Associations between depression symptom burden and delirium risk: a prospective cohort study

Running title: Depression symptoms and delirium risk.

Arlen Gaba¹², B.S., Peng Li¹³, PhD, Zheng Xi¹, M.S., Chenlu Gao¹³, PhD., Cai Ruixue¹, PhD., Kun Hu¹³, PhD., Lei Gao¹³, MBBS.

¹ Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
² Wake Forest University School of Medicine, Winston Salem, NC, USA
³ Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
⁴ Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Address correspondence to:

Arlen Gaba, BS, Tel: (617) 278-0061; Fax: (617) 732-7337; E-mail: agaba@wakehealth.edu
Lei Gao, MBBS, Tel: (617) 278-0061; Fax: (617) 732-7337; E-mail: lgao@mgh.harvard.edu

Department of Anesthesia, Massachusetts General Hospital, Boston, MA, 02114

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Funding: This work was supported by the BrightFocus Foundation Alzheimer’s Disease Research Program (grant number: A2020886S) to [PL]; Alzheimer’s Association Research Fellowship (grant number AARFD-22-928372) to [CG]; National Institutes of Health (grant numbers RF1AG064312, R01AG083799) to [KH]; National Institutes of Health (grant number R03AG067985) to [LG]; and the Alzheimer’s Association Clinician Scientist Fellowship (grant number AACSF-23-1148490) to [LG].
Abstract

BACKGROUND AND OBJECTIVES: Delirium and depression are increasingly common in aging. There is considerable clinical overlap, including shared symptoms and comorbid conditions, including Alzheimer’s disease (AD), functional decline, and mortality. Despite this, the long-term relationship between depression and delirium remains unclear. This study assessed the associations of depression symptom burden and its trajectory with delirium risk in a 12-year prospective study of older individuals during hospitalization.

RESEARCH DESIGN AND METHODS: 319,141 UK biobank participants between 2006-2010 (mean 58y [range 37-74, SD=8], 54% female) reported frequency (0-3) of four depressive symptoms (mood, disinterest, tenseness, or lethargy) in the preceding 2 weeks, and aggregated into a depressive symptom burden score (0-12). New-onset delirium was obtained from hospitalization records during 12y median follow-up. 40,451 (mean age 57±8; range 40-74y) had repeat assessment on average 8y after their first. Cox proportional hazard models examined whether depression symptom burden and trajectory predicted incident delirium during hospitalization.

RESULTS: 5,753 (15 per 1000) newly developed delirium during follow-up. Increased risk for delirium was seen for mild (aggregated scores 1-2, hazards ratio, HR=1.16, [95% confidence interval 1.08–1.25], p<0.001), modest (scores 3-5, 1.30 [1.19–1.43], p<0.001) and severe (scores ≥ 5, 1.38 [1.24–1.55], p<0.001) depressive symptoms, versus none in the fully adjusted model. These findings were independent of the number of hospitalizations and consistent across hospitalization settings (e.g., surgical, medical, or critical care) and specialty (e.g.,
neuropsychiatric, cardiorespiratory or other). Worsening depression symptoms (≥1 point increase), compared to no change/improved score, were associated with an additional 39% increased risk (1.39 [1.03–1.88], \(p=0.03 \)) independent of baseline depression burden. The association was strongest in those over 65y at baseline (\(p \) for interaction <0.001).

DISCUSSION AND IMPLICATIONS: Depression symptom burden and worsening trajectory predicted delirium risk during hospitalization. Increased awareness of subclinical depression symptoms may be warranted for delirium prevention.

KEYWORDS:
Altered mental status, anxiety, postoperative, Alzheimer’s disease, dementia
Background and Objectives

Delirium is a cognitive insult characterized by its acute onset, fluctuating course of the reduction in attention and awareness, commonly occurring in hospital admissions as frequently as 50 percent of patients.\(^1,2\) Although delirium is a reversible form of cognitive impairment, it is associated with an increased risk for dementia, nursing home placement, functional decline, and mortality.\(^3\) Delirium has been linked to noncognitive features, such as sleep disruption\(^4\) and depression symptoms.\(^5\) There is a known overlap in symptoms and comorbid conditions between delirium and depression and a worse prognosis when both are present.\(^6,7\)

In older hospitalized patients, depression symptoms can be present in up to half, depending on the population (medical vs. surgical) and measurement tools.\(^8,9\) Some evidence suggests that depression may be a risk factor for delirium.\(^10,11\) Yet, uncertainty remains regarding the long-term relationship between depression symptoms and delirium,\(^12,13\) particularly in larger population-based cohorts across therapeutic settings (e.g., general medical vs. postoperative) and age groups.\(^6\) In addition, shared comorbidities prevalent in older individuals, such as dementia or cardiometabolic disease, are also associated with delirium risk.\(^14,15\) Whether depression symptoms are a risk factor for delirium or a prodromal marker for neurodegeneration remains unclear.\(^16\)

Given that depression symptoms are modifiable, our primary objective was to determine whether earlier life depression symptoms are a risk factor for incident delirium during hospitalization. Within a large community sample of middle- to older-aged adults from the UK Biobank, we examined the association between depression symptom burden derived from an aggregate
symptom frequency score and new-onset delirium after hospitalization during a median 12 years of follow-up. We examined these relationships in clinically important subsets (postoperative delirium and after the exclusion of known dementia) and by common comorbidities. Finally, in a follow-up cohort, a median 4 years after the first assessment, we examined whether worsening depression symptom trajectory contributed to additional risk for delirium.

Research Design and Methods

Study participants and data resource

Between 2006 and 2010, over 500,000 aged 37 to 70 (57±8 years, 54% female) from across the United Kingdom were recruited to participate in the UK biobank. Participants completed extensive questionnaires on demographics, lifestyle choices, medical conditions, and psychiatric well-being and were followed until February 2021 (median 12 years). 319,141 participants (mean age [SD]: 57.9 [7.9], range: 37.4-73.8 years; 54.0% female) completed psychological assessment with ≥1 hospitalization after baseline (given that delirium requires a precipitating illness event; Supplemental Fig. 1). A subset (n=40,451, 52% female, mean age 64±8; range 44-83y) was reassessed between 2012 and 2020 and followed for a median of 4 years. The UK Biobank structure and data validation efforts have been described in detail.

Standard Protocol Approvals, Registrations, and Patient Consents

The UK Biobank received National Research Ethics Approval, and participants gave written informed consent. This study was conducted under the terms of UK Biobank access number 40556 and Mass General Brigham IRB approval (#2020P002097).
Screening of depression symptoms

Participants were asked about depression symptoms frequency with 4 questions; “Over the past two weeks, how often have you felt down, depressed, or hopeless?” (depressed mood), 2) “How often have you had little interest or pleasure in doing things?” (unenthusiasm/disinterest), 3) “How often have you felt tense, fidgety, or restless?” (tenseness/restlessness), and 4) “How often have you felt tired or had little energy?” (tiredness/lethargy). We assigned scores to the responses: not at all (0), several days (1), more than half the days (2), or nearly every day (3). A summed depression symptom score (0-12) was calculated for each participant, which we used to classify depression symptom burden in a way that keeps group power with increments of 2-points (representing one significantly more or two slightly more frequent symptoms) as follows: “none” (0), “mild” (1-2), “modest” (3-4) and “severe” (≥5). We excluded participants who responded with “do not know” or “prefer not to answer” [depressed mood (4.6%), unenthusiasm and disinterest (3.6%), tenseness and restlessness (4.2%), and tiredness and lethargy (3.1%)]. Depression symptom burden trajectory was calculated as the difference between the follow-up and baseline scores and categorized into “no change/improved” (≤0-point change) or “worsened” (≥1-point change). The distribution and change in scores are shown in Supplemental Figure 3.

Assessment of delirium diagnosis

The UK biobank released linked hospitalization records and International Classification of Disease (ICD-10) diagnoses from the National Health Service during the follow-up period. Incident delirium was the first occurrence of the ICD-10 code F05, included in hospital admissions health records as described in previous studies.4,19–22 We excluded 61 cases where delirium predated the baseline assessment and 27 where delirium predated the follow-up
assessment. The hospitalization settings of delirium, i.e., surgical (postoperative), medical (non-
surgical), and critical care, were separately identified. We identified *postoperative delirium*
(POD) using linked operation/procedure coding and matching operation dates within 3 days
before delirium and tested in separate models. We classified a *medical* hospitalization setting as
patients with delirium who did not have any associated operations or procedures. Finally, we
identified those with delirium after admission to critical care units using critical care admission
dates provided by the UK Biobank.

We further identified *non-dementia-related delirium* by excluding a subset of participants within
the delirium group who had “delirium superimposed on dementia” (F05.1) or a prior diagnosis of
any dementia. Admitting specialist/specialty was used to specify patients with delirium admitted
to neuropsychiatric, cardiorespiratory, or other teams. Neuropsychiatric admitting specialty were
found under the data field 41245, described as “Main Specialty of Consultant (recorded)
Summary Administration.” See Supplemental Methods for specific grouping codes used.

Assessment of covariates

Covariates were grouped based on 1) demographics, 2) lifestyle factors, 3) significant
cardiovascular disease/risks (CVD)/comorbidities, and 4) Demographics, including age, sex,
education, ethnic background, and controlling for number of hospitalizations post-assessment.
Age at recent depression assessment was calculated in years based on the participants’ birth
dates. Sex and ethnicity were self-reported at baseline. Ethnicity was included as European vs.
non-European based on the distribution of participants of European descent (94%). Education
was based on answering college attendance (yes/no).
Lifestyle factors included the Townsend Deprivation Index (TDI,) a material deprivation score and classified into higher/lower medians), physical activity (summed metabolic equivalent minutes), alcohol consumption (<4 drinks/≥4 drinks per week), BMI (weight [kg] divided by the height squared [m²]), sleep duration was categorized into short (<6h/day), normal (6-9h), and long (>9h) because of the previously demonstrated U-shape associations with delirium or dementia, frequency of friend and family visits (never vs. any), and falls in the last year (none vs. any).

CVD was based on hypertension, high cholesterol, smoking, diabetes, ischemic heart disease, and peripheral vascular disease. Comorbidities included a previously described morbidity burden based on the summed presence of any cancers, respiratory, neurological, gastrointestinal, renal, hematological, endocrine, musculoskeletal, connective tissue, infectious diseases/disorders, and classified as none (0)/modest (1-3)/high (≥4) conditions. Cognitive performance was estimated at initial enrollment using a raw processing speed test involving the mean reaction time to identify card matches correctly.

The full final model included serum 25-hydroxyvitamin D (25[OH]D, a proxy for vitamin D levels recently linked to delirium within this cohort, categorized into sufficient >50nmol/L, low 25-50nmol/L, and deficient <25nmol/L), and pre-existing dementia/Parkinson’s disease, or depression diagnosis/treatment (any from seeing a psychiatrist, use of antidepressants, or a self-reported/ICD-10 diagnosis).

Statistical Analysis
The features of those who developed delirium compared to those who were hospitalized but remained delirium-free during follow-up were compared using chi-squared tests for categorical variables (e.g., sex, ethnicity, presence/absence of comorbidities, recent smoking) and independent samples t-tests or the non-parametric, Kruskal–Wallis for continuous variables (e.g., age, BMI, TDI, physical activity, reaction time, CVD, depressive symptoms burden score, frequency of falls in the last month). Cox proportional hazard models were used to evaluate the association between depressive symptoms burden and time to incident delirium [reported as hazard ratios (HRs) and corresponding to 95% confidence intervals (CIs)].

The core model (A) controlled for demographics (age, sex, college education, ethnicity, and number of hospitalizations). The lifestyle model (B) additionally controlled for TDI, physical activity, alcohol consumption, BMI, sleep duration, frequency of family and friend visits, and falls in the last year. The significant CVD/Comorbidities model (C) further controlled for CVD risk score, morbidity burden, and cognition. The final model (D) controlled for vitamin D levels, Parkinson’s/Dementia, and depression diagnosis. We again examined the association between depression symptom burden in the follow-up cohort. Using the core model, we adjusted for the baseline depressive score and the time-lag between assessments. Sensitivity analysis examined the relationship between the depression score and post-operative (surgical), medical (non-surgical), non-dementia-related delirium, critical care delirium in the full cohort in addition to admitting specialty in delirium cases separated into neuropsychiatric, cardiorespiratory and others (non-cardiorespiratory, non-neuropsychiatric related admissions). Time-to-event was the years between depressive symptoms assessment and delirium diagnosis. Delirium-free participants were censored in February 2021, the last date of available records. All other
statistical analyses were performed using JMP Pro (Ver. 16, SAS Institute, Cary, NC, USA). P value < 0.05 was used for statistical significance.

Data are available from the UK Biobank after submitting an application. The syntax for conducting the analysis is available upon reasonable request.
Results

Participant characteristics

This prospective study included 319,141 participants mean [SD] age: 57.9 [8.0], range: 37.4-73.8 years; 54.0% female) who had all data available, were hospitalized at least once after the first assessment, and had no prior delirium. (Supplemental Fig. 1). The cohort was followed for a median period of 12.0 years (IQR 11.2–12.7) after baseline depression symptom burden assessment. Within this period, 5,753 (15 per 1000) developed delirium.

Participants with incident delirium were more likely to be older (64.0 years vs. 57.9 years), male (57.3% vs. 45.7%), lower chance of college attendance 20.8% vs. 30.0%), were more likely to be of European ancestry (95.4% vs. 94.1%), lived in areas of greater deprivation (TDI -0.62 vs. -1.30), had higher BMI (28.7 vs. 27.7) than those who remained delirium-free. The incident delirium participants were less active (1962.5 vs. 2079.4 met-minutes), did not have differences in alcohol consumption, and were more likely to sleep outside the recommended 6-9h range (<6 h/day: 8.2% vs. 6.1% and >9h/day: 4.5% vs. 2.1%), had a higher percentage of no family visits that year (3.4% vs. 1.8%), and more likely to have fallen that year (31.6% vs. 21.4%). The delirium group was more likely to have one or more CVD (68.9% vs. 31.1%), higher morbidity burden with 4 or more conditions (40.5% vs. 32.0%), higher incidence of dementia/Parkinson’s disease (2.5 % vs. 0.2%), slower reaction time (613ms vs. 559ms), and more likely to be vitamin D deficient (5.7% vs. 3.7%). Participants with delirium were also diagnosed or self-reported depression more (10% vs. 7%) and had more of the cohort in the severe category of depressive symptom burden scoring (12.2% vs. 9.4%) (Table 1).
Depressive symptoms and associations with incidence of delirium

Figure 1A shows a stepwise increase in risk for the first occurrence of delirium with increasing depression symptom burden (mild, modest, and severe vs. none) for the core model. This translated into a higher cumulative incidence of delirium over the follow-up period (Figure 1B). Compared to no depressive symptoms, those with mild (HR=1.16, 95% CI [1.08-1.25], \(p<0.001 \)), modest (1.30 [1.19-1.43], \(p<0.001 \)), or severe (1.38 [1.24-1.55], \(p<0.001 \)) depressive burden remained at higher risk for delirium in the fully adjusted model (Table 2). Using coefficients (ratio of the natural log of HRs) from the core model (Supplemental Table 1), the risks of modest and severe depression burden were equivalent to the effects of an additional 4 and 7 years of aging, respectively.

These results remained consistent when considering postoperative delirium only, after excluding known dementia (i.e., non-dementia-related diagnoses of delirium), medical (non-surgical), and critical care. Furthermore, these results were consistent in all cardiorespiratory admitting teams, neuropsychiatric, and all other non-neuropsychiatric or cardiorespiratory admitting teams (Supplemental Figure 2.) The effects of individual depression symptoms (daily vs. none) are presented in Supplemental Table 2. Those with depressed mood (2.17 [1.84–2.55, \(p<0.001 \)), unenthusiasm/disinterest (1.88 [1.61–2.21], \(p <0.001 \)), tenseness/restlessness (2.25 [1.84-2.63], \(p <0.001 \)), tiredness/lethargy (2.48, [2.26–2.72], \(p <0.001 \)) were all at increased risk for incident delirium. However, greater attenuation was seen for those reporting “depressed mood” and the anhedonia-like question on “unenthusiasm/disinterest” in the final models.

Depression symptoms trajectory and risk for delirium
In the follow-up cohort of 40,451 participants, 213 (5.3 per 1000) developed incident delirium (median follow-up time: 3.8 years [range 11 months to 11.2 years; SD 2.7]). The median time from the initial depressive symptoms screening was 8.0 years [range 2.6-13.8 years; SD 2.7 years]. After adjusting for demographics, those who reported mild (1.51 [1.12-2.05], \(p = 0.008 \)), modest (1.74 [1.13–2.67], \(p = 0.01 \)), and severe (2.80 [1.63–4.80], \(p<0.001 \)) depression symptoms were again associated with increased delirium risk when compared to those reported none (Table 3). After adjusting for participant baseline depression symptoms burden score and time-lag, a worsening score (\(\geq 1 \)) depression symptoms burden score was associated with an additional 39% increased risk (1.39 [1.03–1.88], \(p = 0.03 \); Table 3) compared to those reporting no change/improved score. To mitigate the ceiling effect (those scoring high at baseline have no room for worsening), we tested only those within the none and mild groups (baseline depression score 0-2, 74% of the cohort) and confirmed that a worsening score (\(\geq 1 \)), was associated with an increased risk (1.45 [1.04–2.02], \(p = 0.03 \), Supplemental Table 3).

Incident delirium risk by subgroups

The risk of delirium was further examined by age (<65y/\(\geq 65y \)), sex, physical activity (lower/higher), morbidity burden, depression, reaction time, and sleep duration (Figure 2). Comparing participants with modest/severe vs. no depressive symptoms, those aged \(\geq 65y \) were more strongly associated with delirium risk (1.70 [1.56-1.86]) compared to participants aged <65y (1.36 [1.24-1.48]) \(p \) for interaction <0.001. Similarly, patients without a depression diagnosis were more strongly associated (1.65 [1.54-1.76]) compared to those with diagnosed depression (1.29 [1.07-1.54]), \(p \) for interaction <0.001. Depression symptom burden was equally
predictive in males and females, those with above average and below average physical activity,
morbidity risk, reaction times, and nighttime sleep duration.

Discussion and Implications

Our study of 319,141 community-based UK Biobank participants found that those
reporting mild, modest, and severe depression symptom burden were at 16%, 30%, and 38%
higher risk for developing hospital-diagnosed delirium over a median 12 years of follow-up
when compared to those reporting none. The findings were consistent for postoperative delirium
and after the exclusion of underlying dementia, our main secondary analysis. In non-
postoperative and critical care settings, these results remained consistent. Further sensitivity
analysis of consulting/admitting specialty demonstrated that depressive symptoms were equally
associated with incident delirium in neuropsychiatric, cardiorenspiratory, or other admissions.

More recent reporting in a smaller follow-up cohort of 40,451 confirmed the association between
depression symptoms and delirium risk; in fact, those reporting worsened depression symptom
trajectory were at an additional 39% risk. The association was strongest when depression
symptoms were reported after the age of 65 years and in individuals without a history of
depression/anxiety.

These findings are consistent with prior work showing that psychiatric well-being
measures reliably predict delirium development.11,28 Specifically, postoperative delirium is more
likely in those with baseline depression and depressive symptoms.10,29,30 Dysphoric mood and
hopelessness, as components of depression symptoms, also increased the risk for delirium.28

While all components/questions drove these results, interestingly, tenseness/restlessness and
tiredness/lethargy were most strongly associated with delirium in the final models, suggesting that the full spectrum of depression and anxiety-related symptoms reported should be considered.9 The simplicity of the assessment questions captured responses on a large scale, allowing for repeated measures and examining symptom trajectory. Consistent results across two separate time points and the additional risk from worsening symptoms support the idea that depression may increase neurocognitive vulnerability to stressors such as illness, surgery, or hospitalization rather than simply being comorbid with delirium. If replicated, these findings suggest the need for optimizing depression symptom burden in older adults, separately or as part of established multicomponent delirium bundles. For example, despite consistency in our findings across hospitalization settings (Supplemental Figure 2), there is a window of opportunity before major surgery to intervene,9 given that delirium is growing in an aging population with exponential increases in surgical needs.31

Whether these results point to a causal role or an unmasking of cognitive vulnerability is unclear. Underlying diseases linked to depressive symptomatology may contribute, despite being included in our models. Dementia is commonly comorbid with both delirium and depression.6,14 Neurophysiological disturbances in delirium include aberrations in monoamine neurotransmission and the imbalance of dopaminergic and cholinergic signaling.32 Twin studies have found an association between serotonin 2A receptor gene promoter A/A genotype and depression in older men.33 While late-life depression is associated with Alzheimer’s dementia, causal links have not been established.34 Other mechanisms include shared vulnerability to inflammation after illness or surgery and the impact on the aging brain and the endocrine system. Elevated endogenous cortisol levels have been observed for depression and in patients with
severe dementia and delirium,35,36 and implicated in delirium pathophysiology.37,38 Finally, depression and dementia are often accompanied by sleep and circadian disruptions.39,40 In this study, differences in sleep duration did not modify the association between depression symptoms and delirium. Fluctuations of symptoms and intensity of delirium suggest an altered circadian rhythm.41 Recent evidence also indicates that circadian disturbances predispose to delirium,25 suggesting a bidirectional relationship. In this study, we accounted for sleep duration, and the association between depression symptom burden and delirium remained after controlling for known dementia and excluding preexisting dementia (or “delirium superimposed on dementia” cases). However, the interplay between depression, sleep/circadian health, and delirium risk in the older population is an emerging area of interest.42,43

The association between delirium and depression symptom burden (significant vs. mild/none) was strongest in older participants over 65y (vs. <65y) and in those without a depression diagnosis (vs. those with). Although age is one of the strongest independent risk factors for developing delirium, this suggests that concurrent depression burden is even more important to identify in older persons when preventing delirium. One interpretation is that cognitive impairment was underreported in the older cohort and not adequately controlled. Another possibility is that the temporal burden of depression symptoms, which may have been undertreated or underrecognized in those over 65, was not accounted for. This could also apply to participants without a formal diagnosis of depression but still reported significant symptoms, which may have been left untreated, leading to greater delirium vulnerability. Our findings of an increased risk in those with a worsening trajectory of depression symptoms support the latter. Unfortunately, details on treatments were not available in this study. Screening questions in this
study may be more sensitive in detecting symptoms in patricians without a diagnosis. While caution is needed, these results emphasize the importance of addressing older adults’ psychiatric well-being, even in the absence of depression/anxiety diagnosis, to enhance neurocognitive reserve in response to acute illness or major surgical procedures. Depressive symptoms should not be regarded as a normal response to aging, as they have neurocognitive consequences.44

Strengths of this study include large sample size, long prospective follow-up, and repeat assessment. The sample sizes dedicated to delirium are also uniquely large.45 However, there are several limitations. UK Biobank participants are mostly Caucasian of European descent and may have healthier behaviors than the general UK population. This may underestimate the associations since participants agreeing to participate may have healthier habits, fewer comorbidities, and lower rates of psychiatric burden and delirium. For example, the interpretation of dysphoria and other aspects of psychiatric well-being may vary across different ethnicities and socioeconomic backgrounds, cautioning against extrapolating these findings to populations outside this specific demographic. Despite this, prior work has shown that risk factor associations in the UK Biobank are generalizable.46

The questionnaire items were selected by a UK Biobank working group consensus of experts that needed to balance broad utility with low patient burden given the large sample size.17 This study employed a brief rating scale using four items related to the patient health questionnaire to assess psychiatric well-being.6,29,47–49 The simplicity allows faster assessment on a large scale, but it is not a complete evaluation. The repeat assessment for depression symptom trajectory is limited in power and subject to selection bias in those who agreed to be reassessed.
Furthermore, follow-up trajectories may be affected by ceiling and floor effects (e.g., quantifying changes in individuals with none or maximum depression symptom burden at baseline is not possible with our fixed scale).

We controlled for a wide range of confounders and stratified by subgroups. Still, there is likely residual confounding in the described relationships, given the complex nature of depression symptomatology and heterogeneity of delirium. Although we were able to adjust our models for one cognitive test, UK Biobank does not have other cognitive measurements, such as the Mini-Mental State Examination. We cannot exclude the possibility that many with delirium had undiagnosed cognitive impairment that we could not adjust for. Those with subclinical depression and depressive symptoms may have had maladaptive behaviors and consequences (e.g., poor stress tolerance, coping strategies, higher chance of future substance use, lack of social support), increasing opportunities for delirium via increased hospitalization numbers or presenting diagnoses more likely to precipitate delirium even when controlling for number of hospitalizations during follow-up. Given the potential relationship of those confounding factors with our exposure (i.e., depression), we grouped participants by admitting specialty physician/primary team as a proxy for admitting diagnosis (neuropsychiatric and cardiorespiratory) and hospitalization setting (post-operative, non-operative, critical).

Carefully designed longitudinal studies tracking depression/anxiety symptoms before hospitalization, e.g., a planned, elective major surgery, would help to confirm our observed link between depression symptoms and delirium. On the other hand, our multivariable-adjusted models may have accounted for covariates that could be on the causal pathway, e.g., physical activity and alcohol/substance use. Changes in these factors, driven by depression symptoms, can
potentially impact delirium risk. Therefore, the results may underestimate the true strength of the
relationship. Finally, clinical data in the UK Biobank cohort was limited to ICD coding. Others
have used this approach for delirium,50 within this cohort and are highly specific (up to 96%) for
delirium,51 but the sensitivity is modest (53-64% in recent studies).51,52 Thus, we are likely
missing cases, particularly milder or hypoactive forms.

Our findings provide evidence bridging psychiatric well-being and delirium prevention.
Since depression symptoms are modifiable and a non-cognitive proxy for resilience to inciting
stressors before delirium, it may prove useful for neurological risk stratification alongside
traditional risk factors. Additional work is required to determine the underlying mechanisms and
whether a causal relationship exists before focusing on screening and treatment.

Acknowledgments: This research has been conducted using the UK Biobank Resource under
Application Number 40556.

Conflict of Interest: None.

Author Contributions: Conception and design of the study: Gaba, Li, Hu and Gao L
Acquisition and analysis of data: Gaba, Li, Zheng, Hu, and Gao L.
Drafting a significant portion of the manuscript or figures: Gaba, Li, Gao C, Cai R, Hu, and Gao L.

Table 1. Demographics, lifestyle, and clinical comorbidities at baseline.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Developed new-onset delirium (n = 5,753)</th>
<th>Did not develop delirium (n = 319,141)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at baseline</td>
<td>64.0 (5.4)</td>
<td>57.9 (7.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Males</td>
<td>57.3%</td>
<td>45.7%</td>
<td><0.001</td>
</tr>
<tr>
<td>College Attendance</td>
<td>20.8%</td>
<td>30.0%</td>
<td><0.001</td>
</tr>
<tr>
<td>Ethnic Background (European)</td>
<td>95.4%</td>
<td>94.1%</td>
<td>0.001</td>
</tr>
<tr>
<td>Townsend deprivation index a</td>
<td>-0.62 (0.04)</td>
<td>-1.30 (0.01)</td>
<td><0.001</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>28.7 (5.4)</td>
<td>27.7 (4.9)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Lifestyle

Physical activity (MET-mins) b	1963 (493)	2079.4 (462)	<0.001
Alcohol (≥ 4 drinks/week)	47.5%	47.0%	0.43
Sleep Duration			
short (<6h/day)	8.2%	6.1%	<0.001
normal (6-9h)	87.4%	91.9%	<0.001
long (>9h)	4.5%	2.1%	<0.001
Frequency of family visits (never)	3.4%	1.8%	<0.001

Comorbidities

CVD risk c (any)	68.9%	31.1%	<0.001
Morbidity Burden (high)	40.5%	32.0%	<0.001
Dementia/Parkinson’s disease	2.5%	0.2%	<0.001
Cognition (reaction time) d	613 (145)	559 (118)	<0.001
Vitamin D (deficient) e	5.7%	3.7%	<0.001
Depression/anxiety f	10.0%	7.0%	<0.001

Note. Participant characteristics at baseline by delirium status. ahigher value = worse deprivation. bMETS-min/week increase. cCVD risk score: summed hypertension, cholesterol, diabetes mellitus, smoking status, and ischemic heart disease. dCognition reaction time in milliseconds: average timed tests of symbol matching. eVitamin D levels: sufficient >50nmol/L, low 25-50nmol/L, and deficient <25nmol/L). fParticipants self-reported depression and anxiety symptoms, or ICD depression diagnosis. SD standard deviation, CVD cardiovascular disease.
Table 2: Depressive symptoms burden and associations with incident delirium

<table>
<thead>
<tr>
<th></th>
<th>All Delirium (N = 5753)</th>
<th>Postoperative Delirium (N = 1689)</th>
<th>Non-Dementia Related (N = 4064)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>1.30 (1.22 – 1.38)</td>
<td>1.29 (1.15 – 1.45)</td>
<td>1.34 (1.24 – 1.44)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Modest</td>
<td>1.70 (1.58 – 1.84)</td>
<td>1.71 (1.48 – 1.96)</td>
<td>1.75 (1.60 – 1.92)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Severe</td>
<td>2.43 (2.22 – 2.68)</td>
<td>2.26 (1.92 – 2.66)</td>
<td>2.58 (2.33 – 2.86)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Model B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>1.24 (1.16 – 1.32)</td>
<td>1.22 (1.09 – 1.37)</td>
<td>1.23 (1.15 – 1.33)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td>0.0007</td>
<td><0.001</td>
</tr>
<tr>
<td>Modest</td>
<td>1.44 (1.32 – 1.57)</td>
<td>1.50 (1.30 – 1.73)</td>
<td>1.45 (1.32 – 1.60)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Severe</td>
<td>1.70 (1.53 – 1.88)</td>
<td>1.67 (1.40 – 2.00)</td>
<td>1.75 (1.56 – 1.96)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Model C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>1.19 (1.11 – 1.27)</td>
<td>1.17 (1.04 – 1.32)</td>
<td>1.18 (1.09 – 1.27)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td>0.008</td>
<td><0.001</td>
</tr>
<tr>
<td>Modest</td>
<td>1.35 (1.24 – 1.47)</td>
<td>1.40 (1.21 – 1.63)</td>
<td>1.36 (1.24 – 1.49)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Severe</td>
<td>1.48 (1.33 – 1.64)</td>
<td>1.45 (1.21 – 1.75)</td>
<td>1.50 (1.34 – 1.69)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Model D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>1.16 (1.08 – 1.25)</td>
<td>1.16 (1.02 – 1.30)</td>
<td>1.15 (1.07 – 1.25)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td>0.02</td>
<td><0.001</td>
</tr>
<tr>
<td>Modest</td>
<td>1.30 (1.19 – 1.43)</td>
<td>1.39 (1.19 – 1.63)</td>
<td>1.30 (1.18 – 1.44)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Severe</td>
<td>1.38 (1.24 – 1.55)</td>
<td>1.44 (1.18 – 1.75)</td>
<td>1.44 (1.28 – 1.62)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Note. Cox proportional hazard models examining the association between depressive symptoms groups (with None as reference) and all delirium cases, and subgroups. Model A: demographics. Model B additionally includes Townsend deprivation index, physical activity, alcohol consumption, body mass index, sleep duration, frequency of friend and family visits, and falls. Model C: cardiovascular risk, morbidity burden, and reaction time. Model D: dementia/Parkinson’s, vitamin D, and depression/anxiety diagnosis. HR hazard ratio, CI confidence intervals.
Table 3: Follow-up depressive symptoms burden, trajectory, and risk for delirium.

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depressive symptoms burden follow up (213 delirium cases)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score (0-12)</td>
<td>40,451</td>
<td>1.16 (1.09 – 1.24)</td>
<td><0.001</td>
</tr>
<tr>
<td>None</td>
<td>18,122 (45%)</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td>Mild</td>
<td>14,774 (36%)</td>
<td>1.51 (1.12 – 2.05)</td>
<td>0.008</td>
</tr>
<tr>
<td>Modest</td>
<td>5,172 (13%)</td>
<td>1.74 (1.13 – 2.67)</td>
<td>0.01</td>
</tr>
<tr>
<td>Severe</td>
<td>2,383 (6%)</td>
<td>2.80 (1.63 – 4.80)</td>
<td><0.001</td>
</tr>
<tr>
<td>Depressive symptoms burden trajectory (213 delirium cases)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No change/improved (0)</td>
<td>28,494 (75%)</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td>Worsening (≥1)</td>
<td>9,650 (25%)</td>
<td>1.39 (1.03 – 1.88)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Cox proportional hazard models for follow-up depression symptom assessment and risk for delirium. “Score” is the continuous symptom score. \(^a\) per 1-point increase. Subsequent groups are comparing recent depressive symptoms score groups against the reference group, “None,” for all delirium cases using Model A, the core model adjusting for demographics (age, sex, education, ethnic background, and number of hospitalizations. \(Ref.\) reference category.
Figure 1

A

B

Depressive Symptoms Burden

% Cohort

0 10 20 30 40

None Mild Modest Severe

Hazard ratio (95% CI) for incident delirium

0 1 2 3

Cumulative incidence of delirium

0.0 % 0.5 % 1.0 % 1.5 % 2.0 % 2.5 %

Severe Modest Mild None

Time since assessment (years)
Figure 2

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Hazard ratio</th>
<th>p value for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 65</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>≥ 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>Lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morbidity burden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>Modest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faster</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>Slower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - 9 hr</td>
<td></td>
<td>0.47</td>
</tr>
<tr>
<td>> 9 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep duration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazard ratio
Figure 1. Depressive symptoms burden groups and risk for incident delirium. (A) Unadjusted cumulative incidence plot showing the percentage of the cohort with a first diagnosis of delirium over time, in the four depressive symptoms categories (None =0, Mild =1-2, Modest=3-4, and Severe risk ≥ 5), based on the depression symptom burden score. Hazard ratios (±95% CI) for incident delirium using Cox proportional hazards regression models adjusted for age, sex, education, and ethnicity, percentage of the cohort by depression symptom burden group in the panel below. (B) Cumulative incidence plot showing the percentage of the cohort with a first diagnosis of delirium over time in the four depressive symptom burden groups.

Figure 2. Forrest plot of hazard ratios and 95% confidence intervals for modest/severe depression symptoms burden (versus none/mild) predicting incident delirium based on subgroups of participants by age, sex, physical activity, morbidity burden, diagnosed depression, reaction time and night-time sleep duration.

Supplemental Methods

Included specialty of the consultant in our neuropsychiatric cohort were coded such as 1020 Adult mental illness, 1270 Forensic Psychiatry, 1150 Clinical neuro-physiology, 1500 Neurology, and other specialties that fit the criteria, capturing diagnoses such as strokes, TIA and acute psychiatric illness. Cardiorespiratory admitting specialty codes were specialties such as 1070 cardiology, 1080 cardiothoracic surgery, 1800 respiratory medicine and others that fit the criteria, capturing diagnoses such as heart failure, ischemic heart disease, pneumonia and others. “Others,” were all other specialty encodings that did not fit into these two specifications.
Supplemental Tables

Supplemental Table 1. Full Cox Proportional Hazard Models

<table>
<thead>
<tr>
<th></th>
<th>Model A adjusted for demographics</th>
<th>Model B +BMI/lifestyle factors</th>
<th>Model C +CVD risk, cognition</th>
<th>Model D + morbidity burden, dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>p-value</td>
<td>p-value</td>
<td>p-value</td>
</tr>
<tr>
<td>Depressive Symptoms Score Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>1.30 (1.22-1.38)</td>
<td>1.24 (1.16-1.32)</td>
<td>1.19 (1.11-1.27)</td>
<td>1.16 (1.08-1.25)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Modest</td>
<td>1.70 (1.58-1.84)</td>
<td>1.44 (1.32-1.57)</td>
<td>1.35 (1.24-1.47)</td>
<td>1.30 (1.19-1.43)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Severe</td>
<td>2.36 (2.16-2.58)</td>
<td>1.70 (1.53-1.88)</td>
<td>1.47 (1.32-1.64)</td>
<td>1.38 (1.24-1.355)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Age</td>
<td>1.16 (1.15-1.17)</td>
<td>1.16 (1.16-1.17)</td>
<td>1.15 (1.14-1.15)</td>
<td>1.15 (1.15-1.16)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Male</td>
<td>1.59 (1.51-1.68)</td>
<td>1.61 (1.52-1.71)</td>
<td>1.55 (1.46-1.65)</td>
<td>1.54 (1.45-1.65)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Education (no college)</td>
<td>1.30 (1.22-1.38)</td>
<td>1.17 (1.10-1.26)</td>
<td>1.10 (1.03-1.18)</td>
<td>1.12 (1.04-1.21)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.006</td>
<td>0.002</td>
</tr>
<tr>
<td>European (vs. non-European)</td>
<td>1.00 (0.88-1.14)</td>
<td>1.03 (0.89-1.20)</td>
<td>1.11 (0.94-1.29)</td>
<td>1.22 (1.03-1.46)</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.66</td>
<td>0.21</td>
<td>0.02</td>
</tr>
<tr>
<td>Number of hospitalizations</td>
<td>1.03 (1.03-1.03)</td>
<td>1.03 (1.03-1.03)</td>
<td>1.03 (1.03-1.03)</td>
<td>1.03 (1.03-1.03)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Socioeconomic deprivation (TDI)</td>
<td>1.07 (1.06-1.08)</td>
<td>1.06 (1.05-1.07)</td>
<td>1.05 (1.04-1.06)</td>
<td>1.05 (1.04-1.06)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Physical activity</td>
<td>1.00 (1.00-1.01)</td>
<td>1.00 (1.00-1.00)</td>
<td>1.00 (1.00-1.00)</td>
<td>1.00 (1.00-1.00)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td>0.03</td>
<td>0.49</td>
<td>0.01</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>1.02 (1.02-1.03)</td>
<td>1.01 (1.01-1.02)</td>
<td>1.01 (1.00-1.02)</td>
<td>1.01 (1.00-1.02)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>Alcohol (>4 Drinks per week)</td>
<td>1.04 (0.98-1.11)</td>
<td>1.03 (0.93-1.09)</td>
<td>1.06 (0.99-1.13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.04</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Sleep Duration (hr)a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 9</td>
<td>1.45 (1.26-1.67)</td>
<td>1.30 (1.12-1.50)</td>
<td>1.33 (1.14-1.55)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>< 6</td>
<td>1.19 (1.07-1.32)</td>
<td>1.14 (1.02-1.27)</td>
<td>1.12 (1.00-1.26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td>0.02</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Friends or family visits (any)</td>
<td>0.68 (0.58-0.80)</td>
<td>0.74 (0.62-0.88)</td>
<td>0.75 (0.62-0.90)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Falls in the last year</td>
<td>1.41 (1.32-1.50)</td>
<td>1.35 (1.36-1.43)</td>
<td>1.92 (1.23-1.41)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>1.39 (1.26-1.53)</td>
<td>1.03 (0.93-1.16)</td>
<td>1.06 (0.94-1.19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td>0.55</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>CVD risk score</td>
<td>1.28 (1.25-1.33)</td>
<td>1.28 (1.24-1.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Model A</td>
<td>Model B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction time</td>
<td>2.32 (2.02-2.69)</td>
<td>2.30 (1.97-2.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morbidity Burden</td>
<td>1.14 (1.11-1.16)</td>
<td>1.12 (1.09-1.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dementia/Parkinson’s</td>
<td>8.44 (6.97-10.2)</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1.17 (1.09-1.25)</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficient</td>
<td>1.52 (1.38-1.66)</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Cox proportional hazard models where Model A is adjusting for demographics, Model B is adjusting for lifestyle factors, model C adjusts for CVD risk and cognition, Model D is adjusting for morbidity burden, dementia, and vitamin D. *Total sleep time compared to 6-9 hours as reference. SD standard deviation, CVD cardiovascular disease.*
Supplemental Table 2. Individual depression symptoms burden score components [daily vs. none] and risk for delirium

<table>
<thead>
<tr>
<th></th>
<th>Model A HR (95% CI)</th>
<th>Model B HR (95% CI)</th>
<th>Model C HR (95% CI)</th>
<th>Model D HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p value</td>
<td>p value</td>
<td>p value</td>
<td>p value</td>
</tr>
<tr>
<td>Depressed mood</td>
<td>2.17 (1.84-2.55)</td>
<td>1.37 (1.15-1.63)</td>
<td>1.25 (1.05-1.50)</td>
<td>1.15 (0.94-1.39)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td>0.01</td>
<td>0.17</td>
</tr>
<tr>
<td>Unenthusiasm/Disinterest</td>
<td>1.88 (1.61-2.21)</td>
<td>1.15 (0.97-1.37)</td>
<td>1.08 (0.91-1.29)</td>
<td>1.06 (0.88-1.28)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td>0.10</td>
<td>0.38</td>
<td>0.56</td>
</tr>
<tr>
<td>Tenseness/Restlessness</td>
<td>2.25 (1.92-2.63)</td>
<td>1.52 (1.29-1.80)</td>
<td>1.42 (1.20-1.68)</td>
<td>1.34 (1.12-1.62)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Tiredness/Lethargy</td>
<td>2.48 (2.26-2.72)</td>
<td>1.64 (1.49-1.82)</td>
<td>1.45 (1.35-1.61)</td>
<td>1.41 (1.26-1.57)</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Note. Individual components of Depression symptom burden score and hazard ratios for incident delirium comparing those who answered none vs daily for “frequency of “ in the past two weeks. Model A is a core model adjusting for demographics (age, sex, education, ethnic background, and number of hospitalizations. Model B includes Model A with Townsend deprivation index, physical activity, alcohol consumption, body mass index, sleep duration, frequency of friend and family visits, falls in the past year, and self-reported depression/anxiety or ICD depression diagnosis. Model C includes Model B with cardiovascular risk score, morbidity burden score, and reaction time. Model D includes Model C with dementia Parkinson’s diagnosis and vitamin D status *[Frequency in the past two weeks.]*
Supplemental Table 3. Depressive symptoms burden score trajectory and risk for incident delirium within the Mild depressive symptoms burden category.

Depressive Symptoms Burden Score trajectory* (n = 162 with delirium)

<table>
<thead>
<tr>
<th>No change/improved (0)</th>
<th>28494 (75%)</th>
<th>Ref</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worsening (≥1)</td>
<td>9650 (25%)</td>
<td>1.45 (1.04-2.02)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Note. Cox proportional hazard models comparing recent depressive symptoms score groups against reference group none, for all delirium cases using Model A, the core model adjusting for demographics (age, sex, education, ethnic background, and number of hospitalizations). Two-sided p value for HR in comparison with the reference category, without adjustment for multiple comparisons. *Comparisons within the Mild group (0-2). Abbreviations: HR hazard ratio, CI confidence intervals.

Supplemental Figures:

[Flowchart of participant selection. How participants with incident delirium were selected in the study. From the UK biobank.](#)
Supplemental Figure 2. Cox proportional hazard models comparing the risk for incident delirium for each category of depression symptom burden score in each hospitalization setting (A), and admitting specialist/team (B). *POD* Post-operative delirium.
Supplemental Figure 3.

The number of participants for baseline depression symptoms burden score (0-12). Follow-up depression symptom burden score changes from baseline.