] and treatment [18, 19]
have been useful in guiding policy and recommendations for SARS-CoV-2, building in many ways on a
broad set of earlier efforts to estimate transmission reduction, clinical impact, and cost effectiveness for
routine HIV screening (e.g., [20,21]). However, these successes have been restricted to a limited number of
pathogens and either routine screening or risk-group based testing, highlighting the need for more flexible
modeling to accommodate an increasing array of diagnostic tests for a growing set of pathogens, used after
known exposures or symptom onset. Moreover, because testing guidelines are only as effective as human
behaviors allow them to be, it would be valuable for models to incorporate key behaviors such as imperfect
participation [9] and compliance [22] and imperfect adherence to post-diagnosis isolation [23].

Here, we fill this gap by introducing a more general mathematical model for testing without restricting
our analysis to a single pathogen, test, testing pattern, or set of behaviors. Our focus was to estimate (i)
the extent to which testing reduces the risk of transmission for the average infected individual, (ii) the
distribution of diagnosis times and the probability that individuals are diagnosed at all, and (iii) the costs
of test consumption and isolation days corresponding to these benefits. Taken together, this model places
various intuitions about disease mitigation via testing on firm quantitative ground, and exposes important
testing-associated variables and behaviors to in silico experimentation and optimization across contexts,
pathogens, and variants thereof.

Results

A model for Testing Effectiveness (TE)

To examine the impact of testing on community transmission, we developed a probabilistic model which
integrates four key elements: (i) the properties of a particular diagnostic test, (ii) a strategy for its admin-
istration, (iii) the time-varying profiles of infectiousness, symptoms, and detectability over the course of
an infection, and (iv) the key behaviors of compliance, participation, and isolation length. Given these
elements, the model generates a distribution of probable diagnosis times, and uses them to compute the
expected impact on transmission. By then incorporating heterogeneity between individuals, the model esti-
mates testing effectiveness,1 the proportion by which a testing program reduces transmission, in expectation,

1We call this quantity testing effectiveness instead of test effectiveness due to the simple observation that the same test, used
differently, may have a markedly different impact.
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Figure 1: Model diagram. (A) Each realization of the stochastic testing model first draws four control
points to specify a “tent function” model of pathogen load and a symptom onset time (pink circles). The
realization then draws a set of testing times (blue squares), which may be triggered by symptoms (pink
arrow), triggered by a known exposure (not shown), or ongoing at a particular cadence (not shown). A
test taken during the detectable window (blue bar) when pathogen load exceeds the test’s limit of detection
(LOD) will return a positive diagnosis with a fixed probability after a specified turnaround time (not shown).
However, not all tests are necessarily taken, due to imperfect compliance (not shown). Diagnosis (Dx) leads
to isolation and thus reduced infectiousness (grey). (B) The ensemble mean, whether computed through
integrals or estimated via Monte Carlo, produces expected infectiousness curves with and without testing.
The areas under these curves are proportional to their respective reproductive numbers, enabling estimation
of testing effectiveness TE (see Eq. (1)). The model also produces an ascertainment curve (blue) showing
the proportion of individuals remaining undetected at time t.

given by the relationship between reproductive numbers R with and without testing as,

TE = 1−
Rtesting

Rno testing
↔ Rtesting = (1− TE)Rno testing . (1)

We built our analyses around a simple, common, and computationally efficient model of within-host pathogen
kinetics: after some post-exposure latent period, the pathogen load grows exponentially at some prolifera-
tion rate until reaching a peak, and then declines exponentially at some clearance rate. This piecewise linear
model, also called a tent function, requires only the four parameters of latent, proliferation, and clearance
periods, and a peak load, which we draw from distributions estimated from studies of RSV [24,25], influenza
A [26–28], and SARS-CoV-2 measured for both the founder strain in naive hosts during the pre-vaccination
era [12, 16, 29] and omicron variants in experienced hosts during the post-vaccination era [12, 29, 30] (see
Table S1). While the results presented here utilize this simplistic model of viral kinetics, the modeling
framework is highly flexible to incorporate more sophisticated alternatives.

We used stochastic realizations from this simple pathogen load model in three ways. First, we assumed
that a test taken at time t would return a negative diagnosis if the pathogen load was below the test’s limit
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of detection (LOD), and would return a positive diagnosis with some probability when pathogen load was
above the LOD. Due to the importance of test turnaround time [12], we modeled sample-to-answer delays by
returning results after a specified turn-around time (TAT). Second, we took infectiousness to be proportional
to the logarithm of pathogen load in excess of an empirically estimated threshold [31, 32], consistent with
observations that higher viral loads are associated with more efficient transmission for pathogens including
SARS [33], SARS-CoV-2 [22], influenza [34], and RSV [35]. Alternative relationships between pathogen
load and infectiousness are possible [12]. Third, we drew symptom onset times relative to the times of
peak pathogen load, reflective of the typical manner of reporting in the literature. In this way, our model
is similar in spirit to the CEPAC model (Cost-Effectiveness of Preventing AIDS Complications), which
provides stochastic individual-level realizations of post-HIV-infection dynamics, costs, and outcomes [36].

Our model generates its estimates by integrating over the probability distributions for the pathogen load, the
timing of symptoms, and the timing of tests, to calculate a distribution of diagnosis times. After receiving
a diagnosis, each individual is assumed to isolate for a specified number of days, or until released by a
negative test (via a so-called test-to-exit plan), with mitigated infectiousness during isolation (Fig. 1A). By
averaging outcomes over the ensemble defined by its random variables, whether by integration or via Monte
Carlo, the model produces estimates of the expected infectiousness curves over time, with and without
testing. The areas under these two curves are proportional to the total transmission potential with and without
testing, and thus, their respective reproductive numbers. The model also provides a curve representing the
probability that a randomly chosen individual has not yet been diagnosed by some time; its long-time limit
is the ascertainment of the testing scenario (Fig. 1B). A complete mathematical description and details of
parameterizations can be found in Materials and Methods.

Testing effectiveness varies by strategy and pathogen

Despite the 2023 end to the World Health Organization’s COVID-19 public health emergency [37], the
burden of COVID-19 and respiratory viruses more broadly remains substantial. In the U.S. alone, an es-
timated 9 million cases of influenza A caused 100,000 hospitalizations (2021-2022 season; [38]), and a
global estimate of 33 million RSV infections in children under 5y led to 3.6 million associated hospitaliza-
tions and 101,400 associated deaths, the vast majority of which were in low- and middle-income countries
(2019; [39]). With the broad expansion of diagnostic testing globally, including at-home rapid diagnos-
tic tests (RDTs) for influenza A, RSV, and SARS-CoV-2, we sought to determine whether a single testing
strategy might be optimal for all three common respiratory pathogens.

To examine the potential impacts of testing, we considered three distinct testing behaviors, meant to cap-
ture both institutional testing strategies and elective testing in response to exposure or symptoms. First,
we considered an elective testing scenario in which in individuals experiencing symptoms used one rapid
diagnostic test (RDT) per day for 2d following the onset of symptoms (TAT = 0; see Table S1 for stochastic
timing and prevalence of symptoms). Given the markedly different sensitivities of different RDT kits and
RT-qPCR protocols [40, 41], a representative LOD was chosen for each respiratory virus to investigate gen-
eral principles of testing (see Materials and Methods). Second, we considered an elective testing scenario in
which 75% of individuals sought out a single RT-qPCR test (TAT = 2, see Table S1 for LODs) between 2d
and 7d after exposure; the other 25% did not participate. Finally, we considered routine weekly screening
with a representative rapid diagnostic test (TAT = 0, LODs Table S1). To incorporate the fact that not all
policy-prescribed tests are actually taken in practice [22], this scenario included compliance of only 50%,
such that each test was taken or not taken independently with probability 1

2 . For each scenario, and each
of the three circulating respiratory viruses (RSV, influenza A, and SARS-CoV-2), we calculated TE, the
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Figure 2: Testing effectiveness varies considerably by strategy and pathogen. Testing effectiveness is
shown for RSV (orange), influenza A (pink), and SARS-CoV-2 omicron in experienced hosts (green) under
three testing programs: (1) testing with two RDTs used daily starting at symptom onset, (2) one RT-qPCR
test administered 2-7d after exposure, with 75% participation and 2d test turnaround time, (3) weekly RDT
screening with 50% compliance. Panels A, B, and C depict population-level infectiousness curves without
(hatched) and with (filled) testing and isolation for the labeled pathogen and testing program. Black curves
represent the proportion of infections not yet detected by time t.

timing of diagnoses, and ascertainment—the total fraction of individuals receiving a positive diagnosis—
based on 105 stochastic realizations of viral load, symptom onset, testing, diagnosis, and isolation. For
SARS-CoV-2 we specifically considered within-host dynamics and RDTs associated with omicron variants
in immune-experienced hosts.

This analysis demonstrated that the same testing program can have markedly different effectiveness for
different pathogens. Elective testing at symptom onset achieved 38% TE for influenza A, but only 21%
for RSV (Fig 2A). This difference in effectiveness primarily reflects differences in the relative timing of
symptoms and detectability, with most influenza A infections detectable via RDT one day before or after
symptom onset, whereas RSV is generally only detectable 1-3 days after symptom onset. In contrast, TE
for elective testing at SARS-CoV-2 symptom onset is middling at 25%, balancing well-timed symptom onset
relative to infectiousness, but a higher relative LOD for marketed RDTs. Due to their highly overlapping
symptom sets, our results indicate that testing immediately after symptom onset with a single three-pathogen
RDT [8] is therefore likely to mitigate transmission most for influenza A, followed by SARS-CoV-2 omicron
and RSV.

This ordering of differential TE was inverted for a single elective RT-qPCR between 2d and 7d post-
exposure, our second testing scenario, which was least effective for influenza A (Fig. 2A). This ordering
reflects a substantially faster onset of infectiousness after exposure for influenza A (Fig. 2B), meaning that
a post-exposure test that is timed effectively for SARS-CoV-2 and RSV is administered too late to con-
trol influenza A. Thus, in a scenario where an individual seeks a highly sensitive multiplex diagnostic test
within one week after a known exposure to an unknown respiratory pathogen, our results indicate an impact
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on transmission of 28% for SARS-CoV-2, 22% for RSV, and just 2% for influenza. Finally, weekly RDT
screening with 50% compliance exhibited comparable TE for all three pathogens (7-13%), values which are
lower than the two elective testing scenarios for SARS-CoV-2 and RSV, and higher for influenza A. Our re-
sults highlight the fact that variation in viral kinetics, symptom onset time, and tests’ analytical sensitivities
lead to markedly different impacts on transmission, used under the same testing guidance.

Throughout these experiments, we observed that ascertainment—the proportion of infections diagnosed via
testing—was only weakly related to TE, showing that a testing program’s information value and mitigation
impact are distinct quantities. For instance, elective RDT testing post-symptoms for influenza A showed
TE and ascertainment of 38% and 60%, respectively; for elective RT-qPCR testing post-exposure, TE
decreased by 36pp to just 2% but ascertainment decreased by only 10pp to 50%. To illustrate the reason
for this difference, we plotted the infectiousness curves β(t) with and without testing, averaged over all
105 simulated individuals, as well as the curves showing the fraction of individuals remaining undiagnosed
1−pE [F (t)] (Fig. 2B,C,D). In instances where diagnoses typically arrive earlier, the average β(t) (and thus
the area beneath it,Rtesting) is more substantially reduced, while the same number of diagnoses, arriving later,
leave more area under the β(t) curve. Thus, TE incorporates not just whether one is diagnosed, but also
when.

Impacts of timing and availability of elective post-symptom testing

In an era of increasing elective and self-administered RDT usage, a key question is when to test and how
many tests to use. We sought to answer this question by modeling the impact of changes in timing and supply
of RDTs on TE for RSV, influenza A, and SARS-CoV-2 omicron in experienced hosts. In these experiments,
we considered that individuals would wait 0d-5d after symptoms and then begin testing daily, with 1-6 RDTs
available. For comparison, we also computed TE for a single RT-qPCR with a two-day turnaround. For
each testing supply, we computed TE and identified the post-symptoms delay that maximized it, separately
for each virus and testing supply scenario (Fig. 3, white stars).

This experiment showed three common patterns for RSV and influenza A. First, the most effective timing
of post-symptom testing was zero days, with monotically decreasing TE with each additional day of delay
(Fig. 3A,B). Second, although using two tests was superior to using one, using more than two tests was
roughly equivalent to two. And third, using just one RDT provided superior TE to a single RT-qPCR with
a two-day turnaround time, highlighting the importance of RDT availability for transmission control.

In contrast, for SARS-CoV-2 omicron in experienced hosts, the number of available tests markedly shifted
the optimal time at which one should begin testing, such that when only 1-2 RDTs were available, daily
testing was most effective beginning 2d post-symptoms; with 3 RDTs, 1d; and with 4-6 RDTs, testing should
begin immediately upon symptom onset (Fig. 3C). These results reflect a tradeoff arising from limited test
supply and variability in viral load trajectories: using tests later improves the probability of diagnosis but
decreases the impact per diagnosis. A large test supply alleviates this tradeoff. Furthermore, for a fixed
delay before testing, using more SARS-CoV-2 RDTS was always superior, yet a single RT-qPCR on the first
day of symptoms provided approximately equivalent TE to using one RDT starting on day two. Together,
these results suggest a unified recommendation for the timing of post-symptom elective RT-qPCR testing,
but a mixed recommendation for RDT use. A similar analysis of the impact of timing and quantity of
post-exposure testing is presented in Supplementary Figure S1.

One common point surfaced by our investigations of elective post-symptomatic testing was that the existence
of any asymptomatic and post-symptomatic transmission implies that TE < 1 for symptom-driven testing,
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Figure 3: Optimal use of tests depends on the number of tests available and when they are used.
Testing Effectiveness (TE) of RDT and RT-qPCR with 2 day turnaround time, used x days after symptom
onset using y tests once per day is shown for RSV (orange), influenza type A (pink), and SARS-CoV-2
omicron in experienced hosts (green). Darker colors represent higher TE as indicated. In each row, the
testing strategy with highest TE is annotated with a white star. Turnaround times: rapid tests, TAT = 0;
RT-qPCR TAT = 2. See Supplementary Table S1 for LODs.

regardless of the quality of the diagnostic test itself. This implies that even groundbreaking advances in
diagnostic LODs, cost, or turnaround times must be paired with appropriate recommendations for usage.

Reevaluation of the sensitivity/turnaround tradeoff for SARS-CoV-2

Modeling studies in 2020 and 2021 argued that test sensitivity was secondary to frequency and turnaround
time for SARS-CoV-2 screening [12, 13, 42, 43], using within-host dynamics and RDT sensitivities for the
founder strain in naive hosts. However, three important observations regarding the omicron variants circulat-
ing in 2023 led us to revisit these findings. First, studies of viral load trajectories, estimated via prospective
longitudinal sampling, show lower peak viral loads, shorter clearance times, and slightly longer prolif-
eration times for omicron infections in experienced hosts compared to founder-strain infections in naive
hosts [16, 30], leading to shorter windows of detectability (Fig. 4A). Second, symptom onset is typically 3-
5d earlier for omicron/experienced vs founder/naive, relative to peak viral load, an observation argued to be
due to the immune experience of hosts in particular [30, 44, 45]. Third, the analytical sensitivity of RDTs is
estimated to have worsened for omicron variants vs founder strain, with LODs increasing by 0.5−1.0 orders
of magnitude depending on the test (Fig. 4A; [40, 41]). Together, these factors led us to hypothesize that
the previously established superiority of RDTs over RT-qPCR for mitigation of founder-strain SARS-CoV-2
in a naive population could be equalized or reversed for omicron-variant SARS-CoV-2 in an experienced
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Figure 4: RT-qPCR vs RDT tradeoffs for the SARS-CoV-2 omicron era. (A) Typical viral kinetics for
founder SARS-CoV-2 strains in naive hosts and SARS-CoV-2 omicron variants in experienced hosts (log10

cp mRNA / mL). Trajectories are characterized above the RT-qPCR LOD (103) with their respective RDT
LODs (105 and 106 for founder strain and omicron variant, respectively) indicated by horizontal dashed
lines. (B) Time spent detectable by RDT and relationship between LODs of RDT and RT-qPCR vs prolif-
eration speed for founder-strain SARS-CoV-2 in naive hosts (light) and SARS-CoV-2 omicron variants in
experienced hosts (dark) scenarios. (C,D) Test effectiveness using RT-qPCR with 2 day turnaround time
(gray) or RDT with immediate delivery of results (green) for twice weekly and weekly screening, or testing
immediately upon symptom onset using one test.

population.

To test our hypothesis, we estimated TE for RDT testing (0d TAT) and RT-qPCR testing (2d TAT) pro-
grams, in twice-weekly, weekly, and elective post-symptom testing scenarios, and compared our findings
for founder/naive vs omicron/experienced parameters. We found that in each of the three founder/naive
testing scenarios, RDTs provided higher TE than RT-qPCR (Fig. 4B), replicating the claims of the litera-
ture [12,13,42,43]. However, each of the three omicron/experienced scenarios saw a reversal, with RT-qPCR
providing higher TE than RDTs, despite the modeled 2d RT-qPCR turnaround time (Fig. 4C). In general,
we also observed that TE decreased for RDTs from the founder-strain era to the omicron era (Fig. 4B vs
C), while staying approximately the same (twice weekly, weekly) or even increasing (post-symptom) for
RT-qPCR. Together, these results suggest that, setting aside any differences in cost or regulatory complex-
ity, RT-qPCR-based SARS-CoV-2 testing would be superior to otherwise identical RDT-based testing in the
omicron and immune-experienced era.

To what can we attribute this apparent reversal in the prioritization of speed vs sensitivity, and how might
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Figure 5: Fixed isolation recommendations may lead to unnecessary isolation when symptomatic test-
ing ascertainment is high. (A) Testing Effectiveness, (B) total test consumption over diagnosis and test-
to-exit usage, and (C) average isolation duration for detected individuals are shown for a fixed 5d isolation
period (dark blue) and a test-to-exit isolation program requiring one negative RDT to exit isolation (light
green) when 1 or 2 tests were available to diagnose, used daily beginning one day after symptom onset. (D)
The distribution of individual days spent in isolation for a test-to-exit scheme using 2 tests to diagnose, with
the average isolation time indicated by the vertical dashed line. TTE scenarios assumed individuals waited
2 days after diagnosis before beginning exit-testing.

such principles generalize? Intuitively, during viral proliferation, there exists a gap between the time of
first detectability via RT-qPCR and the time of first detectability via RDT. This gap represents a potential
diagnostic advantage for the RT-qPCR test, but it can be realized only if (i) a test is actually taken during the
gap, and (ii) the turnaround time for the RT-qPCR is smaller than the gap. For founder-strain SARS-CoV-2
in the naive host, we estimate the typical gap (over diverse viral load trajectories) to be 1.4d, vs 2.8d for
SARS-CoV-2 omicron variants in experienced hosts (Fig. 4A). Quantifying this intuition, we reason that
when two tests exhibit a difference in LOD of ∆LOD and a difference in turnaround time of ∆TAT, then the
faster test will typically exhibit higher TE when ∆LOD/m + δTAT > 0, where m is the typical exponential
proliferation rate.

Estimating costs: isolation days and test consumption

Diagnosis-driven isolation provides a mitigation benefit of TE, but at the cost of testing resources and days
spent in isolation. Therefore, in addition to quantifying the benefits of TE and ascertainment, we estimated
the costs of test consumption and isolation days (Materials and Methods). When calculating these costs, we
also recognized that diagnostic tests may be used to determine when one should exit isolation, via so-called
test-to-exit (TTE) guidelines [46], potentially increasing test consumption in order to decrease isolation
days, with the additional risk of early release from isolation due to a non-analytical test failure. Based
on these modeling needs, we modified our estimates of all model outputs to incorporate TTE strategies
(Supplementary Text).

To explore the ways in which our model could assist in evaluating complex cost-benefit tradeoffs across
scenarios, we considered elective post-symptom testing for SARS-CoV-2 omicron variants in experienced
hosts, using either one or two RDTs daily after symptom onset to attempt diagnosis. Diagnosis was followed
by either a fixed-duration isolation of 5d or a TTE policy of daily testing using the same RDT, beginning
after a minimum of 2d spent in isolation. In each of the 2 × 2 scenarios, we computed TE, the average
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Figure 6: Schematic of various technological and policy advances in cost-benefit space. Increases testing
effectiveness (TE) and test consumption are shown for a set of hypothetical improvements to technology,
policy, and cost of goods.

number of tests consumed per infected individual, and the average number of isolation days per diagnosed
individual.

At a high level, using two tests to diagnose led to substantially higher TE than using just one (Fig. 5A),
mirrored by an increase in per-infection testing cost from 1 to 1.8 tests for the fixed-isolation scenario, and
from 1.4 to 2.4 for the TTE scenario (Fig. 5B). Average isolation days per diagnosis were identically 5d for
the two-fixed isolation scenarios by definition, and reduced to 3.2-3.3d for TTE (Fig. 5C). Thus, as intended,
TTE programs decreased average isolation days without a large impact on TE, driven by the fact that the
most common outcome of TTE was release after just 48-72h, while nevertheless maintaining long isolations
for those remaining detectable for longer periods (Fig. 5D).

Modeling to guide R&D and policy advances

The ability to prospectively estimate costs (test consumption) and benefits (TE) for a diagnostic test, its rec-
ommended use, and individual behaviors, means that hypothetical advances in technology and policy may
be explored in silico to evaluate the potential value of investments. For instance, we projected that a tech-
nological advance in analytical sensitivity, or the derivation of a novel biomarker enabling earlier detection,
would increase TE for the same test consumption, while investments in manufacturing which decrease unit
costs would make more tests available, thus increasing both consumption and TE, with decreasing marginal
returns to consumption (Fig. 6A). Similarly, a policy shift encouraging additional people to participate in
testing would increase both TE and test consumption, while encouragement of higher compliance among
those already participating would do the same but typically with slightly higher consumption and slightly
lower TE (Fig. 6B). Building on our conceptual cost-benefit diagrams, concrete cost-benefit projections for
hypothetical changes to technology, policy, and behavior may be computed using this testing effectiveness
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model.

Discussion

This study quantifies the impact of testing as a non-pharmaceutical intervention by defining testing effec-
tiveness (TE) as the expected reduction in the risk of transmission for a particular testing behavior, test, and
infecting pathogen. While TE varies considerably across the scenarios we explored, three general princi-
ples emerge. First, no single elective testing strategy provides superior control across respiratory viruses,
due to important differences in their dynamics within host. This highlights the importance of models link-
ing within-host kinetics to between-host transmission when establishing testing guidelines, and the risks
of blanket recommendations for respiratory virus transmission control. Second, elective post-symptom or
post-exposure testing can have a substantial impact on transmission, but timing is important and depends
on the pathogen, test, and available supply. While greater availability of tests leads to strictly larger TE, in
supply-limited scenarios, a strategic delay may lead to greater TE by diagnosing more infections, even if
they are not detected as early. Last, by modeling tests and testing through different parameters, our analyses
show the importance of key behaviors, including compliance, post-diagnosis isolation, and the manner in
which to test. These present opportunities to markedly increase the mitigation impact of testing through not
only test technology and availability, but through usage guidance and policy as well, based on quantitative
guidance from the model.

This work builds on strengths of three established threads in the literature. Many high-quality studies have
estimated the value of testing, particularly for routine SARS-CoV-2 screening under a variety of assump-
tions [2, 11, 13–15, 17, 18, 47], and for HIV [9, 20, 21, 36]. Recognizing the growing availability of test
options for other pathogens [7, 8] and the collapse of regular SARS-CoV-2 screening programs in favor of
elective post-symptom or post-exposure testing, our work proposes a more general framework to meet the
current and future realities of testing. This work also builds on the concept of symptom-based controlla-
bility [15, 48, 49] by considering a type of diagnosis-driven controllability, and quantifying how much of
the theoretical value of symptom-based control can be realized when individuals require a diagnosis be-
fore deciding to isolate. Third, this work adds TE to the set of estimates quantifying the effectiveness of
targeted interventions that can be directly incorporated as single parameters in between-host transmission
models, including vaccine effectiveness [50] and PrEP efficacy [?]. Conceptually, testing effectiveness may
be implemented as an increased recovery rate [51] or decreased transmission probability in between-host
models.

By exploring TE under various testing scenarios for three common respiratory viruses, this study demon-
strated that an effective strategy for one pathogen may be ineffective for another, and vice versa. This is
driven by the complex tradeoffs between a test’s timing, probability of diagnosis, and number of potentially
avoided future transmissions should the test come back positive. Intuitively, early testing leads to fewer diag-
noses with higher impact per diagnosis, while delayed testing leads to more diagnoses but lower impact per
diagnosis. Mathematical models integrating over these contingent factors, stochasticity, and heterogeneity
between individual infections, are critical to putting this intuition on a quantitative foundation. Exempli-
fying this value, our analysis showed that testing with a slower but more sensitive RT-qPCR exhibited a
higher TE than otherwise identical rapid antigen testing for SARS-CoV-2 omicron variants in experienced
hosts (but not founder SARS-CoV-2 strains in naive hosts), updating a previously published finding that
emphasized turnaround time over sensitivity for founder-strain SARS-CoV-2 [12].

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.22.23295983doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295983
http://creativecommons.org/licenses/by-nc-nd/4.0/


The model introduced in this manuscript was necessary because empirical evaluation of the impact of a test-
ing program or behavior is difficult, with compelling analyses nevertheless lacking formal controls [2, 3] or
requiring enormous scale [1]. In contrast with various methods to empirically estimate vaccine effectiveness
V E, we know of no direct identification strategies for testing effectiveness (or similar quantities) in real-
world settings. Complicating matters, our calculations suggest that any effective testing program will also
shorten the generation interval and increase ascertainment, two quantities that impact the data and models
underyling common estimators of the reproductive number R [52]. This suggests that an R-based empirical
TE estimator would present challenges. Methodological development in this direction would be valuable.

Our modeling provides three potentially useful outputs beyond TE. First, we have attempted to quantify the
twin costs of test consumption and isolation days, enabling the Pareto frontier between cost and benefit to be
explored under a variety of assumptions. When weighted by dollar costs, these estimates may be useful for
individuals and policymakers alike. Second, our calculations estimate ascertainment, which may be useful
for surveillance and situational awareness. Third, the distribution of tDx − TAT, the post-exposure time
at which the diagnosing test was taken, could be a valuable inclusion in “nowcasting” models, while the
implied distribution of pathogen loads in diagnosing samples may be useful in estimating population-scale
epidemiologic dynamics [53].

Our work is subject to a number of important limitations associated with the structure of our model. First,
we assumed that symptoms may trigger testing, but do not trigger isolation in and of themselves. Relaxation
of this assumption would require empirical estimates of self-isolation behavior or simply the additional
assumption that a proportion of individuals directly isolate at symptom onset without testing [12]. Second,
we modeled participation/refusal, compliance, and isolation behaviors as statistically independent between
individuals, but health-related behaviors are known to be clustered [54–56], a type of heterogeneity not
included in our TE calculations. In principle, estimates of TE for a set of behaviorally homogeneous
groups could be computed and integrated into appropriately structured transmission models [51]. Finally,
our model includes no treatment of specificity, an important factor for certain classes of diagnostic tests.
The inclusion of imperfect specificity in our model would not affect TE estimates, but could substantially
affect cost estimates, particularly if a low positive predictive value led to markedly more isolation days. For
such scenarios, our model could be easily extended to include a second confirmatory test to derive a new
distribution for tDx.

Our work is also subject to limitations associated with parameterization. For instance, we relied on estimates
of pathogen load dynamics and symptom onset time, including variation thereof across a population. These
are relatively well characterized for variants of SARS-CoV-2 in moderate to large population cohorts [16,
29,31,32,57], but are sparse for RSV [24,25] and influenza A [26–28] where they come typically from small
numbers of healthy volunteers in human challenge studies and are typically presented through population
means and confidence intervals, which, at best, indirectly inform between-host variation [58]. Even weakly
characterized distributions are effectively unknown for many other pathogens, particularly prior to symptom
onset. Joint estimates of viral kinetics and symptom prevalence and timing for many communicable diseases
would be powerful for our modeling, and useful in many other applications as well, including studies of the
value of early diagnosis as a path to timely treatment [18,19]. Extensions of this work to non-respiratory and
non-human pathogens, particularly in agricultural settings, would be valuable. Another important limitation
is the assumption that infectiousness can be parameterized as a function of the logarithm of viral load. While
viral load and infectiousness are empirically linked in some studies [22, 32, 59], their precise relationship is
more complicated. For instance, studies of SARS-COV-2 have shown fewer plaque-forming units per copy
of viral RNA during an infection’s clearance phase than during its proliferation phase [45].
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Finally, as with any public health intervention, there are important ethical considerations related to this
work. This study focused on using resources (tests and isolation days) to provide a benefit (decreased trans-
mission), yet not all individuals, communities, or settings may be equally well positioned to afford tests or
isolation time. Similarly, our modeling focuses on population-scale transmission, but ignores heterogeneity
in vulnerability among those to whom a disease may be transmitted. Finally, stigma around infection status
could lead to low participation, particularly if that otherwise private status will be disclosed [60]. Applica-
tion of this work should consider affordability, incentives, vulnerability, and privacy in local contexts.

Materials and Methods

Mathematical Model for Testing

We introduce testing effectiveness TE as the proportion by which a testing program decreases the risk of
transmission, given infection, for an infectious disease [Eq. (1)] and define a mathematical model to prospec-
tively estimate it. This model combines known or assumed properties of (i) a particular diagnostic test, (ii)
a strategy for its administration, (iii) behavior/isolation after diagnosis, and (iv) the time-varying profiles
of infectiousness and detectability over the course of an infection. Due to its integration of these elements,
the model can also estimate a testing program’s ascertainment (the proportion of infections detected), the
impact of testing on the generation interval and selection coefficients, the distribution of diagnosis times,
and the expected number of tests and isolation days required per diagnosis.

Infectiousness

In the absence of testing, the individual reproductive number ν0 quantifies the expected number of secondary
infections from that person [61], under typical behavior. It is given by the area under that individual’s
infectiousness curve β(t) over time,

ν0 =

∫ ∞
0

β(t) dt . (2)

The mean across all individual reproductive numbers is R by definition, and therefore

Rno testing = E [ν0] =

∫ ∞
0

E [β(t)] dt . (3)

By prompting a post-diagnosis behavior change, participation in testing may isolate or attenuate part of that
individual’s infectiousness, decreasing its total from ν0 to ν̄testing. Provided that one’s ν0 and one’s testing
behaviors are statistically independent, then the mean across all individuals’ ν̄testing is related to the effective
reproductive number as

Rtesting = pE
[
ν̄testing

]
+ (1− p)E [ν0] , (4)

where p represents the proportion of the population participating in testing. The participation rate incorpo-
rates both the proportion of the population that “opts in” to testing, as well as the fact that even among those
opting in, not all will experience symptoms (for elective post-symptom testing) or be alerted to their having
been exposed (for elective post-exposure testing). Our focus in the derivation that follows is to estimate
ν̄testing for each person, after which we may average to get Rtesting and thus TE.
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Isolation after diagnosis

Suppose that at time tDx, an individual receives a diagnosis that causes them to attenuate their infectious-
ness via a change in behavior, such as isolation, masking, or increased ventilation. Here, we develop the
mathematics corresponding to perfect isolation post-diagnosis, but provide equations for partial and/or time-
varying impacts of behavior on transmission in Supplementary Materials. Post-diagnosis isolation leads to

νtesting(tDx) =

∫ tDx

0
β(t) dt +

∫ ∞
texit

β(t) dt , (5)

which has the simple interpretation that one’s infectiousness is simply that which occurred prior to diagnosis
at tDx and that which occurred after exiting isolation at texit. While more complicated test-to-exit equations
are developed in Supplementary Materials, here we consider only fixed isolation periods of duration `, such
that texit = tDx + `.

Time of diagnosis as a random variable. In practice, the time of diagnosis tDx depends on numerous
factors including test availability or schedule or the timing of symptoms. We model tDx as a random variable
with probability density function f(tDx). This leads to an effective infectiousness, calculated in expectation
over the probable times of diagnosis, of

ν̄testing =

∫ ∞
0

νtesting(tDx) f(tDx) dtDx . (6)

Substituting in the definition of νtesting(tDx) from Eq. (S1), rearranging, and making use of the cumulative
probability of a diagnosis F (t),

ν̄testing = ν0 −
∫ ∞

0
β(t) [F (t)− F (t− `)] dt . (7)

We note that if one reinterprets F (t) as the cumulative probability of symptom onset (as if symptoms were
the diagnostic test itself), with an exhaustive isolation thereafter (large `), then Eq. (7) recovers the core
notion of symptom-based controllability of Fraser et al. [48]. However, unlike symptom onset, the time of
diagnosis via testing tDx depends on within-host kinetics, test administration, and of course the test itself, as
we calculate next.

Calculating tDx: testing, compliance, failure rates, detectability, and turnaround time

To calculate the distribution of diagnosis times f(tDx), we combine test administration—the probability
that a test is administered at a particular time—and detection—the conditional probability that said test
would return a positive diagnosis. This approach naturally separates a test administration strategy from the
properties and performance of the particular diagnostic to be modeled.

Let A(t) be the prescribed rate of test administration in tests per day, such that for sufficiently small δ,

Pr(test administered between t and t+ δ) =

∫ t+δ

t
A(t′) dt′ . (8)

For instance, setting A(t) = 1
7 would model a weekly screening regimen, while A(t) = 2 for 4 ≤ t ≤ 6

would represent twice-daily testing starting 4 days post-exposure and ending on day 6.
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Let D(t) be an indicator function representing the analytical detectability of the infection at time t for a
given diagnostic, such that D(t) = 1 when an infection is, in principle, detectable by that diagnostic, and
D(t) = 0 otherwise. For example, to model qPCR, D(t) = 1 when concentrations of RNA or DNA from a
biospecimen exceed the assay’s limit of detection; below the limit of detection, D(t) = 0.

Combining administration with detectability, the cumulative number of scheduled tests with the potential to
return a positive result by time t is

m(t) =

∫ t−TAT

0
A(t′)D(t′) dt′ . (9)

Note that the integral’s upper limit is shifted by TAT, the test turnaround time, i.e., the amount of time
between a test’s administration and the return of actionable results. Although any particular person may have
taken only an integer number of tests, m(t) computes a real-valued expectation over all testing schedules or
phases that match the specified rate A(t).

The function A(t) represents an intended test administration strategy (e.g., a policy or guideline), yet in
many circumstances, imperfect compliance may result in missed tests. To account for compliance, we let c
be the independent Bernoulli probability that each test is actually taken as intended.

Similarly, a test may fail for reasons unrelated to the analytical limit of detection or presence of a symptom.
For example, poor biospecimen collection technique (e.g. poor nasal swab technique) could result in test
failure irrespective of an assay’s limit of detection [40]. To account for test failure of this type, we let φ be
the independent Bernoulli probability that a test fails for non-analytical reasons.

Combining the number of possible positive tests taken m(t) with compliance c and test failure φ, allows us
to compute the cumulative probability that one has received a positive test by time t,

F (t) = 1− (1− m̄(t))[1− c(1− φ)]m(t)−m̄(t) − m̄(t)[1− c(1− φ)]m(t)−m̄(t)+1 (10)

where m̄(t) = m(t) mod 1. We note that this is an improper CDF which need not reach 1 in the limit of
large t, as not all individuals will necessarily receive a diagnosis. In the case where the product A(t)D(t) is
a constant Ā between t1 and t2, and 0 otherwise, the associated improper PDF is

f(t) = Āc(1− φ) (1− c(1− φ))m(t)−m̄(t) (11)

for t1 + TAT ≤ t ≤ t2 + TAT and 0 otherwise.

In the specific case of elective testing at symptom onset, the functions above require slight modification to
include the symptom onset time tSx. We modeled tSx as a random offset from the time of peak viral load,
drawn from a specified uniform distribution (see Supplementary Table S1), a choice that reflects the way
symptom onset is typically reported in the literature. For the cases considered in this manuscript, individuals
wait x days after symptoms and test for y days at rate Ā per day, leading to a test administration function,

A(t, tSx) = Ā [u(t− tSx − x)− u(t− tSx − x− y)] , (12)

where u(t) is the unit step function defined as 0 prior to t and 1 thereafter. This equation means that Eq. (9)
depends on tSx, and thus so does the cumulative probability of detection,

F (t, tSx) = 1−(1−m̄(t, tSx))[1−c(1−φ)]m(t,tSx)−m̄(t,tSx)−m̄(t, tSx)[1−c(1−φ)]m(t,tSx)−m̄(t,tSx)+1 . (13)

The cumulative probability of detection can then be computed by integrating Eq. (13) against the tSx distri-
bution.
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Model Estimates

Testing effectiveness

Testing effectiveness TE can now be computed by substituting Eq. (7) (ν̄testing) into Eq. (4) (Rtesting) into
Eq. (1), to get

TE = p

∫ ∞
0

E [β(t) [F (t)− F (t− `)]] dt
/ ∫ ∞

0
E [β(t)] dt , (14)

where Eq. (10) can be used to compute the CDF F (t) of diagnosis times tDx. If isolation is of sufficient
duration to prevent all post-diagnosis transmission, TE simplifies to

TE = p

∫ ∞
0

E [β(t)F (t)] dt

/ ∫ ∞
0

E [β(t)] dt . (15)

Note also that the integrands enclosed in expectations above have useful interpretations: they represent the
expected infectiousness trajectories with (numerator) and without (denominator) participation in testing.

Ascertainment, and diagnosis and swab time distributions

For a single individual, the distribution of diagnosis times is given by its improper f(tDx) or CDF F (t). The
related improper distribution of “diagnosing swab” times is given by shifting the CDF by the turnaround
time TAT.

The long-time limit of F (t) is the probability that that individual will be diagnosed at all. Ascertainment, the
proportion of infections diagnosed by a particular strategy at the population scale, can therefore be estimated
by taking the expectation of the long-time limits over individuals, and scaling by the participation rate,

α = p lim
t→∞

E [F (t)] . (16)

Here, the expectation is taken over individual heterogeneity in within-host dynamics across the population
(just as in Eqs. (3) and (4)).

Mean generation interval and selection coefficient

The mean generation interval, defined as the typical time between infection and subsequent transmission, can
be computed from the centers of mass of the expected infectiousness curves that appear in the numerator and
denominator of Eq. (S3). Such estimates may be important for post-hoc estimation of TE from empirical
data, given that methods of estimating Rt from empirical case counts often rely on the mean generation
interval.

If a single test is capable of diagnosing two strains of the same pathogen, then there is the potential for
testing to alter the selection coefficient. Here, TE calculations can estimate this impact, such that the
selection coefficient is predicted to shift from s = RA

RB
to stesting = s (1−TEA)

(1−TEB) .

Test Consumption

How many tests are consumed during the course of a testing regimen? We break this calculation into two
cases, depending on whether the individual receives a diagnosis or not.
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First, suppose an individual never tests positive. This implies that any tests that were meant to be taken when
the infection was detectable, i.e. when D(t) = 1, were either (i) not taken, due to a failure of compliance
(probability 1− c), or (ii) taken yet failed to provide the correct positive diagnosis (probability cφ). Because
only the latter case consumes a test, this means that a key quantity is cφ/(1−c+cφ), the relative probability
that a planned test consumed a test, given the absence of diagnosis. On the other hand, any tests meant to
be taken when the infection was undetectable, i.e. when D(t) = 0, were taken with probability c. Summing
these two provides an estimate of average test consumption for those who are not diagnosed.

q̄no-Dx =
cφ

1− c+ cφ

∫ ∞
0

A(t)D(t) dt+ c

∫ ∞
0

A(t) [1−D(t)] dt . (17)

The reason that we call this an estimate and not an exact calculation is that testing and diagnosis are causally
linked, and therefore conditioning on a no-diagnosis outcome means that the prescribed test administration
may no longer be A(t) exactly.

In contrast, if an individual receives a diagnosis at tDx, we assume that no additional tests were consumed
thereafter, and that at least one test was consumed—if not, no diagnosis could have been produced. For a
fixed time of diagnosis,

qDx(tDx) = 1 + c

[ ⌊∫ tDx−TAT

0
A(t) dt

⌋
+

⌊∫ tDx

tDx−TAT
A(t) dt

⌋ ]
. (18)

Above, the first integral accounts for non-diagnostic test consumption up until the diagnosing test, while the
second integral accounts for additional tests consumed while waiting for the diagnosing test. The separate
floor functions are a necessary consequence of conditioning on the separate counting of the diagnosing test.
Taking an expectation over tDx yields

q̄Dx = 1 +
pc

α

[ ∫ ∞
0

⌊∫ tDx−TAT

0
A(t) dt

⌋
f(tDx) dtDx +

∫ ∞
0

⌊∫ tDx

tDx−TAT
A(t) dt

⌋
f(tDx) dtDx

]
. (19)

Combining our calculations for q̄no-Dx and q̄Dx, weighting the latter by ascertainment and the former by its
complement, we get a general expression for the expected test consumption among infected individuals,

q̄infected = (1− α) q̄no-Dx + α q̄Dx . (20)

Of course, the whole point of testing is that one does not know a priori who is infected and who is not.
Consequently, we can estimate consumption by those who are not infected as

q̄not infected = c

∫ ∞
0

A(t)dt . (21)

Finally, combining Eqs. (20) and (21), we get

Q = p
[

(θ seref.) q̄infected + (1− θ)(1− spref.) q̄not infected
]
, (22)

where p is the population participation rate, θ is the prevalence of the pathogen, and seref. and spref. are
the sensitivity and specificity of the scheme used to refer people to testing, respectively. Such referral
schemes include contact tracing, the appearance of symptoms, membership in a group with known high risk
of infection, or even universal testing (in which case the referral “program” would have se = 1 and sp = 0).
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Days spent in isolation

For fixed-duration perfect isolation of length `, the average number of isolation days per infected person is
given by the product of ` and ascertainment d = ` α. A similar calculation for test-to-exit policies is found
in Supplementary Equation (S10).

Parameterization of the Model

Viral kinetics, symptoms onset, and infectiousness

We parameterized the time-varying profiles of viral load and infectiousness using a simplified model which
captures four features common to RSV [24], influenza A [26], and multiple variants of SARS-CoV-2 [16]:
(i) a post-exposure period where virus is undetectable by any known test, (ii) a proliferation period of
exponential growth, (iii) a peak viral load (VL), followed by (iv) a clearance period of exponential decline.
We capture these features using a piecewise linear “tent” function specified by three points: (t0,LLOQ), the
first time at which VL exceeds the lower limit of quantification (LLOQ); (tpeak,Vpeak), peak VL timing and
concentration; and (tf ,LLOQ), the last detectable time [12, 16], where t represents the time since exposure
in days. Because within-host kinetics vary from one infection to another, each trajectory is parameterized
using independent draws from random variables for each control point.

While summarized in Supplementary Table S1, we briefly review the studies and sources of evidence used to
parameterize our simple viral load models. Influenza A latent period parameters were drawn from a review
of challenge studies by Carrat et al. supporting a 0.5–2d delay between inoculation and first detectable
instance using a gold standard test [26], noting that this range is slightly wider than in other studies [27].
Data from a household study from Ip et al. characterized peak VL between 1–3d after symptom onset, and
noted that symptom onset and first detectability were indistinguishable. Their data also showed peak VL
between 6–8.5 log10 cp RNA/mL, followed by 2–3d clearance times [28]. We note that these clearance
times were shorter than those observed in challenge studies [26, 27]. Symptom onset time was specified as
taking place between 2d and 0d prior to peak VL from observations of naturally acquired infection [34].

RSV viral kinetics were characterized using vaccine efficacy challenge studies, which reported only geomet-
ric means of viral load, measured in days since challenge inoculation [24,25]. Placebo group data from both
studies support a 2–4d latent period and 3-6d between peak VL and clearance [24,25]. Schmoele-Thoma et
al. present individual data points for longitudinal sampling of infected participants supporting a proliferation
phase of 2–4d and peak VL between 4.5–8 log10 cp RNA/mL [24]. Sadoff et al. indicate slightly later and
lower peaks, but we weight these less heavily in model parameterization because only mean and confidence
intervals are presented, but not individual data points [25]. Symptom onset time was specified as taking
place between 1d prior to and 1d after peak VL from an additional human challenge study [62].

We briefly note that our characterization of influenza A and RSV viral kinetics relies primarily on studies
meant to capture vaccine [24, 25] and drug [27] efficacy, or to report symptom dynamics [28]. In all four
studies, viral kinetics data are reported as a secondary finding, and typically as a geometric mean since time
of onset—including, in two instances, all the individuals for whom inoculation failed [24, 25]. Due to the
lack of viral load data linked at the level of individuals to inform distributional choices of kinetics parameters
across a population, we assumed uniform distributions over supported parameter ranges for both viruses.

In contrast, our estimates of SARS-CoV-2 viral kinetics parameters were drawn from studies performed
specifically to characterize within-host viral dynamics. Kissler et al. and Hay et al. provide mean and
95% credible interval estimates for peak VL and the durations of the proliferation and clearance phases for
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founder-strain/naive and omicron-strain/experienced SARS-CoV-2, respectively [16, 30]. Parameter distri-
butions were assumed to be Lognormal with parameters µ and σ, whose values were adapted from published
means, 95% credible intervals, and sample sizes. Specifically, we selected values such that an equal num-
ber of draws from Lognormal(µ, σ) would lead to a frequentist confidence interval matching the published
mean and credible interval to the closest approximation. See Table S1 for these parameter values. Given
the possibility of the occasional non-biologically large draw from the Lognormal distributions, we rejected
proliferation phases shorter than 0.5d and longer than 10d, and rejected clearance phases shorter than 0.5d
and longer than 25d for both SARS-CoV-2 models. A challenge study provides support for a 2.5-3.5d la-
tent period after inoculation [29]. Symptom onset time was specified as taking place between 0-3d after
peak VL for founder-strain/naive infections [30, 44, 45], and between 1-5d before peak VL for omicron-
variant/experienced infections [29, 63, 64].

Given a stochastic realization of viral kinetics from the model above, we calculated infectiousness β(t) as
proportional to the logarithm of viral load in excess of some minimum threshold, specified by the typical
viral load (concentration of RNA cpRNA/ml) at which plaque forming units are consistently found (> 1
PFU/ml). While this type of log-viral-load infectiousness assumption is common for studies of influenza
A [26, 65], SARS-CoV-2 [47], and RSV [66], alternative relationships between viral load (or other quanti-
ties) and infectiousness are possible [12, 67].

Analytical sensitivity and failure rate of diagnostic tests

Analytical sensitivities (limits of detection; LODs) were drawn from the literature for RT-qPCR and RDT
tests for influenza A, RSV, founder-strain SARS-CoV-2, and SARS-CoV-2 omicron variants. Due to the
variability in LODs between assays of the same type for the same pathogen, we chose a single value (Ta-
ble S1 to represent each pathogen and test type. Above a test’s estimated LOD, false negative rates φ were
available only for SARS-CoV-2 [40] at approximately 5%, a rate we assumed for RSV and influenza A,
collectively modeling factors such as sample contamination, poor biospecimen collection, or manufacturing
error. In general, parameters were more widely available and better characterized for SARS-CoV-2 tests
than for RSV or influenza A. See Table S1 for LODs, failure rates, and relevant sources.
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Jérémie Guedj, French COVID Cohort Investigators, and French Cohort Study groups. Modeling
SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French
COVID cohort. Proceedings of the National Academy of Sciences of the United States of America,
118(8):e2017962118, Feb 2021.

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.22.23295983doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295983
http://creativecommons.org/licenses/by-nc-nd/4.0/


[64] Lauren M. Kucirka, Stephen A. Lauer, Oliver Laeyendecker, Denali Boon, and Justin Lessler. Variation
in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by
time since exposure. Annals of Internal Medicine, 173(4):262–267, 2020. PMID: 32422057.

[65] Hana M. Dobrovolny, Micaela B. Reddy, Mohamed A. Kamal, Craig R. Rayner, and Catherine A. A.
Beauchemin. Assessing mathematical models of influenza infections using features of the immune
response. PLOS ONE, 8(2):1–20, 02 2013.

[66] M Wathuo, GF Medley, DJ Nokes, and PK Munywoki. Quantification and determinants of the amount
of respiratory syncytial virus (RSV) shed using real time PCR data from a longitudinal household study
[version 2; peer review: 3 approved, 1 approved with reservations]. Wellcome Open Res, 1(27), 2017.

[67] Ruian Ke, Pamela P. Martinez, Rebecca L. Smith, Laura L. Gibson, Chad J. Achenbach, Sally Mc-
Fall, Chao Qi, Joshua Jacob, Etienne Dembele, Camille Bundy, Lacy M. Simons, Egon A. Ozer,
Judd F. Hultquist, Ramon Lorenzo-Redondo, Anita K. Opdycke, Claudia Hawkins, Robert L. Mur-
phy, Agha Mirza, Madison Conte, Nicholas Gallagher, Chun Huai Luo, Junko Jarrett, Abigail Conte,
Ruifeng Zhou, Mireille Farjo, Gloria Rendon, Christopher J. Fields, Leyi Wang, Richard Fredrick-
son, Melinda E. Baughman, Karen K. Chiu, Hannah Choi, Kevin R. Scardina, Alyssa N. Owens, John
Broach, Bruce Barton, Peter Lazar, Matthew L. Robinson, Heba H. Mostafa, Yukari C. Manabe, An-
drew Pekosz, David D. McManus, and Christopher B. Brooke. Longitudinal analysis of SARS-CoV-2
vaccine breakthrough infections reveal limited infectious virus shedding and restricted tissue distribu-
tion. Open Forum Infectious Diseases, page ofac192, Apr 2022.

[68] Kuo-Chien Tsaoa, Yung-Bin Kuob, Chung-Guei Huanga, Shao-Wen Chaue, and Err-Cheng Chan.
Performance of rapid-test kits for the detection of the pandemic influenza A/H1N1 virus. Journal of
Virological Methods, 173:387–389, February 2011.

[69] Quickvue RSV10 rapid antigen test product specification. https://www.quidel.com/sites/default/files/product/documents/EF1179501EN01.pdf,
February 2, 2022.

[70] Andrew Pekosz, Valentin Parvu, Maggie Li, Jeffrey C Andrews, Yukari C Manabe, Salma Kodsi,
Devin S Gary, Celine Roger-Dalbert, Jeffry Leitch, and Charles K Cooper. Antigen-based testing but
not real-time polymerase chain reaction correlates with severe acute respiratory syndrome coronavirus
2 viral culture. Clinical Infectious Diseases, 73(9):e2861–e2866, Nov 2021.

[71] Emily N. Gallichotte, Kendra M. Quicke, Nicole R. Sexton, Emily Fitzmeyer, Michael C. Young,
Ashley J. Janich, Karen Dobos, Kristy L. Pabilonia, Gregory Gahm, Elizabeth J. Carlton, Gregory D.
Ebel, and Nicole Ehrhart. Early adoption of longitudinal surveillance for SARS-CoV-2 among staff
in long-term care facilities: Prevalence, virologic and sequence analysis. Microbiology Spectrum,
9(3):e01003–21, Nov 2021.

[72] Soha Al Bayat, Jesha Mundodan, Samina Hasnain, Mohamed Sallam, Hayat Khogali, Dina Ali, Saif
Alateeg, Mohamed Osama, Aiman Elberdiny, Hamad Al-Romaihi, and Mohammed Hamad J. Al-
Thani. Can the cycle threshold (Ct) value of RT-PCR test for SARS CoV2 predict infectivity among
close contacts? Journal of Infection and Public Health, 14(9):1201–1205, Sep 2021.

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 25, 2023. ; https://doi.org/10.1101/2023.09.22.23295983doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.22.23295983
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figures and Tables

Figure S1: Optimal use of tests depends on the number of tests available and when they are used.
Testing Effectiveness (TE) of RDT and RT-qPCR with 2 day turnaround time, used x days after exposure
using y tests once per day is shown for RSV (orange), influenza type A (pink), and SARS-CoV-2 omicron in
experienced hosts (green). Darker colors represent higher TE as indicated. In each row, the testing strategy
with highest TE is annotated with a white star. Turnaround times: rapid tests, TAT = 0; RT-qPCR TAT = 2.
See Supplementary Table S1 for LODs.
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Pathogen Parameter Value Units Source

Influenza A

Latent period Unif[0.5,1.5] Days from exposure [26, 27]
Peak time Unif[1,3] Days from latent [26–28]
Peak VL Unif[6,8.5] log10 cp RNA/mL [28]
Clearance time Unif[2,3] Days from VL peak [26–28]
Infectious threshold 4 log10 cp RNA/mL [34]
High sensitivity LOD 2.95 log10 cp RNA/mL [28]
Low sensitivity LOD 5.38 log10 cp RNA/mL [68]
Percent symptomatic 64 Percent of infections [26–28]
Symptom onset time Unif[-2,0] Days from VL peak [34]
Failure rate 5 Percent of tests above LOD See text

RSV

Latent period Unif[2,4] Days from exposure [24, 25]
Peak time Unif[2,4] Days from latent [24]
Peak VL Unif[4,8] log10 cp RNA/mL [24, 25]
Clearance time Unif[3,6] Days from VL peak [24, 25]
Infectious threshold 2.8 log10 cp RNA/mL [25]
High sensitivity LOD 2.8 log10 cp RNA/mL [24]
Low sensitivity LOD 5 log10 cp RNA/mL [69]
Percent symptomatic 57 Percent of infections [35, 66]
Symptom onset time Unif[-1,1] Days from VL peak [62]
Failure rate 5 Percent of tests above LOD See text

SARS-CoV-2
omicron strain
experienced host

Latent period Unif[2.5,3.5] Days from exposure [12, 29]
Peak time Lognormal[1.053,0.688]∗ Days from latent [30]
Peak VL Lognormal[1.876,0.181] 40 - Cycle threshold [30]
Clearance time Lognormal[1.704,0.491]† Days from VL peak [30]
Infectious threshold 5.5 log10 cp RNA/mL [32, 70–72]
High sensitivity LOD 3 log10 cp RNA/mL [29, 30]
Low sensitivity LOD 6 log10 cp RNA/mL [40, 41]
Percent symptomatic 65 Percent of infections [30]
Symptom onset time Unif[-5,-1] Days from VL peak [30, 44, 45]
Failure rate 5 Percent of tests above LOD [40]

SARS-CoV-2
founder strain
naive host

Latent period Unif[2.5,3.5] Days from exposure [12, 29]
Peak time Lognormal[0.873,0.788]∗ Days from latent [16]
Peak VL Lognormal[1.999,0.199] log10 cp RNA/mL [16]
Clearance time Lognormal[1.953,0.611]† Days from VL peak [16]
Infectious threshold 5.5 log10 cp RNA/mL [32, 70–72]
High sensitivity LOD 3 log10 cp RNA/mL [30]
Low sensitivity LOD 5 log10 cp RNA/mL [41]
Percent symptomatic 65 Percent of infections [29, 30]
Symptom onset time Unif[0,3] Days from VL peak [29, 63, 64]
Failure rate 5 Percent of tests above LOD See text

Table S1: Summary of viral load, infectiousness, and testing parameters. For a description of how pa-
rameters were extracted from the cited sources, please see Materials and Methods. LOD, limit of detection;
VL, viral load; Unif, uniform; ∗ bounded within [0.5, 10]; † bounded within [0.5, 25].
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Supplementary Text: Imperfect Isolation Behaviors

To include imperfect post-diagnosis isolation behaviors, we consider a behavior change function B(τ),
one’s relative infectiousness at time since diagnosis τ . For instance, perfect isolation upon diagnosis would
be modeled asB(τ) = 0, while a one-week partial isolation might be modeled asB(τ) = 0.5 for 0 ≤ τ ≤ 7,
and B(τ) = 1 for τ > 7. The individual reproduction number can thus be written as the sum of the total
infectiousness before and after diagnosis,

νtesting(tDx) =

∫ tDx

0
β(t) dt+

∫ ∞
tDx

B(t− tDx)β(t) dt . (S1)

Simplifying yields

ν̄testing = ν0 −
∫ ∞

0

∫ t

0
β(t)

[
1−B(t− tDx)

]
f(tDx) dtDx dt . (S2)

This equation offers a helpful term-by-term interpretation: diagnosis decreases total infectiousness from its
baseline of ν0 by an amount that depends on (i) the probability distribution of diagnosis times f(tDx) and
(ii) the quality of isolation after said diagnosis B(τ), weighted by (iii) the infectiousness β(t) at the time of
isolation and thereafter. Under a specified isolation behavior B(τ), TE is computed as

TE = p

∫ ∞
0

E
[
β(t)

(∫ t

0

[
1−B(t− tDx)

]
f(tDx) dtDx

)]
dt

/ ∫ ∞
0

E [β(t)] dt . (S3)

Thus, more complex post-diagnosis behaviors may be easily modeled, but such scenarios were not explored
numerically in the main text.

Supplementary Text: Test to Exit Strategies

Test-to-exit (TTE) is a strategy designed to maximize the effectiveness of post-diagnosis isolation while
minimizing the number of days spent in isolation by requiring one or more negative test(s) before exiting
isolation. While various formulations of TTE may exist, here we analyze a simple version in which individ-
uals wait w days after receiving a diagnosis and then begin testing at a rate Ā tests per day, with a per-test
failure rate of φ and a test turnaround time of TAT. We assume that compliance with TTE is c = 1 due to
individuals’ expected desire to leave isolation.

Mirroring Eq. (S1), the expected infectiousness under a test-to-exit program, assuming perfect isolation
between the time of diagnosis tDx and the time of isolation exit texit, is given by

νtesting(tDx, texit) =

∫ tDx

0
β(t) dt +

∫ ∞
texit

β(t) dt . (S4)

We define the PDF and CDF of texit as g and G, respectively, allowing us to rewrite the previous equation as

ν̄testing = ν0 −
∫ ∞

0
β(t)F (t) dt+

∫ ∞
0

β(t)

∫ t

0
G(t, tDx)f(tDx) dtDx dt . (S5)

This expression takes on the interpretable form of total infectiousness in the absence of testing ν0, minus
post-diagnosis infectiousness prevented due to perfect and indefinite isolation, plus any residual infectious-
ness realized by an exit from isolation.
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To model post-isolation exit testing, we assume that one waits w days before testing at a rate Ā using a
test with turnaround time TAT and failure rate φ. Under these conditions, n(t) = Ā(t − tDx − TAT − w)
represents the expected cumulative number of scheduled tests with the potential to return an exit-inducing
result by time t, with n̄(t) = n(t)mod1. The distribution for texit is then given by the rather cumbersome

G(t, tDx) =


0 t ≤ tDx + w + TAT
ψ1(t) tDx + w + TAT ≤ t ≤ tmax
ψ2(t) t ≥ tmax

(S6)

where the function

ψ1(t) = 1−
[
(1− n̄(t))(1− φ)n(t)− ¯n(t) + ¯n(t)(1− φ)n(t)−n̄(t)+1

]
(S7)

represents the cumulative probability that one receives a negative test due to a false negative (i.e., a test
failure when above that test’s limit of detection), and where

ψ2(t) = min

{
1, Ā [1− ψ1(tmax)][t− tmax] + ψ1(tmax))

}
(S8)

captures the rapid approach of G toward guaranteed exit from isolation after one is no longer detectable.
The quantity tmax = max

[
tu + TAT, tDx + w + TAT

]
represents the latest possible time at which a person

testing to exit could receive a positive test. The corresponding PDF is

g(t, tDx) =


0 t ≤ tDx + w + TAT
Āφ(1− φ)n(t)−n̄(t) tDx + w + TAT ≤ t ≤ tu + TAT
Ā [1− ψ1(tmax)] tu + TAT ≤ t ≤ tu + TAT + 1/Ā

0 t ≥ tu + TAT + 1/Ā.

(S9)

Under the above TTE assumptions, the typical number of days spent in isolation may be computed as the
expected difference between the texit and tDx distributions. One may also update q̄Dx in computing test
consumption (Materials and Methods) to include the additional tests consumed while testing to exit,

q̄TTE = 1 +

∫ ∞
0

∫ ∞
tDx+w

(⌊∫ texit−TAT

tDx+w
Ā dt

⌋
+

⌊∫ texit

texit−TAT
Ā dt

⌋)
g(texit, tDx)f(tDx)dtexitdtDx . (S10)
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