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Abstract 39 
 40 
Objective: Multiple lines of evidence indicate that ankylosing spondylitis (AS) is a lymphocyte-41 
driven disease. However, which lymphocyte populations are critical in AS pathogenesis is not 42 
known. In this study, we aimed to identify the key cell types mediating the genetic risk in AS using 43 
an unbiased functional genomics approach. 44 
 45 
Methods: We integrated genome-wide association study (GWAS) data with epigenomic and 46 
transcriptomic datasets of human immune cells. To quantify enrichment of cell type-specific open 47 
chromatin or gene expression in AS risk loci, we used three published methods that have 48 
successfully identified relevant cell types in other diseases. We performed co-localization 49 
analyses between GWAS risk loci and genetic variants associated with gene expression (eQTL) 50 
to find putative target genes. 51 
 52 
Results: Natural killer (NK) cell-specific open chromatin regions are significantly enriched in 53 
heritability for AS, compared to other immune cell types such as T cells, B cells, and monocytes. 54 
This finding was consistent between two AS GWAS. Using RNA-seq data, we validated that 55 
genes in AS risk loci are enriched in NK cell-specific gene expression. Using the human Space-56 
Time Gut Cell Atlas, we also found significant upregulation of AS-associated genes predominantly 57 
in NK cells. Co-localization analysis revealed four AS risk loci affecting regulation of candidate 58 
target genes in NK cells: two known loci, ERAP1 and TNFRSF1A, and two under-studied loci, 59 
ENTR1 (aka SDCCAG3) and B3GNT2. 60 

Conclusion: Our findings suggest that NK cells may play a crucial role in AS development and 61 
highlight four putative target genes for functional follow-up in NK cells. 62 

 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
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Introduction 72 

Axial spondyloarthritis (axSpA) is a chronic inflammatory rheumatic disease characterized by 73 

inflammation of the spine and sacroiliac joints, with a proportion of patients also presenting with 74 

arthritis in peripheral joints, uveitis, psoriasis or inflammatory bowel disease (1). Historically, most 75 

genetic and pathogenetic studies in axSpA have been carried out in ankylosing spondylitis (AS), 76 

a severe and well-characterized subtype of axSpA. The heritability of AS is high, with estimates 77 

ranging between 40-90% (2). HLA-B27 is the major risk allele for AS (OR = 21.4) (3). Additionally, 78 

genome wide-association studies (GWAS) have revealed >100 non-MHC risk loci for AS, most of 79 

them implicating non-coding variants (4–8).  80 

 81 

Many immune cell-types have been associated with axSpA (9,10). However, which ones are 82 

“driver” cell types actively contributing to the pathogenesis of the disease, as opposed to 83 

“bystanders” that become involved as a consequence of the disease, remains unclear. Studies 84 

leveraging genetic risk variants and their overlap with epigenomic and transcriptomic features 85 

variably suggested CD8+ T cells, CD4+ T cells, NK (natural killer) cells, monocytes, and 86 

gastrointestinal cells as potential mediators of AS genetic risk (10–14). However, these studies 87 

did not apply the new functional genomics datasets generated from human cells or the latest 88 

methodologies designed to integrate functional genomics with GWAS data. This new generation 89 

of methods takes advantage of the full range of SNPs examined in a GWAS (not just those 90 

surpassing the genome-wide significance threshold) and robustly control for genomic and linkage 91 

disequilibrium biases (15–17). 92 

 93 

For several immune-mediated diseases, these integrative functional genomics methods have 94 

successfully identified specific cell types as drivers of disease development. For example, for 95 

rheumatoid arthritis (RA), multiple studies have found a significant enrichment of genetic risk in 96 

open or active chromatin regions (marking regulatory elements) specific for T cells (11,18–20). 97 

Both mouse and human studies corroborate the role of T cells as central players in RA 98 

pathogenesis (21–23). Similarly, for systemic lupus erythematosus (SLE), studies have identified 99 

an enrichment of B cell-specific putative regulatory elements and gene expression in SLE risk loci 100 

(19,20,24,25) consistent with the well-established role of B cells in SLE pathogenesis (26,27). 101 

Hence, there is precedence that the integration of GWAS with functional genomics datasets can 102 

identify cellular drivers in inflammatory diseases with complex pathogenesis.  103 

 104 
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Here we sought to investigate which immune cell populations could be drivers of AS development. 105 

We integrated GWAS summary statistics from two different AS cohorts with epigenomic and 106 

transcriptomic datasets of human leukocytes from peripheral blood and tissue using established 107 

methods that control for biases in genomic enrichment analyses. Our results bring forward NK 108 

cells as potential key drivers in the pathogenesis of AS.  109 

Results 110 

 111 

In order to assess which immune cell types might be mediating the genetic susceptibility to AS, 112 

we first utilized a dataset of open chromatin profiles of immune cell subsets from peripheral blood 113 

of four healthy subjects (19) (Fig. 1A). Sorted cell subsets were analyzed using ATAC-seq with 114 

or without prior in vitro stimulation. For our study, we grouped the cells analyzed by Calderon et 115 

al. into 7 main immune cell types: T cells, B cells, NK cells, plasma cells, dendritic cells (DCs), 116 

plasmacytoid DCs, and monocytes. We identified cell type-specific open chromatin regions and 117 

assessed whether these were significantly enriched in AS genetic risk. We used the LDSC-SEG 118 

method (15) to quantify enrichment of partitioned heritability in each of these cell type-specific 119 

annotations (conceptual scheme in Fig. 1B, data in Fig. 1C) compared to baseline and control 120 

annotations, while taking into account the effects of linkage disequilibrium. We excluded the MHC 121 

region from our analyses given the unusually high linkage disequilibrium in this region and the 122 

fact that genetic associations with this locus are mostly driven by coding variants of the HLA-B 123 

gene. Using the Immunochip association study summary statistics from the International Genetics 124 

of Ankylosing Spondylitis Consortium (IGAS) (7), we found that NK cell-specific open chromatin 125 

regions were significantly enriched in genetic risk for AS (P = 0.026), while this was not the case 126 

for the other six immune cell types (Fig. 1D).  127 

 128 

We validated this finding in a GWAS with genome-wide genotyping using the summary statistics 129 

for AS from the UK Biobank. With this GWAS, we confirmed that open chromatin regions specific 130 

for NK cells were significantly enriched in AS heritability (P = 0.034, Fig. 1E). To evaluate the 131 

reliability of our results, we included four control traits that have been extensively examined in 132 

similar studies integrating GWAS with functional genomics (15,18–20). As expected, RA 133 

presented the highest enrichment for T cell-specific open chromatin regions (P = 0.0018), 134 

Alzheimer’s for myeloid DC (P = 0.00018), and SLE for B cells (P = 0.0015). We selected body 135 

height as a negative control trait anticipating no significant enrichment for immune cells, a 136 
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prediction that was confirmed by our data (all P > 0.1, Supplementary Fig. 1). Collectively, these 137 

epigenomic analyses suggest that AS risk alleles are preferentially located in regions that may 138 

influence gene regulation in NK cells.  139 

 140 

To corroborate these findings using an alternative experimental approach, we used our previously 141 

published RNA-seq dataset of sorted peripheral CD4+ T, CD8+ T, MAIT, invariant NKT (iNKT), 142 

γδ T cells expressing Vδ1 TCR chain (Vd1), γδ T cells expressing Vδ2 TCR chain (Vd2), and NK 143 

cells (each in duplicate from 6 healthy donors, Fig. 2A) (28). We applied the SNPsea method, 144 

which quantifies enrichment of cell type-specific gene expression in risk loci for a given trait 145 

(conceptual scheme in Fig. 2B) by employing a non-parametric statistical method to calculate 146 

empirical P-values through comparison with sets of null SNPs (29). We used the AS risk SNPs 147 

reported by Brown and Wordsworth in 2017 which were curated from multiple AS genetic studies 148 

(30). SNPsea analysis revealed a significant enrichment of NK cell-specific gene expression in 149 

AS risk loci (P = 0.01), which was not observed in the other lymphocyte subsets included in the 150 

dataset (Fig. 2C).  151 

 152 

We then performed a differential expression analysis comparing NK cells with the six T cell 153 

subsets (Supplementary Table 1). Genes in AS risk loci with significant upregulation in NK cells 154 

are presented in Fig 2D. Two of these genes, RUNX3 and TBX21 (Tbet), encode transcription 155 

factors with important roles in lymphocytes. TNFRSF1A encoding TNF Receptor I has a well-156 

established association with AS that has been validated by multiple studies (31–33). FCGR2A 157 

codes for the low-affinity Fcγ receptor IIA, an activating receptor involved in orchestrating immune 158 

response. Less studied genes included NPEPPS, which encodes a puromycin-sensitive 159 

aminopeptidase, and LNPEP, which encodes a zinc-dependent aminopeptidase (34). Both genes 160 

are paralogs of ERAP1 and belong to the MHC Class I antigen processing and presentation 161 

pathway, along with other known AS risk genes (35–37). Collectively, the results of our second 162 

integrative analysis indicate that several genes within AS risk loci are highly expressed in NK cells 163 

relative to T cells, providing additional support for the emerging hypothesis that AS risk alleles 164 

exert their effects, at least in part, via NK cells.  165 

 166 

The transcriptomic phenotype of immune cells commonly differs between blood and tissue (38–167 

41). Hence, in addition to analyzing peripheral blood as in the previous analyses, we sought to 168 

evaluate disease-relevant cell subsets from a tissue relevant for AS. We used the human Space-169 
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Time Gut Cell Atlas (42) which includes scRNA-seq data for samples from various locations of 170 

fetal (N = 16), pediatric (N = 8) and adult (N = 13, including 6 healthy and 7 Crohn’s disease 171 

patients) intestine (Fig. 3A). We applied the scDRS method (16) which identifies cells that over-172 

express a significant proportion of genes implicated by GWAS, weighted on their strength of 173 

association with disease, compared to null sets of control genes in the dataset (conceptual 174 

scheme in Fig. 3B). The Space-Time Gut Cell Atlas investigators identified the following broad 175 

cell types: mesenchymal, epithelial, endothelial, neuronal, myeloid, red blood cells, B cells, 176 

plasma cells, T cells, NK cells and other innate lymphoid cells (ILCs)( Fig. 3C). scDRS identified 177 

1,852 cells with significantly enriched expression of AS GWAS genes (20% FDR, Fig. 3D). Of 178 

these, 765 were T cells, 264 myeloid cells, 320 NK cells and 319 other ILCs. Normalized for cell 179 

type abundance in the dataset, NK cells showed the highest enrichment (39-fold), followed by 180 

other ILCs (34-fold), T cells (5-fold), and myeloid cells (5-fold, Fig. 3E). In contrast, non-immune 181 

cell types exhibited a depletion of disease relevant cells relative to their abundance in the entire 182 

dataset (Supplementary Fig. 2). We then used the fine-grained annotations of the Space-Time 183 

Gut Cell Atlas to identify the particular cell subsets that had significant expression enrichment of 184 

AS-associated genes. This revealed NK cells as the most abundant (N = 320), followed by Lti-185 

like NCR+ ILC3 cells (N = 147), activated CD8+ T cells (N = 132), macrophages (N = 130), Lti-186 

like NCR- ILC3 cells (N = 112), γδ T cells (N = 94), and other T cells, ILCs and myeloid subsets 187 

(Fig. 3F). Genes in AS risk loci with high expression in gut NK cells include GNLY, CCL4 and 188 

CCL3 (Fig. 3G). Using the control traits specified earlier, we confirmed T cells as the main 189 

disease-relevant cell type for RA and monocytes for Alzheimer’s disease (Supplementary Fig. 190 

2). No significant disease-relevant cells were identified for height (as expected) and for SLE, 191 

which could mean that B cells in the gut are in a state not pertinent to SLE or that the dataset 192 

lacked sufficient power to detect an association for this disease (Supplementary Fig. 2). In sum, 193 

our analyses indicate that tissue-resident NK cells exhibit significant expression of AS-associated 194 

genes. 195 

 196 

Lastly, we sought to find putative target genes for AS risk variants in NK cells. To this end we 197 

performed co-localization analyses between AS GWAS risk loci and genetic variants associated 198 

with gene expression (expression quantitative trait loci, eQTLs) using coloc (43). We leveraged 199 

eQTL summary statistics from the eQTL Catalogue (44) drawing upon data from a study on the 200 

transcriptomic profiling of peripheral NK cells from 91 genotyped individuals (45) as well as a 201 

microarray QTL study that profiled NK cells from 245 genotyped individuals (46). We found four 202 

AS risk loci with genome-wide significance (P < 5 × 10-8) and a high posterior probability (>0.8) of 203 
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sharing a causal variant with an NK cell eQTL (PP4, Table 1, Fig. 4). An additional 10 loci with 204 

suggestive AS association P-values (3.56 × 10-5 < P < 5.40 x 10-8) showed evidence of co-205 

localization with NK cell eQTLs for 18 genes (PP4 > 0.75, Table 1). Within the genome-wide 206 

significant loci we identified the established target genes ERAP1 and TNFRSF1A, as well as the 207 

putative target genes ENTR1 (a.k.a. SDCCAG3) and B3GNT2, which have been studied less.  208 

 209 

Discussion 210 

 211 

In this study we integrated epigenomic and transcriptomic datasets with AS genetic risk data to 212 

find candidate cellular drivers of AS pathogenesis. Our unbiased approach, applying three 213 

different methods to datasets from both peripheral blood and tissue, consistently identified NK 214 

cells as the dominant disease-relevant cell type. Specifically, we found that NK-specific open 215 

chromatin regions and NK-specific gene expression were significantly enriched for non-MHC AS 216 

genetic risk. This suggests that a significant portion of AS risk variants affect gene regulation in 217 

NK cells, pointing to NK cells as potential key mediators of AS pathogenesis. 218 

 219 

NK cells have the ability to directly destroy target cells through cell lysis, and in addition play a 220 

significant role in shaping immune responses by releasing cytokines (47). Previous studies 221 

support a role for NK cells in AS. AS patients with chronic subclinical intestinal inflammation were 222 

found to have an increased abundance of NKp44+ NK cells in their gut, and these cells were the 223 

major producers of IL-22 in the lamina propria, suggesting a possible role in tissue protection (48). 224 

One could speculate that dysfunctional NK cells “drive” AS development by contributing to 225 

intestinal inflammation, in line with the gut-joint axis hypothesis (49). Alternatively, NK cells may 226 

play a critical role through activities in spinal tissues. Cuthbert et al. studied entheseal immunology 227 

using discarded surgical specimens from patients with back pain (not axSpA) undergoing 228 

laminectomy and reported that NK cells are present in both entheseal soft tissue and peri-229 

entheseal bone (50). We are not aware of any data assessing the presence of NK cells at spinal 230 

enthesis in AS patients or in the subchondral bone marrow in patients with sacroiliitis. 231 

 232 

HLA-B27 can bind to the killer cell immunoglobulin-like receptor (KIR) KIR3DL1 and affect the 233 

function of NK cells, including their ability to lyse cells (51–53). HLA-B27 homodimers can also 234 

bind KIR3DL2 (54). Chan and colleagues showed an expansion of KIR3DL2+ NK and CD4+ T 235 

cells in AS patients (Chan Arthritis Rheum 2005, PMID 16255049). Subsequent studies by the 236 

same group focused on CD4+ T cells demonstrating that KIR3DL2+ CD4+ T cells were major IL-237 
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17A producers (55). However, an expansion of KIR3DL2+ NK and T cells has not been observed 238 

in other axSpA cohorts (56,57). Multiple risk loci for AS include genes relevant for NK cell function, 239 

including KIR2DL1, KIR3DL1, KIR2DS5, KIR3DS1 and KIR2DL5 (58–62). In another study, 240 

investigators co-cultured ERAP1-inhibited M1 macrophages with NK cells from AS patients, and 241 

found that patients with ERAP1 protective alleles led to decreased CD69 and CD107a on NK cells 242 

and a lower number of IFN-γ+ NK cells compared to patients carrying non-protective alleles (63).  243 

 244 

Our findings do not rule out the involvement of other cell types in AS pathogenesis. Indeed, in the 245 

human Space-Time Gut Cell Atlas, we identified significant expression of AS-associated genes 246 

in T cell subsets and ILC subsets (Fig. 3D-F), which share transcriptional programs with NK cells 247 

(28,64–66). Indeed, it is likely that genetic risk to AS is mediated through multiple cell types, as is 248 

the case for other complex diseases such as multiple sclerosis, for which studies have found risk 249 

enrichment in open/active chromatin regions specific to both T cells and B cells (20). We and 250 

others have shown that eQTLs often exhibit impact in multiple cell types (67,68). Hence, 251 

determining the specific cell type through which a disease risk variant is exerting its pathogenic 252 

effects can be challenging.  253 

 254 

Our co-localization analyses using two eQTL NK cell datasets identified four putative target genes 255 

for AS risk variants: ERAP1, TNFRSF1A, ENTR1 (a.k.a. SDCCAG3) and B3GNT2. The 256 

importance of ERAP1 in AS risk is well established, and polymorphisms affecting its expression 257 

have been reported for multiple cell types, including macrophages, monocytes, T cells, and 258 

induced pluripotent stem cells, fibroblasts, and immortalized B cells (69–71). Similarly, multiple 259 

studies have found significant associations between non-coding polymorphisms at or near 260 

TNFRSF1A and AS, including in European and East Asian populations (31,32,72,73). While there 261 

are multiple genes in this genomic locus, including PLEKHG6, SCNN1A, and LTBR, our co-262 

localization results suggest that TNFRSF1A, which encodes TNF receptor I, is the target gene of 263 

the causal variant in this locus, and its dysregulation can happen in NK cells. This is consistent 264 

with the therapeutic efficacy of TNF inhibitors in AS and the known function of TNF as a booster 265 

of the cytolytic capacity of NK cells (74). Interestingly, TNFRSF1A has been functionally linked to 266 

ENTR1, a less extensively studied putative target gene identified in this study. ENTR1, which 267 

encodes an endosome-associated trafficking regulator, is needed for TNF receptor expression on 268 

the cell surface (75). Lastly, B3GNT2 encodes an acetylglucosaminyltransferase enzyme that is 269 

a type II transmembrane protein. A recent study in a Taiwanese cohort demonstrated that a non-270 

coding genetic variant near B3GNT2 is associated with AS susceptibility, and that B3GNT2 blood 271 
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mRNA levels were negatively correlated with C-reactive protein (CRP), erythrocyte sedimentation 272 

rate, syndesmophyte formation, and Bath ankylosing spondylitis functional index (BASFI) (76).  273 

 274 

While the 4 putative target genes identified here make sense in the context of AS and potential 275 

impact on NK cell function, they are not as numerous as we would have expected given the 32 276 

genome-wide significant risk loci included in the co-localization analyses. However, similar 277 

challenges have been encountered with non-coding risk variants in other complex diseases, 278 

where only 20-47% of risk variants co-localized with eQTLs (77–79). Our research, along with 279 

that of others, suggests that many regulatory effects might remain undetected due to their 280 

presence in cell states of activation or differentiation that have not been thoroughly explored (80–281 

83). Moreover, the sample size of typical eQTL studies is likely insufficient to find the regulatory 282 

effects of most risk variants identified by GWAS (84). Hence, we believe that better-powered 283 

eQTL studies ascertaining multiple activation states in NK cells are needed to find additional 284 

target genes for AS risk variants.  285 

 286 

One limitation of our study, due to a lack of published data, is the incomplete assessment of the 287 

spectrum of potentially relevant immune cell subsets and states, particularly those present in 288 

inflamed sacroiliac joints and spine. Consequently, if the real driver for AS pathogenesis is a cell 289 

subset or state that was not present in the analyzed datasets, but has transcriptomic and 290 

epigenomic similarities to NK cells, then our results may suffer from “guilt-by-association” bias. 291 

To our knowledge, current transcriptomic datasets profiling multiple immune cell types from AS 292 

patients are limited to peripheral blood (14,85–90). When we applied scDRS to a recently 293 

published single-cell RNA-seq dataset of 98,884 PBMCs cells from 10 AS patients and 29 healthy 294 

controls (88), we found no significant cells for the disease-relevant gene expression score (data 295 

not shown), possibly due to lack of power in the study for this type of analysis. 296 

 297 

Our study encompassed a broad spectrum of immune cell states within the gastrointestinal tract 298 

and peripheral blood of healthy subjects and consistently pointed to NK cells. Since GWAS 299 

pinpoint genetic regions implicated in the onset of disease, including early stages when future 300 

patients are still asymptomatic, the study of samples from healthy subjects is relevant, despite 301 

the possibility that not all cell states are represented. Future investigations, particularly larger-302 

scale studies of samples from blood and inflamed tissue from AS patients including untreated 303 

patients in the early phases of the disease, will be key to establish whether NK cells are indeed 304 

drivers of AS pathogenesis.  305 
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 306 

Materials and Methods 307 

Genome-wide association studies 308 

We used the GWAS ImmunoChip summary statistics from the International Genetics of 309 

Ankylosing Spondylitis Consortium (IGAS). The IGAS study, led by (7), performed high-density 310 

genotyping of 9,069 AS cases and 13,578 healthy controls. In addition, we used the GWAS 311 

summary statistics from the UK Biobank, which involved a case-control design with 1,185 AS 312 

cases and 419,276 controls, providing genome-wide coverage for AS susceptibility loci (91).  313 

 314 

We lifted the genomic positions of the genetic variants to genome build hg19 or hg38 according 315 

to the version compatible with subsequent analyses. Given the complexity and strong genetic 316 

association signals within the Major Histocompatibility Complex (MHC) region, we excluded 317 

variants located on chr6:25,000,000–34,000,000. 318 

 319 

We additionally used GWAS summary statistics for rheumatoid arthritis, Alzheimer’s disease, and 320 

systemic lupus erythematosus as positive control traits for which we know the disease relevant 321 

immune cell types, and height as a negative control trait for which we do not expect immune cells 322 

to be relevant. The summary statistics for control traits were preprocessed by the Alkes Price 323 

laboratory, they included HapMap 3 SNPs and SNPs that are in the 1000 Genomes Project, and 324 

they excluded the MHC region (chr6:25Mb-34Mb). These summary statistics are available at 325 

https://alkesgroup.broadinstitute.org/.  326 

 327 

Epigenomic and transcriptomic datasets 328 

To identify cell type-specific open chromatin regions in different immune cell types, we used the 329 

Calderon et al. study (19), in which the authors collected blood from 4 healthy subjects, sorted 330 

immune cell types, and generated chromatin accessibility profiles using Assay for Transposase-331 

Accessible Chromatin sequencing (ATAC-seq, GSE118189). 332 

 333 

To find AS risk enrichment for cell type-specific expression, we incorporated data from the study 334 

conducted by Gutierrez-Arcelus et al. (28), which involved low-input mRNA-seq data from sorted 335 
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NK cells and six T cell subsets isolated from 6 healthy subjects (each with two replicates per cell-336 

type, GSE124731).  337 

 338 

We used the Space-Time Gut Cell Atlas to identify cells exhibiting significant upregulation of 339 

disease-associated genes. This dataset includes single-cell RNA-seq profiling of 428,000 340 

intestinal cells obtained from fetal (N = 16), pediatric (N = 8), and adult donors (N = 13). The 341 

dataset covers 11 different intestinal regions (42), https://www.gutcellatlas.org/.  342 

 343 

Differential accessibility analysis 344 

We used the counts of open chromatin consensus peaks called by Calderon et al. First, we 345 

transformed counts into Reads Per Kilobase per Million mapped reads (RPKM), then normalized 346 

by quantiles using the preprocess Core R package and finally scaled to their log2 (normalized 347 

RPKM+1), thus we account for differences in library size across samples and peak length 348 

variability. We pooled sorted samples into 7 main immune cell types, aiming for a similar number 349 

of samples per cell type to avoid biases in the differential accessibility analyses: T cells (stimulated 350 

and unstimulated CD8+ T, unstimulated naïve CD4 T and memory CD4 T), B cells (stimulated 351 

and unstimulated bulk B cells, unstimulated memory and naïve B cells), natural killer cells 352 

(stimulated and unstimulated mature NKs, unstimulated memory NK and immature NK cells), 353 

monocytes (stimulated and unstimulated monocytes), plasma cells (unstimulated plasma cells), 354 

dendritic cells (unstimulated myeloid DCs), plasma dendritic cells (unstimulated plasmacytoid 355 

DCs). The latter three cell-types had less samples available, however, this did not impede our 356 

control trait Alzheimer disease to show significant heritability enrichment for myeloid DC-specific 357 

open chromatin regions, as expected (see Methods below and main text).  358 

 359 

Next, we employed linear mixed model regression to identify regions that exhibited differential 360 

accessibility between each cell type and the rest of the cell types. To account for potential donor-361 

specific effects, we incorporated the donor ID variable as a random effect in our analysis. 362 

For each cell type comparison, we tested peaks that had counts greater than the mean for that 363 

cell type in at least half of the samples, this yielded between 400 to 600 thousand tested peaks 364 

depending on the cell type. To select the “cell type-specific open chromatin peaks” for each cell 365 

type, we sorted open chromatin peaks by their t-statistic and chose the positive top 10%. 366 
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Partitioned heritability enrichment analysis with LDSC-SEG  367 

Linkage Disequilibrium score regression applied to specifically expressed genes (LDSC-SEG) 368 

v1.0.1 method was applied to determine disease-relevant cell types (15,92) for AS.  369 

 370 

Cell type-specific open chromatin peaks were extended by 225bp to each side, to match the 371 

genomic coverage recommended by the LDSC-SEG authors. These annotations were then 372 

utilized as input for the partitioned heritability enrichment analysis by LDSC-SEG. We used the 373 

baseline annotation v1.2 provided by Price Lab for LDSC-SEG, comprising 75 background 374 

annotations. Additionally, we used all consensus peaks (N = 829,942) of Calderon et al. as the 375 

control annotation. Using other baselines or controls did not affect our results.  We utilized SNP 376 

weight files derived from the HapMap 3 project (HM3) European population.  377 

 378 

Analysis of cell type-specific gene expression enrichment in risk loci using SNPsea 379 

SNPsea analysis aimed to assess the association between risk SNPs and genes expressed 380 

specifically for a given cell type (29). We incorporated a curated list of risk SNPs for ankylosing 381 

spondylitis (AS), compiled by Brown and Wordsowrth 2017 (30), which includes genetic variants 382 

that have been associated with AS susceptibility. This list was derived from multiple AS studies 383 

conducted until 2017. 384 

We utilized the expression data obtained from Gutierrez-Arcelus et al. (2019). The gene 385 

expression counts in this dataset were normalized to transcripts per million (TPM) and 386 

transformed to log2(TPM+1) values. To identify the genes with meaningful expression levels, we 387 

included those with log2(TPM+1) > 2 in at least 10 samples. SNPsea was then run for the 388 

normalized expression matrix and AS risk SNPs, using recombination intervals from Myers et al. 389 

(93), null SNPs from Lango et al. (94), and the following parameters: --score single --slop 10000 390 

--threads 2 --null-snpsets 0 --min-observations 100 --max-iterations 10000000.  391 

 392 

Integration of GWAS with single-cell RNA-seq with scDRS 393 

We used the single-cell Disease Relevance Score (scDRS) by combining scRNA-seq and GWAS 394 

to identify cells with significant up-regulation of disease-associated genes, which are scored 395 

based on their strength of association with disease, and are compared with null sets of genes 396 

present in the dataset. 397 
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 398 

As recommended by scDRS authors, we first created disease-relevant genesets using Multi-399 

marker Analysis of GenoMic Annotation (MAGMA) version 1.10 (95). First, we generated gene 400 

annotations with MAGMA setting a window of 10kb using the following parameters: “--annotate 401 

window=10,10 --snp-loc ./g1000_eur/g1000_eur.bim --gene-loc ./NCBI37.3/NCBI37.3.gene.loc”. 402 

Then we ran MAGMA using GWAS summary statistics for traits of interest with the following 403 

parameters: --bfile ./magma_v1.10/g1000_eur/g1000_eur --pval GWAS.pval use='SNP,P' 404 

ncol='N' --gene-annot ./magma_v1.10/out/step1.genes.annot.  405 

 406 

We ran scDRS using the disease-relevant gene sets from MAGMA, the expression data obtained 407 

from the Space-Time Gut Cell Atlas (42) and corrected for biases by adding as covariates the 408 

number of genes expressed per cell and sample batch. Next, for visualization purposes and 409 

downstream analysis, we processed the single-cell dataset using Seurat (96), we performed 410 

integration across batches with Harmony (97), and we visualized cells in two dimensions with 411 

Uniform Manifold Approximation and Projection (UMAP). We labeled cells plotted in UMAP by the 412 

annotations defined by the Space-Time Gut Cell Atlas. Additionally, we colored cells by their 413 

scDRS score when cells passed the 0.20 FDR threshold. 414 

eQTL co-localization analysis  415 

To select genomic loci for colocalization analysis, GWAS summary statistics were sorted by P-416 

values, then starting from the variant with the smallest P-value, variants within a 50 Kb window 417 

were removed. The process was repeated with the next most significant variant among the 418 

remaining variants until no variant with a P-value below 5 x 10-5 was left. We performed 419 

colocalization analysis for GWAS studies against the eQTL Catalogue (44). We imported eQTL 420 

summary statistics from RNA-seq and microarray from Schmiedel et al. (45) and Gilchrist et al. 421 

(2022). We fetched the summary statistics data using the tabix method with the seqminer R 422 

package (v8.5). For each region tested, we included all biallelic SNPs that were ascertained in 423 

both the GWAS and eQTL study and performed the analysis only for genes within a window of 424 

±500,000 base pairs from the GWAS top variant, and for which there was at least one eQTL 425 

passing the 5 x 10-5 P-value threshold. Before merging GWAS and QTL data, the variant 426 

coordinates of the GWAS were lifted to the GRCh38 version of the reference genome using 427 

liftOver with the UCSC chain file. We used the coloc v5.1.0.1 package (98) in R v4.1.0 to test for 428 

colocalization at each gene and dataset. The code is available at <https://github.com/gutierrez-429 

arcelus-lab/>. 430 
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 431 

Each locus was plotted using plotgardener (99), and we recovered the LD of the top SNP in a 432 

given region in the GWAS dataset using the locuscomparer package (100). Then we used 433 

plotgardener functions to display the regions near the lead variant and colored the genes tested 434 

using the posterior probability that the two traits share a causal variant (PP4).  435 

 436 

Data availability 437 

 438 

All data and methods are publicly available as specified above.  439 
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Table 1. Putative target genes identified by co-localization analysis 782 
between AS-associated loci and eQTLs in NK cells. 783 

Lead GWAS 
Variant 

P-value GWAS Putative 
Target Gene 

Posterior 
probability of 
shared causal 
variant 

Quantification 
method 

eQTL study 

rs27529 1.24E-40 IGAS ERAP1 0.99186 microarray Gilchrist et al. 2021 

rs6759298 2.07E-38 IGAS B3GNT2 0.97245 RNA-seq Schmiedel et al. 2018 

rs1128905 3.17E-10 IGAS ENTR1 0.8207 microarray Gilchrist et al. 2021 

rs1860545 8.66E-10 IGAS TNFRSF1A 0.99673 RNA-seq Schmiedel et al. 2018 

rs11065898 5.41E-08 IGAS TMEM116 0.87563 microarray Gilchrist et al. 2021 

rs9619386 4.42E-07 IGAS UBE2L3 0.96397 microarray Gilchrist et al. 2021 

rs1250542 2.07E-06 IGAS ZMIZ1 0.87272 microarray Gilchrist et al. 2021 

rs1250542 2.07E-06 IGAS ZMIZ1 0.83268 RNA-seq Schmiedel et al. 2018 

rs952594 2.08E-06 IGAS APEH 0.75689 microarray Gilchrist et al. 2021 

rs952594 2.08E-06 IGAS RBM6 0.91981 RNA-seq Schmiedel et al. 2018 

rs952594 2.08E-06 IGAS UBA7 0.94237 microarray Gilchrist et al. 2021 

rs952594 2.08E-06 IGAS UBA7 0.8851 RNA-seq Schmiedel et al. 2018 

rs6565217 2.82E-06 IGAS AC135050.3 0.91556 RNA-seq Schmiedel et al. 2018 

rs6565217 2.82E-06 IGAS STX4 0.94653 RNA-seq Schmiedel et al. 2018 

rs7191548 3.13E-06 IGAS EIF3CL 0.7822 microarray Gilchrist et al. 2021 

rs7191548 3.13E-06 IGAS NPIPB8 0.97545 microarray Gilchrist et al. 2021 

rs7191548 3.13E-06 IGAS SGF29 0.85225 microarray Gilchrist et al. 2021 

rs7191548 3.13E-06 IGAS TUFM 0.82246 microarray Gilchrist et al. 2021 

rs7191548 3.13E-06 IGAS TUFM 0.95694 RNA-seq Schmiedel et al. 2018 

rs6583441 3.84E-06 IGAS IKZF1 0.96244 RNA-seq Schmiedel et al. 2018 

rs4690326 6.49E-06 IGAS DGKQ 0.91883 microarray Gilchrist et al. 2021 

rs4690326 6.49E-06 IGAS DGKQ 0.89989 RNA-seq Schmiedel et al. 2018 

rs4690326 6.49E-06 IGAS IDUA 0.98988 microarray Gilchrist et al. 2021 

rs4690326 6.49E-06 IGAS SLC49A3 0.801 RNA-seq Schmiedel et al. 2018 

rs26481 9.17E-06 UK Biobank CAST 0.95638 microarray Gilchrist et al. 2021 

rs26481 9.17E-06 UK Biobank ERAP1 0.95565 microarray Gilchrist et al. 2021 

rs2236167 3.57E-05 IGAS PPP2R3C 0.9491 microarray Gilchrist et al. 2021 
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Figure legends 785 

Figure 1. Human NK cell-specific open chromatin regions are enriched in AS genetic risk. 786 
(A) Cartoon depicting the Calderon et al. study design. Peripheral blood cells from 4 healthy 787 
subjects were sorted into immune cell populations that we grouped in silico into seven cell types 788 
(see Methods). Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) was 789 
performed with and without prior in vitro activation. (B) Graphical representation of LDSC-SEG 790 
analysis: identification of cell type-specific annotations (in our case open chromatin regions), 791 
followed by the integration with GWAS summary statistics to obtain a risk enrichment coefficient 792 
β and P-value. (C) Volcano plots showing results of differential accessibility analyses for each cell 793 
type compared to the other cell types. Colored dots indicate open chromatin peaks in the top 794 
decile of the t-statistic for each cell type, which were used for LDSC-SEG analysis. (D-E) Bar 795 
graphs displaying the AS genetic risk enrichment coefficient β and block jackknife standard error 796 
for cell type-specific open chromatin accounting for control peaks and baseline annotations. 797 
Summary statistics from the International Genetics of Ankylosing Spondylitis Consortium (IGAS) 798 
(D) and UK Biobank (E) GWAS were used. * indicates P < 0.05.  799 
 800 
Figure 2. NK cells show enrichment of cell type-specific expression of AS-associated 801 
genes. (A) Cartoon depicting the Gutierrez-Arcelus et al. study. Peripheral blood cells from 6 802 
healthy subjects were sorted into NK cells (orange) and six T cell populations (purple): CD4+ T, 803 
CD8+ T, MAIT, iNKT, and two γδ T cell populations. Bulk RNA sequencing was performed on two 804 
replicates per sample. (B) Graphical representation of the SNPsea method illustrating the 805 
integration of gene expression profiles with risk loci obtained from GWAS. (C) Bar graphs showing 806 
-log10(P-value) for enrichment of cell type-specific expression of genes in AS risk loci using 807 
SNPsea. (D) Heatmap showing expression levels for genes in AS risk loci that were significantly 808 
upregulated in NK cells compared to six T cells subsets. Expression levels are scaled by row. 809 
Tpm: transcripts per million. ** indicates P < 0.01. 810 
 811 
Figure 3. Human gut single-cell atlas reveals significant upregulation of AS-associated 812 
genes in NK cells. (A) Cartoon depicting the generation of the Space-Time Gut Cell Atlas with 813 
samples from fetal, pediatric and adult subjects. (B) Graphical representation of the scDRS 814 
method, which integrates GWAS risk genes with single cell data to identify disease-relevant cells. 815 
(C) Visualization of the Space-Time Gut Cell Atlas data using UMAP on the top 20 principal 816 
components from 1,997 variable genes from the scRNA-seq expression matrix. (D) Same UMAP 817 
visualization as in C. Cells with significant scDRS score (20% FDR) are colored in red. (E) Bar 818 
graph showing enrichment of scDRS significant cells per cell type (cell-type percent in whole 819 
dataset over cell-type percent within scDRS significant cells). (F) Bar graph showing the number 820 
of significant scDRS cells for each cell type using the fine-grained annotations from the Space-821 
Time Gut Cell Atlas. Cell populations with at least 15 significant scDRS cells are shown. (G) 822 
Scaled average expression levels and percent of cells expressing a given gene for 50 genes 823 
associated with AS that had significant upregulation (5% FDR) in NK cells compared to the other 824 
cell types. Genes are sorted by multiplying their MAGMA score (strength of association with AS) 825 
by their average level of expression in NK cells. 826 
 827 
Figure. 4. Co-localization of AS risk loci and NK cell eQTLs points to putative target genes 828 
for AS risk variants. (A-D) Manhattan plots showing AS GWAS and NK cell eQTL -log10(P-829 
values) for SNPs within 500 kb of a lead GWAS SNP. The color of each SNP indicates its level 830 
of linkage disequilibrium (LD) between with the lead GWAS SNP (purple diamond). Genes in the 831 
region are colored according to their posterior probability of hypothesis four (PP4), i.e. that the 832 
same causal variant is shared between AS and the eQTL for that gene. (A) Manhattan plots 833 
identifying putative target gene ERAP1 using AS IGAS GWAS (top) and NK microarray gene 834 
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expression QTL (eQTL) data obtained from Gilchrist et al. (bottom) (B) Manhattan plots identifying 835 
putative target gene TNFRSF1A using AS IGAS GWAS (top) and NK gene expression QTL 836 
(eQTL) data obtained from Schmiedel et al. (bottom) (C) Manhattan plots identifying putative 837 
target gene ENTR1 using AS IGAS GWAS (top) and NK microarray gene expression QTL (eQTL) 838 
data obtained from Gilchrist et al. (bottom) (D) Manhattan plots identifying putative target gene 839 
B3GNT2 using AS IGAS GWAS (top) and NK gene expression QTL (eQTL) data obtained from 840 
Schmiedel et al. (bottom). All QTL summary statistics taken from eQTL Catalogue. 841 
 842 
Supplementary Figure 1. Heritability enrichment results for control traits. (A) Bar graphs 843 
display the genetic risk enrichment coefficient (y-axis) and standard error for cell-type specific 844 
open chromatin accounting for control peaks and baseline annotations. Open chromatin data 845 
were taken from the Calderon et al. study. Risk enrichment was assessed using GWAS summary 846 
statistics for the positive control traits rheumatoid arthritis, Alzheimer's disease, systemic lupus 847 
erythematosus, and the negative control trait height. Bars marked with “*” indicate P < 0.05, “**” 848 
indicates P < 0.01, “***” indicates P < 0.001.  849 
 850 
Supplementary Figure 2. Single-cell disease relevant score results for control traits.  (A) 851 
Visualization of the Space-Time Gut Cell Atlas using Uniform Manifold Approximation and 852 
Projection (UMAP) on the top 20 principal components from 1,997 variable genes from the single-853 
cell RNA-seq expression matrix. Cells are colored based on the coarse cell type annotations from 854 
the Space-Time Gut Cell Atlas. (B) Barplots shows the cell type proportions within the whole 855 
Space-Time Gut Cell Atlas and within cells with significant disease relevant score (20% FDR) for 856 
AS (using IGAS GWAS), Alzheimer's disease (AD) and rheumatoid arthritis (RA). (C) Same 857 
UMAP visualization as in A, where cells with significant scDRS score (20% FDR) are colored in 858 
red and non-significant cells are colored in gray, for each control trait. 859 
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