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Abstract 30 

Assessing causality is undoubtedly one of the key questions in microbiome studies for the 31 

upcoming years. Since randomised trials in human subjects are often unethical or difficult to 32 

pursue, analytical methods to derive causal effects from observational data deserve attention. 33 

As simple covariate adjustment is not likely to account for all potential confounders, the idea 34 

of instrumental variable (IV) analysis is worth exploiting. Here we propose a novel framework 35 

of antibiotic instrumental variable regression (AB-IVR) for estimating the causal relationships 36 

between microbiome and various diseases. We rely on the recent studies showing that 37 

antibiotic treatment has a cumulative long-term effect on the microbiome, resulting in 38 

individuals with higher antibiotic usage to have a more perturbed microbiome. We apply the 39 

AB-IVR method on the Estonian Biobank data and show that the microbiome has a causal 40 

role in numerous diseases including migraine, depression and irritable bowel syndrome. We 41 

show with a plethora of sensitivity analyses that the identified causal effects are robust, and 42 

propose ways for further methodological developments.  43 

Introduction 44 

Human microbiome studies have demonstrated that the gut microbiome can be affected by 45 

various exposures such as diet and medications1,2 and changes in the gut microbiome 46 

composition have been associated with the prevalence or susceptibility to complex diseases 47 

such as type 2 diabetes3–5, Crohn’s disease6 and different cancers7,8. However, with the 48 

primary interest in disease associations, determining the causal effects has remained 49 

challenging, as there are several potential confounders (dietary choices, other behavioural 50 

and environmental exposures) that may affect microbiome and their disease outcomes via 51 

different pathways. Experimental studies, such as utilising faecal microbiota transplantation, 52 

have proven a causal mechanistic link between treatment, microbiome and health9, but to date 53 

the methods for determining such causal associations noninvasively are limited10. An 54 

alternative would be to attempt causal effect estimation based on observational cohort data - 55 

using Instrumental Variable (IV) method to avoid biases due to unobserved confounding. One 56 

example of such an approach is Mendelian Randomization (MR), where a genetic variable 57 

acts as an instrument (affecting only the exposure variables, thus microbiota, but not directly 58 

the outcome or the confounders). Successful examples include studies that have shown the 59 

causal role of several taxa on cancers11, inflammatory bowel diseases12 and depression13. 60 

However, MR is limited by the lack of valid genetic instruments - this might remain an issue 61 

even with larger sample sizes, since microbiome is shown to be with low heritability14,15. To fill 62 

this void, we propose a new analytical approach to assess the causal role of microbiome on 63 
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health: antibiotic instrumental variable regression (AB-IVR), using the long-term history of 64 

antibiotic usage (hAB) as an instrument.  65 

Antibiotic (AB) usage is shown to affect microbiome in the long term in a cumulative manner, 66 

whereby larger number of antibiotics prescribed in the past results in a more perturbed 67 

microbiome composition2,16. This means that there are on average consistent differences in 68 

microbiome between the individuals with higher and lower long-term antibiotics usage. 69 

Importantly, this long-term usage effect is already evident in subjects who have taken only 3-70 

5 courses of AB in the last 10 years before the sample collection. Such antibiotic consumption 71 

is highly common in the general population. This, and the fact that antibiotics are expected to 72 

affect health primarily via microbiome (directly eliminating the disease-causing bacteria, but 73 

also resulting in a general dysbiosis as a “collateral damage”) and not via any other pathways, 74 

made us ponder whether hAB - measured as number or antibiotics prescribed during 10 years 75 

prior to microbiome sampling - can serve as a natural experiment randomising individuals to 76 

have more or less perturbed microbiome. Thus, we propose that by using hAB as an 77 

instrument, we can compare the disease incidence between groups that have consistent long-78 

term differences in microbiome, and by this assess the causal role of microbiome in disease. 79 

Of note, the primary focus of the AB-IVR method is on diseases, which itself are not treated 80 

with antibiotics. We consider the AB-IVR method as an intermediate option between the 81 

observational studies and randomised trials: we aim to gather more information compared to 82 

observational studies, but still do not see it as an equivalent  alternative to the randomised 83 

trials. 84 

Next sections introduce the AB-IVR methodology and its usage on the Estonian Biobank 85 

samples. Firstly, we introduce the method as a Two-Sample Two-Stage Least Squares 86 

(TSTSLS) procedure and the corresponding sample sets that we utilise for estimating the 87 

causal effects. Next, we introduce the concept of long-term antibiotics usage as an instrument. 88 

We discuss model assumptions and limitations that can bias the results such as the scope of 89 

the estimable effects, feedback loops arising from the bidirectional microbiome-disease 90 

crosstalk and effects of general health behaviour. Lastly, we assess the causal role of 91 

microbiome in several common diseases, test the validity of the findings through a series of 92 

sensitivity analyses and give insights for future developments. The AB-IVR method showed 93 

that microbiome has a causal effect for several common diseases such as irritable bowel 94 

syndrome, migraine and depression, and we believe that it opens up new possibilities for 95 

causal discovery in the human microbiome field. 96 
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Results 97 

Study overview and data selection 98 

For inferring the causal effect of microbiome on disease we utilised the method of Two-Sample 99 

Two-Stage Least Squares (TSTSLS), which is a special case of instrumental variable 100 

regression. In our case, the history of antibiotics usage (hAB) serves as the instrumental 101 

variable, hence the term antibiotic instrumental variable regression, AB-IVR (Fig. 1A). The 102 

general idea of the method is that when AB usage cannot realistically have any direct effect 103 

on the disease of interest, the correlation of AB usage with the disease incidence can only 104 

arise via mediation by microbiome. Thus the total effect of hAB on the disease outcome can 105 

be decomposed into the effect of hAB on the microbiome and the causal effect of the 106 

microbiome on the outcome. As the total effect and the effect of hAB on the microbiome are 107 

estimable, also the causal effect of the microbiome becomes identifiable. 108 

In our study, the TSTSLS methodology relies on two independent datasets which are used for 109 

1) estimating the effect of hAB on disease ( 𝜷D,hAB) and 2) estimating the effect of hAB on the 110 

microbiome (𝜷MB,hAB). The two effects are combined to evaluate the causal effect of 111 

microbiome on disease (𝜷D,MB)(Fig. 1A). For estimating the effect of hAB on disease, we 112 

leveraged the electronic health records data available for the Estonian Biobank (EstBB) 113 

participants (N > 210 000)17. As prevalent diseases can have an effect on the microbiome and 114 

potentially create a feedback loop, which biases the results, we analysed the effect of previous 115 

antibiotics usage on the incident diseases instead (See Methods). To estimate the effect of 116 

hAB on the microbiome, we used Estonian Microbiome (EstMB, a subcohort of EstBB) cohort 117 

(N > 2500) samples with shotgun metagenomics data available2.   118 
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 119 

Figure 1. Graphical description of the study design. Upper panel (A) illustrates the instrumental 120 
variable regression and corresponding assumptions schematically in the context of our study. hAB - 121 
history of antibiotic usage; MB - microbiome; D - disease; C - confounder. Lower panel (B) illustrates 122 
the samples and data used. Sample 1 refers to the sample where disease follow-up data is recorded, 123 
EstBB in our case. Sample 2 refers to the sample where the microbiome is assessed, EstMB in our 124 
case. We recorded the AB usage as the number of AB prescribed (total and AB subgroups) during the 125 
10-year period preceding the start of follow up in Sample 1 and microbiome sampling in Sample 2, 126 
whereas in both samples the individuals receiving AB during the last 6 months of the aforementioned 127 
period are excluded. Sample 1 was followed up for incident outcomes of 56 common diseases from 128 
01.01.2015 until 31.12.2022, whereafter observations are right censored irrespective of the future 129 
outcomes. In Sample 2 the microbiome was assessed on an arbitrary moment between November 2017 130 
to July 2020. The causal effect of MB on disease (𝛽𝐷,𝑀𝐵) in the two-sample setting is estimated as the 131 

ratio of the effect of AB-usage on disease (𝛽𝐷,ℎ𝐴𝐵) in Sample1 (EstBB) and the effect of AB-usage on 132 

MB (𝛽𝑀𝐵,ℎ𝐴𝐵) in Sample2 (EstMB). 133 

History of antibiotics usage as a valid instrument 134 

Estimating the causal effects by instrumental variable regression analysis relies on several 135 

assumptions. Firstly, the hAB must be associated with the gut microbiome (Fig. 1A). We and 136 

others have previously shown that hAB is associated with the microbiome composition 137 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.09.20.23295831doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.20.23295831
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

additively, meaning that higher hAB is associated with larger changes in the microbiome 138 

composition2,16. Here, we focused our analysis on the Prevotella/Bacteroides ratio (P/B ratio) 139 

that represents a summarised state of microbiome by reflecting the enterotype composition18. 140 

We confirm the additive effect of total hAB on P/B ratio and show that it also holds for different 141 

classes of antibiotics, namely macrolides (ATC code J01FA), penicillins (J01CR) and 142 

fluoroquinolones (J01MA), which we will use for the sensitivity analysis (Fig. 2A).  It must be 143 

highlighted that the different antibiotics classes are largely uncorrelated in their usage and 144 

their long-term effects on the microbiome composition differ (Fig. 2B, Fig. 2C). 145 

 146 

Figure 2. Antibiotic usage in the EstMB cohort. Panel A shows the association between the number 147 

of different antibiotics used during the last 10 years before the sample collection and Prevotella-148 

Bacteroides ratio. The total AB usage and usage of all AB subclasses was strongly associated with 149 

Prevotella/Bacteroides ratio (combined AB usage p=2.04e-8, macrolides p=0.0192, fluoroquinolones 150 

p=3.03e-5, and penicillins p=0.0026). Panel B shows the Spearman correlation between the number of 151 

different antibiotics classes used during the last 10 years before the sample collection. Panel C shows 152 

the unique and shared hits of the univariate analyses associating the antibiotics usage history with the 153 

abundance of microbial species. Panel D shows the proportion of cohort participants by the number of 154 

antibiotics used during the past 10 years. 155 

  156 

Secondly, the usage of antibiotics and the disease cannot have any common cause. This 157 

assumption can be easily violated when prevalent disease cases are analysed. Namely, the 158 

disease could for example weaken the immune system, which would in turn result in higher 159 

antibiotics consumption, often referred to as a “feedback loop”. We address this issue by 160 

analysing only incident disease cases that are observed during the follow-up period (thus after 161 

the period where AB usage was recorded). As a sensitivity analysis we additionally analyse 162 
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disease cases that have been diagnosed more than 5 years after the sample collection, to 163 

eliminate the possibility of prevalent diseases that have not yet been diagnosed, but are 164 

already present and affecting the microbiome composition. Violation of the second assumption 165 

can also occur when subjects of poorer health are studied, since these individuals are more 166 

likely to take a larger number of antibiotics and develop further comorbidities. For example, 167 

elderly individuals are likely to have weaker immunity and therefore take a larger number of 168 

antibiotics, but at the same time they are at higher risk of various comorbidities. Thus an overall 169 

frailty level could act as a confounder. To address this concern, we focus our analysis only on 170 

younger people (ages 23-50), who have taken up to 5 courses of antibiotics during 10 years 171 

prior to microbiome sampling or start of follow-up (See Methods, Fig. 1). The lower limit for 172 

age refers to the minimum age in the EstMB cohort. The chosen threshold for the number of 173 

antibiotics courses is highly common in the population, thus it is meant to represent the 174 

healthier part of the population (Fig. 2D), allowing us to exclude individuals with chronic and 175 

extreme AB usage. As sensitivity analyses, we study older people, extending the age range 176 

to 89 (refers to the maximum age in EstMB cohort), and usage of antibiotics up to 10 courses.  177 

Thirdly, antibiotics cannot have a direct effect on the disease that is not mediated by the 178 

microbiome composition. Although some authors have indicated that antibiotics can have such 179 

microbiome-independent effects, the evidence is currently weak and we consider that most of 180 

the effect is based on altering the microbiome composition19. 181 

Causal role of the microbiome on diverse disease groups confirmed with the novel AB-182 

IVR framework 183 

We applied the AB-IVR methodology to assess whether the microbiome has a causal role for 184 

the development of 56 conditions across diverse disease groups. We focused primarily on 185 

common chronic diseases and cancers where antibiotics are not used as a treatment and 186 

which had at least 50 incident cases. Due to the broad selection of diseases, we did not apply 187 

any disease specific inclusion and exclusion criteria, but future studies should take the disease 188 

specificity into account. Antibiotics have a complex effect on MB via altering the abundances 189 

of several members of the composition simultaneously. Therefore, when the analysis is based 190 

on general hAB, various taxa are altered simultaneously and thus it is not possible to imply 191 

which specific species or genera are the culprit in disease formation. This is a limitation of our 192 

methodology and remains a challenge to be solved by future improvements. Therefore, 193 

instead of using the data of specific species or genera to characterise the changes in the 194 

microbiome, we analysed the effect of Prevotella-Bacteroides (P/B) ratio, which reflects the 195 

general state of the microbiome. 196 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.09.20.23295831doi: medRxiv preprint 

https://www.zotero.org/google-docs/?x3OCgy
https://doi.org/10.1101/2023.09.20.23295831
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

In total, the microbiome was identified to have a causal effect on 23 diseases (FDR <= 0.05) 197 

(Fig. 3A, Supplementary Fig. 1, Supplementary Table 1). These diseases include 198 

cardiometabolic diseases like cardiac arrhythmias, intestinal diseases like irritable bowel 199 

syndrome and gastro-esophageal reflux disease, skin diseases like atopic dermatitis and 200 

acne, and several mental disorders like anxiety disorders and depression. The causal 201 

estimates are largest for lactose intolerance, migraine and irritable bowel syndrome with the 202 

dominance of Prevotella defending against the disease progression. Notably, we did not 203 

identify the causal effect of the microbiome on any of the cancers studied, which is likely due 204 

to excluding older individuals from the analysis.  205 

 206 

Figure 3. Results of the main AB-IVR analysis (A) and sensitivity analyses (B,C). On panels A,B, 207 

and C the causal effect estimate of Prevotella/Bacteroides ratio on a selection of diseases is presented 208 

(full results comprising all diseases analysed can be viewed in Supplementary Tables 1, 3-5, and 6-209 

8). In panel A the age is filtered as 23-50, maximum number of AB prescribed is five, and minimum 210 

number of cases per disease is 50. Panel B represents the sensitivity analyses where sample formation 211 

varies, whereas the main analysis is depicted for comparison in red. Green shows the effect estimates, 212 

when age is filtered as 23-89; light-purple shows the effect estimates, when the maximum number of 213 

AB prescribed is 10; dark-purple describes the scenario where the first five years of incidence after the 214 

start of follow-up is considered as prevalent disease. Panel C represents the sensitivity analyses where 215 

information regarding subclasses of AB were used instead of the total amount of AB prescribed, 216 

whereas other settings were identical to the main analysis. Red corresponds to the main analysis (same 217 

as A), dark blue corresponds to the class of penicillins (J01CR), light-blue corresponds to the class of 218 

macrolides (J01FA) and light-green corresponds to the class of fluoroquinolones (J01MA).  219 

Sensitivity analysis and assessment of different antibiotics as instruments 220 

We carried out several sensitivity analyses to assess the validity of the model estimates. 221 

Firstly, we simulated random binary variables with different event probabilities to see how our 222 

approach behaves in a scenario where no effect is expected. Indeed, the method did not 223 
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identify any effects and manages to control the false discovery rate perfectly (Supplementary 224 

Table 2). Next, we focused on different scenarios which would test the model behaviour when 225 

the study population includes subjects who are more likely to have health complications, thus 226 

testing the second model assumption. For that we considered subjects up to 89 years old 227 

(refers to the maximum age in EstMB cohort), subjects that had been prescribed antibiotics 228 

up to 10 times during 10 years prior to microbiome sample collection or start of follow-up, and 229 

considering a 5 year “gap” in defining the incident cases after the start of follow-up (Fig. 3B, 230 

Supplementary Fig. 2, Supplementary Tables 3, 4, 5). The reasoning behind the chosen 231 

sensitivity analyses is discussed in detail in the Methods. We observed no major differences 232 

in the estimated causal effects for any of the tested scenarios. Most notably, the causal 233 

estimates for diseases that showed strongest effects in the primary analysis remained largely 234 

untouched by the scenarios tested. This includes diseases like migraine, irritable bowel 235 

syndrome, chronic rhinitis and depression. Lastly, we carried out sensitivity analysis to test 236 

the performance of different antibiotics subclasses as instruments (Fig. 3C, Supplementary 237 

Tables 6, 7, 8). Again, the results remained similar and the previously highlighted causal 238 

estimates remained largely unchanged and independent of the chosen instrument. Since 239 

different antibiotics classes are largely uncorrelated in their usage and their long-term effects 240 

on the microbiome composition differs (Fig. 2B, Fig. 2C), the differences between the effect 241 

estimates can originate from the varying targets of antibiotic subclasses and can refer to 242 

divergent patterns in influenced subcommunities. This might be the case for gout where using 243 

macrolides and fluoroquinolones as instruments results in causal effect estimates with 244 

opposite directions, but with the total antibiotics usage as an instrument, no causal effect is 245 

identified (Supplementary Fig. 3). However, the overall similarity of the estimates for most of 246 

the diseases confirms the underlying causal effect of the microbiome as a whole. Lastly, since 247 

the logarithm of the P/B ratio is with a bimodal distribution, we additionally performed an 248 

analysis where the P/B ratio was inverse normal transformed. However, we did not observe 249 

any notable discrepancies compared to the main analysis (Supplementary Fig. 1, 250 

Supplementary Table 9). 251 

Discussion 252 

We introduce and demonstrate an analytical approach that expands the causal inference 253 

toolbox for microbiome studies by using long-term antibiotics usage as an instrument in an 254 

instrumental variable regression setting. We show that the history of antibiotics usage can be 255 

a valid instrument and that the microbiome has a causal role for several diseases, such as 256 

migraine, irritable bowel syndrome, depression and many others. 257 
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Establishing the causal role of microbiome in complex diseases can involve different levels of 258 

evidence from the identification of disease associations and faecal microbiota transplantations 259 

(FMT) to understanding the molecular mechanisms that produce the phenotype20. While the 260 

established knowledge about the mechanisms of microbial strains or microbial metabolites 261 

remains scarce, computational approaches and FMT studies have been used to show the 262 

causal role of microbiome in several conditions20. In line with our findings, Mendelian 263 

randomization studies have identified the causal role of microbial taxa for migraine21, irritable 264 

bowel syndrome22 and depression13,23. Nevertheless, MR studies have indicated the causal 265 

role of microbiome in type 2 diabetes23, psoriasis24, inflammatory bowel diseases12 and heart 266 

failure25, which was inconsistent with our findings. However, these inconsistencies can be 267 

expected as our approach focuses on the general effects of the microbiome composition, 268 

which is more in line with how the FMT studies can inform causality. Then again, FMT studies 269 

are coupled with challenges such as screening and processing the FMT material and selection 270 

of the donor and the mode of delivery26. Additionally, the gut microbiome and lifestyle of the 271 

recipient can significantly alter the success of the FMT26. Therefore, although FMT has been 272 

shown to transmit or alleviate hypertension27, IBD28 and insulin sensitivity29,30, the results can 273 

be conflicting28,31. Thus, we believe that in the quest for establishing the causal effects, our 274 

approach can provide an additional layer of evidence that combines features from the MR and 275 

FMT approaches.  276 

Antibiotics are meant to kill or inhibit the growth of bacteria and are commonly directly or 277 

indirectly effective against several members of the microbial community32. Therefore, using 278 

long term usage of antibiotics as an instrument allows us to estimate the causal effect of the 279 

disturbed part of the community. This brings along two limitations for the proposed 280 

methodology: we cannot identify the effects of single members of the community; and we 281 

cannot rule out the potential causal effects of the members that are unaffected by the 282 

antibiotics used. Thus, the microbiome can still be causal for the development of diseases for 283 

which our proposed methodology did not show a causal effect. Tackling these limitations 284 

opens up several directions for future development. Since different antibiotic subgroups are 285 

intended to have an effect on different bacteria, one can use or design instruments that are 286 

specific to certain subcommunities or taxa to estimate the causal effects of interest. Also, 287 

several instruments such as long-term usage of different antibiotic subclasses and other drugs 288 

with persistent effects on microbiome can be combined and used simultaneously, which in 289 

turn opens the opportunity to utilise various sensitivity analyses that are developed for 2-290 

sample Mendelian Randomization framework. For example, consumption of numerous host-291 

targeted drugs are known to affect the microbiome16,33 and antidepressants have also been 292 

shown to have long term effects34, but as microbiome-related research is currently rapidly 293 
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evolving, many more suitable instruments, not limited to medications, are likely emerging in 294 

the near future. 295 

Here, we showed in principle how long-term effects of antibiotics can be used to identify the 296 

causal role of the microbiome in a large set of common diseases. However, certain limitations 297 

must be kept in mind while interpreting the results for a specific outcome. We did not focus 298 

separately on any single disease, thus future studies should consider disease-specific 299 

inclusion-exclusion criteria when designing the study. An important consideration concerns 300 

the role of general health behaviour. It is possible that the overall awareness and interest in 301 

one's health promotes the usage of antibiotics, which also indirectly changes the disease risks.  302 

Variables such as gender and education might entail general health behaviour and 303 

consequently simultaneously affect AB-usage and health-outcomes (eg. individuals with 304 

higher education might seek more help from health-care professionals (thus have different 305 

AB-consumption habits), have better eating habits, smoke less, be more physically active etc). 306 

Therefore we advise any future studies using AB-IVR framework to account for such possible 307 

confounders. Lastly, the amount of antibiotic consumption is highly variable in different 308 

populations and antibiotic consumption in Estonia is among the lowest in Europe35. Thus, the 309 

results need to be validated in different populations to account for the differences in overall 310 

burden of antibiotics usage. 311 

We demonstrated a novel AB-IVR approach by assessing the effect of Prevotella/Bacteroides 312 

ratio on a large set of diseases. The results confirmed the utility of the introduced method and 313 

we believe it has large potential to become a new widely used framework that allows to assess 314 

analytically the causal effect of microbiome on health. Further research with disease-specific 315 

inclusion-exclusion criteria is warranted for drawing conclusions about specific health-effects 316 

and several exciting future development options arised.  317 

 318 

Methods 319 

Sample description 320 

The proposed method combines the information from two different samples, whereas the 321 

association between the instrument and the exposure is analysed in one sample and the 322 

association between the instrument and the outcome in another sample (Fig. 1). In our case 323 

the association between antibiotics usage and microbiome is assessed in the Estonian 324 

Microbiome Cohort2 and association between antibiotics usage and diseases in the Estonian 325 

Biobank data17. 326 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.09.20.23295831doi: medRxiv preprint 

https://www.zotero.org/google-docs/?dv18lI
https://www.zotero.org/google-docs/?Li8sH3
https://www.zotero.org/google-docs/?esMu3i
https://doi.org/10.1101/2023.09.20.23295831
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

The Estonian Biobank (EstBB) is a volunteer-based population cohort initiated in 1999 that 327 

currently includes over 210,000 genotyped adults (≥ 18 years old) across Estonia. Estonian 328 

Microbiome Cohort (EstMB) was initiated in 2017 when more than 2500 EstBB participants, who 329 

joined the EstBB at least 10 years before, provided stool, oral, and blood samples. The EstMB cohort, 330 

microbiome sample collection, stool bacterial DNA extraction and shotgun metagenomic sequencing 331 

are described in detail in Aasmets & Krigul et al.2. For the current project, taxonomic profiling of 332 

the gut microbiome was carried out using MetaPhlAn3 tool36. The Prevotella-Bacteroides ratio, 333 

which we considered as the primary indicator of the microbiome inter-individual variability in 334 

our analysis, was calculated on the genus level after imputing zeros with a pseudocount equal 335 

to half of the minimal non-zero relative abundance observed in the data. For both, EstMB and 336 

EstBB one of the major advantages is the possibility to use electronic health records (EHR) 337 

data and follow the participants' health both retrospectively and prospectively. Using EHR, we 338 

obtained the data for the history of antibiotics usage and the disease incidence. The EstMB 339 

participants were removed from the EstBB sample to ensure that the two samples are 340 

independent.  341 

Start of follow-up 342 

An important aspect in the following data-processing is the moment when MB is collected in 343 

Sample 2 (EstMB) and the follow-up starts in Sample 1 (EstBB) (Fig. 1). Of note, since the 344 

proposed methodology uses two independent samples, the MB collection and start of follow-345 

up do not need to be at the same moment of time. In the EstMB cohort the time of MB sample 346 

collection varies between individuals, whereas in the EstBB cohort the start of follow-up is set 347 

to 1st January 2015 for all individuals. The reason for the latter is that the history of antibiotics 348 

usage is not properly recorded before 2005 in the electronic health records and the chosen 349 

cut-off date allows us to analyse the antibiotics consumption during a 10-year period prior to 350 

follow-up in the EstBB cohort. As we were interested in the long-term effects rather than the 351 

extreme alterations that occur due to recent antibiotics usage, we excluded the individuals 352 

who had been prescribed AB during the six months preceding either the start of MB sample 353 

collection in EstMB or start of follow-up in EstBB. 354 

Defining antibiotics usage and incident diseases 355 

To characterise the long-term antibiotics usage, we quantified the number of antibiotics 356 

treatments prescribed in the period between the last 6 months and last 10 years before the 357 

microbiome sample collection or start of follow-up. All drugs with the Anatomical Therapeutic 358 

Chemical (ATC) classification code J01* were considered as antibiotics. We chose the 10-359 

year period similar to Aasmets & Krigul et al.2, where we showed a cumulative long-term effect 360 
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of antibiotics usage. Additionally, we considered separately the history of usage of penicillins 361 

(ATC code J01CR), macrolides (J01FA) and fluoroquinolones (J01MA) since these classes 362 

have the strongest long-term effects on gut microbiome (Aasmets et al., unpublished data).  363 

We restricted the analysis to incident diseases, which we defined as the first occurrence of an 364 

ICD-10 code of interest in the EHR after the start of follow-up (1st January 2015) until the end 365 

of follow-up (31st December 2022). We focused primarily on the chronic common diseases 366 

and cancers with at least 50 incident cases in the EstBB cohort. Summary of the selected 367 

diseases is shown in Supplementary Table 1. Furthermore, we excluded from any analysis 368 

of an incident disease the prevalent cases for the corresponding disease. We did not use any 369 

other disease-specific exclusion criteria for the method demonstration. However, we do 370 

encourage to utilise disease-specific exclusion criteria when a more thorough analysis of a 371 

specific disease is of interest. 372 

Main method 373 

For inferring the causal effect of MB on disease we utilised the method of Two-Sample Two-374 

Stage Least Squares (TSTSLS), which is a special case of instrumental variable regression 375 

for the two-stage estimation in a two-sample setting. A detailed description of TSTSLS can be 376 

found elsewhere37. Rationale for using the two-sample setting is that the microbiome is often 377 

measured in smaller samples compared to incident disease outcomes available in the large 378 

biobank samples. Using TSTSLS allows us to leverage the information from such large 379 

samples. We denote in the following formulas the estimated effect of instrument (hAB) on 380 

exposure (MB) as 𝛽𝑀𝐵,ℎ𝐴𝐵, instrument on outcome (D) as 𝛽𝐷,ℎ𝐴𝐵, and exposure on outcome, 381 

i.e. the causal relationship of interest, as 𝛽𝐷,𝑀𝐵. We estimate 𝛽𝐷,ℎ𝐴𝐵 in the EstBB cohort 382 

(Sample1) using the logistic regression model and 𝛽𝑀𝐵,ℎ𝐴𝐵 in the EstMB cohort (Sample2) 383 

using the linear regression model. Thereafter we calculate the effect-estimate for the causal 384 

relationship as a ratio of coefficients: 385 

𝛽𝐷,𝑀𝐵=
𝛽𝐷,ℎ𝐴𝐵

𝛽𝑀𝐵,ℎ𝐴𝐵
.  386 

Further, we calculate the standard deviation for the estimated 𝛽𝐷,𝑀𝐵 based on Pacini & 387 

Windmeijer37 as: 388 

𝜎𝐷,𝑀𝐵=√
𝜎𝐷,ℎ𝐴𝐵
2 +𝛽𝐷,𝑀𝐵

2 ∗𝜎𝑀𝐵,ℎ𝐴𝐵
2

𝛽𝑀𝐵,ℎ𝐴𝐵
2 ,  389 
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where 𝜎𝐷,ℎ𝐴𝐵
2  is the variance of 𝛽𝐷,ℎ𝐴𝐵 and 𝜎𝑀𝐵,ℎ𝐴𝐵

2  is the variance of 𝛽𝑀𝐵,ℎ𝐴𝐵. We obtained the 390 

p-values based on z-scores, calculated as 𝛽𝐷,𝑀𝐵/𝜎𝐷,𝑀𝐵, and standard normal distribution. 391 

Further, we calculated the confidence intervals for the estimates as 𝛽𝐷,𝑀𝐵 ± 1.96 ∗ 𝜎𝐷,𝑀𝐵 . 392 

To account for multiple testing, we used the Benjamini-Hochberg procedure to control for the 393 

false discovery rate (FDR). We set the significance threshold for FDR-adjusted p-value to 394 

0.05. 395 

 396 

Model assumptions 397 

The obtained 𝛽𝐷,𝑀𝐵 is a valid causal estimate if the following assumptions are met38:  398 

● AB usage history has an effect on MB;  399 

● AB usage history is not associated with any of the confounders of the microbiome-400 

disease association; 401 

● There is no direct effect of AB usage history on incident disease outcomes outside of 402 

the pathway via microbiome. 403 

Possible violations of these assumptions are described in the Results section. 404 

Sensitivity analyses 405 

In the main analysis, we set the maximum number of antibiotics prescribed during the period 406 

of interest to 5, minimum age to 23 and maximum age to 50. The lower limit for age refers to 407 

the minimum age in the EstMB cohort. Subjects with impaired health might be more prone to 408 

comorbidities and higher consumption of antibiotics. Thus, the aim of the initial restriction of 409 

the age range and number of antibiotics used is to focus on the healthier part of the population 410 

to address potential confounding. However, we pursued several sensitivity analyses to assess 411 

the validity and robustness of the method: 412 

1. We assessed the performance of the method in the setting, where we expect there to 413 

be no association. For that we created pseudo-variables indicating disease 414 

presence/absence for each individual in the EstBB sample by randomly sampling from 415 

binomial distribution with predefined probability. In total we created 39 pseudo-416 

variables with disease-probabilities ranging from 2.5% to 97.5% (Supplementary 417 

Table 2). The purpose of the analysis was to check whether the proportion of 418 

significant associations between randomly generated disease-variables and P/B ratio 419 

remains below the nominal alpha-level of 5%. 420 

2. To account for the feedback-mechanism of the disease whereby the disease might 421 

actually already be prevalent for a period of time prior to diagnosis and could thus 422 
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already have an effect on the MB, we pursued a sensitivity analysis where we 423 

considered the first 5 years of incidence after the start of follow-up as prevalent and 424 

therefore excluded such individuals from the analysis (Supplementary Table 5). With 425 

such sensitivity analysis we aim to eliminate bias originating from the feedback 426 

mechanism of a disease that was already developing and affecting MB prior to the 427 

diagnosis; 428 

3. We assessed the relationships between MB and diseases while using specific AB 429 

subgroups as instruments instead of total AB-usage. More specifically, we defined 430 

three additional variables as instruments based on the usage of AB with following ATC-431 

codes: J01FA (macrolides) (Supplementary Table 6), J01MA (fluoroquinolones) 432 

(Supplementary Table 7), and J01CR (penicillins) (Supplementary Table 8). These 433 

antibiotics classes were chosen since they have the strongest long-term effects on gut 434 

microbiome (Aasmets et al., unpublished data). All three variables were uncorrelated 435 

with each other (all Spearman correlations in EstMB and EstBB between the three AB-436 

subgroups below 0.2 (Fig. 2B)), thus representing independent instruments. We 437 

assumed to see in general similar patterns of associations between MB and diseases, 438 

since a strong causal effect should not depend on the instrument used, provided that 439 

the instrument is valid. For this sub-analysis we excluded all the individuals who were 440 

prescribed any AB regardless of the ATC-code during 6 months prior to MB sample 441 

collection or start of follow-up. These analyses were carried out similarly to the main 442 

analysis with the maximum number of AB equal to 5 and age between 23 and 50. 443 

4. Since the logarithm of the Prevotella-Bacteroides (P/B) ratio has  a bimodal 444 

distribution, we additionally performed an analysis where we applied inverse normal 445 

transformation on the P/B ratio prior to analysis using the RNOmni R package39. 446 

(Supplementary Table 9) 447 

Data availability 448 

The metagenomic data generated in this study have been deposited in the European Genome-449 

Phenome Archive database (https://www.ebi.ac.uk/ega/) under accession code 450 

EGAS00001008448. The phenotype data contain sensitive information from healthcare 451 

registers and they are available under restricted access through the Estonian biobank upon 452 

submission of a research plan and signing a data transfer agreement. All data access to the 453 

Estonian Biobank must follow the informed consent regulations of the Estonian Committee on 454 

Bioethics and Human Research, which are clearly described in the Data Access section at 455 

https://genomics.ut.ee/en/content/estonian-biobank. A preliminary request for raw 456 
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metagenome and phenotype data must first be submitted via the email address 457 

releases@ut.ee 458 

 459 

All participants included in the EstBB cohort provided informed consent for the data and 460 

samples to be used for scientific purposes. All participants have joined the Estonian Biobank 461 

on a voluntary basis and have signed a broad consent form, which allows to receive 462 

participant’s personal and health data from national registries and databases. Rights of gene 463 

donors are regulated by Human Genes Research Act (HGRA) § 9 – Voluntary nature of gene 464 

donation (https://www.riigiteataja.ee/en/eli/ee/531102013003/consolide/ current). This study 465 

was approved by the Research Ethics Committee of the University of Tartu (approval No. 466 

266/T10) and by the Estonian Committee on Bioethics and Human Research (Estonian 467 

Ministry of Social Affairs; approval No. 1.1-12/17 and 1.1-12/624).  468 
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Supplementary figures 494 

 495 
Supplementary figure 1. Results of the main analysis for all the 56 studied diseases. Colours 496 

represent different data transformations for the Prevotella/Bacteroides ratio. Sensitivity analysis results 497 

with the inverse normal transformation is shown in black.  498 

 499 

 500 
Supplementary figure 2. Results of the sensitivity analysis analysis for all the 56 studied 501 

diseases. Green shows the effect estimates, when age is filtered as 23-89; light-purple shows the effect 502 
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estimates, when the maximum number of AB prescribed is 10; dark-purple describes the scenario 503 

where the first five years of incidence after the start of follow-up is considered as prevalent disease. 504 

 505 

 506 
Supplementary figure 3. Results of the sensitivity analysis for all the 56 studied diseases. 507 

Information regarding subclasses of AB were used instead of the total amount of AB prescribed, 508 

whereas other settings were identical to the main analysis. Red corresponds to the main analysis with 509 

the antibiotics combined, dark blue corresponds to the class of penicillins (J01CR), light-blue 510 

corresponds to the class of macrolides (J01FA) and light-green corresponds to the class of 511 

fluoroquinolones (J01MA). 512 

 513 

 514 

 515 
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