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Abstract:  
 
Different neurodevelopmental conditions such as autism and ADHD frequently co-occur. 

Overlapping traits and shared genetic liability are potential explanations. We examine this using data 

from the population-based Norwegian Mother, Father, and Child Cohort study (MoBa), leveraging 

item-level data to explore the phenotypic factor structure and genetic architecture underlying 

neurodevelopmental traits at age 3 years (N = 41 708 – 58 630). We identified 11 latent factors at the 

phenotypic level using maternal reports on 76 items assessing children’s motor skills, language, social 

functioning, communication, attention, activity regulation, and flexibility of behaviors and interests. 

These factors showed associations with diagnoses of neurodevelopmental conditions and most shared 

genetic liabilities with autism, ADHD, and/or schizophrenia. Item-level GWAS revealed trait-specific 

genetic correlations with autism (item rg range = -0.27 – 0.78), ADHD (item rg range = -0.40 – 1), 

and/or schizophrenia (item rg range = -0.24 – 0.34). Based on patterns of item-level genetic covariance 

and genomic factor analyses, we find little evidence of common genetic liability across all 

neurodevelopmental traits. These results more so support genetic factors across more specific areas of 

neurodevelopment, some of which, such as prosocial behavior overlap with factors found in the 

phenotypic analyses. Other areas such as motor development seemed to have more heterogenous 

etiology, with indicators in this domain showing a less consistent pattern of genetic correlations with 

each other. Overall, these exploratory findings emphasize the etiological complexity of 

neurodevelopmental traits at this early age. In particular, diverse associations with 

neurodevelopmental conditions and genetic heterogeneity could inform follow-up work to identify 

shared and differentiating factors in the early manifestations of neurodevelopmental traits, which in 

turn could have implications for clinical screening tools and programs. 
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Introduction 
 
Recent versions of international diagnostic classification systems have introduced an umbrella 

category of neurodevelopmental conditions [1,2]. Conditions classified in this category typically 

manifest from childhood and are characterized by divergent trajectories of development. Generally, 

they are diagnosed based on significant difficulties in developmental skills in areas such as language, 

social abilities, learning, or motor activity. Conditions such as attention-deficit hyperactivity disorder 

(ADHD), autism spectrum conditions (autism), intellectual disabilities, specific learning disabilities, 

developmental coordination disorder and tic conditions are now classified together; but have 

previously been conceptualized as independent and sometimes mutually exclusive conditions. For 

example, under DSM-IV, autism was an exclusion criterion for ADHD preventing their co-diagnosis. 

However, there is increasing evidence that conditions in this category share many characteristics, such 

as high heritability [3–5]; heterogeneous clinical presentation with a wide range of support needs 

[6,7]; and marked sex differences, with higher prevalence in males [8–10].  

In addition to shared characteristics, neurodevelopmental conditions frequently co-occur 

[11,12], as do their symptoms at sub-diagnostic threshold levels [13,14]. While the etiology of this co-

occurrence is not well understood, some observations have implicated shared genetic liability between 

neurodevelopmental conditions. For example, siblings of an individual with one neurodevelopmental 

condition often have increased likelihood for several neurodevelopmental conditions [15,16]. 

Additionally, unidentified latent genetic factors [17] as well as identified common [18–21] and rare 

genetic variants [22–24] are shared amongst many clinically distinct neurodevelopmental conditions. 

Overlapping symptomatology and a lack of clear diagnostic boundaries have led to continuing 

revisions of the classifications of neurodevelopmental conditions [25–28].  

Investigating the genetic and nosological bases for co-occurring neurodevelopmental 

conditions requires detailed data on their traits. Population-based registries are typically limited to 

diagnostic (yes/no) outcomes. Clinical cohorts, which may have more detailed data, are generally 

smaller and commonly ascertain individuals based on a single condition. Thus, meaningful analyses 

of common genetic variants and shared etiology across areas of development and specific traits are 

difficult. Data collected in population-based cohorts, typically have more breadth and depth of 

information that can help explore shared etiology of neurodevelopmental traits, but relatively fewer 

individuals with neurodevelopmental conditions. Still, relevant traits, capturing individual differences 

in language and motor development, attention, hyperactivity, social behavior, and repetitive, restricted 

behaviors and interests can be observed in all children. These traits are likely influenced by some of 

the same underlying genetic liabilities as neurodevelopmental conditions [29–34]. The prospective 

nature of population-based birth cohorts means these traits can be studied early – prior to or around 

the age at which neurodevelopmental diagnoses are most commonly made [35–37]. Exploring the 

relationships between neurodevelopmental traits early in life, investigating their genetic liabilities, 
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and exploring links to neurodevelopmental conditions can give new insights about etiological 

mechanisms underlying the development and differentiation of such conditions. 

In the present study, we leveraged detailed information about multiple traits related to 

different neurodevelopmental conditions. We investigated the phenotypic factor structure and genetic 

architecture underlying early (age 3 years) neurodevelopmental traits in a large population-based birth 

cohort. We additionally investigated, associations of these early signs with later neurodevelopmental 

conditions at both the phenotypic and genotypic level.   

 

Methods  
 

Measures and sample 

 

Sample  

 

The Norwegian Mother, Father and Child Cohort Study (MoBa) is a population-based pregnancy 

cohort study conducted by the Norwegian Institute of Public Health. [38,39] Participants were 

recruited from all over Norway from 1999-2008. The women consented to participation in 41% of the 

pregnancies. Blood samples were obtained from both parents during pregnancy and from mothers and 

children (umbilical cord) at birth. The cohort includes approximately 114 500 children, 95 200 

mothers and 75 200 fathers. The current study is based on version 12 of the quality-assured data files 

released for research in January 2019. The establishment of MoBa and initial data collection was 

based on a license from the Norwegian Data Protection Agency and approval from The Regional 

Committees for Medical and Health Research Ethics. The MoBa cohort is currently regulated by the 

Norwegian Health Registry Act. The current study was approved by The Regional Committees for 

Medical and Health Research Ethics (2016/1702). 

 

The present study was conducted on a subset of the cohort (n = 58 630) who had information 

available from the 36-month questionnaire. The children were an average of 3.1 years (SD = 0.18) old 

when mothers completed the questionnaire. The sample had 1.04:1 male: female ratio. Genetic 

analyses were conducted using a further quality controlled genotyped subset of the cohort (n = 42 

934). For more information on genotyping of the MoBa sample and for the family-based quality 

control pipeline used to prepare these data for analysis, see Corfield et al. [40]  

 

Measures for neurodevelopmental traits   

 

We included items from all maternal report scales related to neurodevelopment in the 36-month 

questionnaire that asked about children’s observable behavior (as opposed to maternal concerns). This 
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included items from the Social Communication Questionnaire (SCQ) [41], Ages and Stages 

Questionnaire (ASQ ) [42], Non-Verbal Communication Checklist (NVCC)[43],  Modified Checklist 

for Autism in Toddlers (M-CHAT) [44], Early Screening for Autistic Traits Questionnaire (ESAT) 

[45], the attention and hyperactivity questions from the Child Behavior Checklist (CBCL) [46], the 

prosocial behaviors subscale of the Strength and Difficulties Questionnaire (SDQ) [47] as well as 

several MoBa-specific questions. All items included had either dichotomous (e.g., yes/no) or 

trichotomous (e.g., not true/sometimes true/often true) response categories. Items were reverse coded 

where needed so that higher values reflected greater endorsement of the trait.  

 

Measures for diagnostic and clinically relevant outcomes 

 

Diagnostic data was ascertained from the Norwegian Patient Register (NPR) between 2008 and June 

2021 based on ICD-10 criteria using MoBa phenotools [48]. Diagnostic groups were defined for 

receiving a diagnostic code at least one time for ADHD (F90), autism (F84.0, F84.1, F84.5, F84.8, 

and F84.9), intellectual disability and general developmental delay (F7 and F83), specific conditions 

of speech and language (F80, F98.5, F98.6), specific conditions of scholastic skills (F81), specific 

conditions of motor function (F82), and tic conditions (F95). The percent of the diagnostic group with 

NPR data available by age 3 who had received a diagnosis before age 4 varied by diagnosis from 0% 

(specific conditions of scholastic skills) to 26% (specific conditions of motor function).  

 

Further information on the scales, the items used in the factor models, and diagnostic and clinically 

relevant outcomes are available in the supplementary methods and Supplementary Tables S1-3.  

 

 Polygenic scores   

 

Polygenic scores (PGS) were estimated with the software PRSice2 [49] based on summary statistics 

from the most recent Psychiatric Genomic Consortium GWAS for ADHD [18], autism [19], and 

schizophrenia [50]. ADHD and autism were included as they are neurodevelopmental conditions with 

well powered and publicly available GWAS summary statistics. Schizophrenia was included given 

neurodevelopmental aspects to its development [51–53]. Scores were regressed on the first 10 

genomic principal components (PCs) and genotype batch. The first principal component of 11 scores, 

constructed based on p-value thresholds between 5 × 10-8 and 1, was used for the subsequent analyses. 

This approach controls for type one error rate arising from optimization of pruning and thresholding 

while still maintaining prediction performance [54].  

 

Analyses  
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An overview of the analyses performed as well as thresholds for item inclusion in each analytic step 

are presented in Figure 1. Lenient thresholds for item selection were chosen to maximize the number 

of traits across different areas of development. Analytical code can be found at 

https://github.com/psychgen/neurodevelopment_traits_structure  

 

[Figure 1] 

 

 

Exploratory and confirmatory factor analyses 

   

Exploratory factor analysis (EFA) was performed in one randomly selected half of the full sample (n 

= 29 183). Confirmatory factor analyses (CFA) were run in the other half of the full sample (n = 29 

447) for possible viable models derived from the EFA. Using standard fit indices (CFI, TLI, RMSEA) 

the best fitting model out of these possible models was used as the final model for all downstream 

analyses. In the full sample, to assess a unidimensional factor in addition to domain-specific factors, 

both bifactor and higher-order models were run alongside the final selected correlated factor 

model. To address potential sex differences in the measurement of these factors, we conducted 

measurement invariance testing in the full sample. A multi-group CFA (MG-CFA) of the correlated 

factor model by sex (Nmales = 29 955, Nfemales = 28 589) was used to test for configural invariance and 

invariance of thresholds and loadings [55]. See supplementary methods for further details on the 

factor analyses, criteria for model selection, and measurement invariance testing.  

 

 

Measurement models with neurodevelopmental diagnoses, clinically relevant outcomes, and 

polygenic scores  

 

The factor associations with later outcomes served two purposes of 1) validation and further 

characterization of the factors; and 2) insight into how specific areas of development at age 3 are 

related to receiving a particular neurodevelopmental condition diagnosis. A correlated factor and a 

higher-order general factor model were run specifying the factors to predict neurodevelopmental 

diagnoses and other clinically relevant outcomes. In the higher-order model, general and specific 

factors were specified to predict outcomes separately in two models. Models were run in a multi-

group SEM framework, grouped by sex with both regression effects and model parameters estimated 

for each sex separately. In the correlated factor models, both univariate models with the factors 

predicting the outcomes individually and multivariate models with factors predicting the outcome 

simultaneously were run.  Due to collinearity concerns in the multivariate models arising from groups 

of highly correlated factors, the magnitude of the factors’ effects within those groups were 
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constrained to be equal in the correlated factor model. Measurement models including PGS as 

explanatory variables for factors were run in the correlated factors and higher-order model. 

 

 

Factor analyses software  

 

EFA analyses were all run using the weighted least square mean and variance adjusted (WLSMV) 

estimation method and with a geomin oblique rotation applied in the Mplus statistical software 

(Muthén & Muthén, 2011). All CFA and measurement invariance models were run using the lavaan 

(v0.6-14) and semTools (v0.5-6) packages in R with the WLSMV estimation method [56,57]. Missing 

data was handled using pairwise deletion for both the EFA and CFA, as it is the default in Mplus for 

categorical data.  

 

Genome-wide association studies  

 

Genome-wide association studies (GWAS) were run on each individual item (item GWAS) for which 

power calculations indicated sufficient statistical power, and on factor scores estimated for each factor 

(factor GWAS). Factor scores were estimated using parameters for each sex from the correlated factor 

model multi-group CFA using the Empirical Bayes Model approach, the lavaan default method for 

categorical indicators. All GWAS included sex, genotype batch, and the first 10 PCs as covariates. 

Additional sex specific GWAS were run as sensitivity analyses for the factors. GWAS were run using 

version 3.1 of the REGENIE software, a computationally efficient linear mixed model method of 

conducting multi-trait GWAS in large samples using a two-step machine-learning paradigm. 

REGENIE can handle relatedness in the sample and correct for unbalanced case–control phenotypes 

in binary phenotypes [58]. For all factor and feasible item GWAS, SNP-based heritability (h2
SNP)  and 

genetic correlations (rg) with ADHD [18], autism [19], and schizophrenia [50] were estimated using 

linkage disequilibrium score regression (LDSC) [59]. Estimated h2
SNP for the item GWAS was on the 

liability scale. Functional mapping and annotation of the factor GWAS results were performed with 

FUMA (v1.5.3) [60]. Further information on sample sizes, prevalence estimates for LDSC, and power 

estimates used for the above analyses are listed in the supplementary methods and Supplementary 

Table S4.  

 

Genomic factor modeling and specificity of SNP effects 

 

Genomic factor modeling used selected item GWAS. A lenient item GWAS inclusion threshold 

(Figure 1) meant that power was borderline for genomic factor modeling, so an EFA was conducted 

on the estimated smoothed genetic correlation matrix of all chromosomes, as opposed to even/odd 
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split, and no further downstream analyses (e.g., CFA) were conducted based on the results. Version 

4.1.2 of the R package stats [61] was used to run the EFA and a promax rotation was applied. 

Common factor models based on factors from the phenotypic models that had at least three items 

meeting the item GWAS power threshold were run. For those with good fits and significant factor 

loadings a common factor GWAS was run estimating SNP and QSNP effects. QSNP being a measure of 

how well the association of the SNP and the individual trait is accounted for by the factor [21,62]. All 

confirmatory genomic factor modeling and GWAS were conducted using diagonally weighted least 

squares (DWLS) estimation in version 0.0.5 of the GenomicSEM R package [62]. 

 

Results 
 

Phenotypic factor structure underlying early neurodevelopmental traits  

 

Results of the EFA (Supplementary Tables S5-19) and CFA models indicated high dimensionality 

underlying early neurodevelopmental traits. Procedures to determine the optimal number of factors to 

retain indicated between 1-15 factors (Supplementary Figure S1) and fit indices from the EFA showed 

models with more than 9 factors met good fit criteria (Supplementary Table S5). Balancing these 

results with interpretability of the factors, 3 models (9,10 and 11-factor models) were selected to be 

run as confirmatory factor models in the other half of the sample. The 11-factor showed the best fit 

for complexity-penalized fit indices out of the three in both the EFA and CFA (Supplementary Tables 

S5, S20). A few poorly endorsed items had estimated loadings slightly over 1, constraining these 

values did not lead to a significant decrease in model fit. The 11-factor model was selected to be used 

in the downstream analyses.  

 

[Figure 2] 

 

The 11-factor model included factors roughly corresponding to areas of prosocial behavior 

(prosocial), motor development (motor), nonverbal communication and joint attention (NVcom), 

social attention and interest (SocialAtt), language and verbal communication (language), play, 

repetitive and restricted behaviors and interests (RepBehavior), repetitive and idiosyncratic speech 

(RepSpeech), waiting, inattention and overactivity (inattention), and impulsivity. Most items (73/76) 

loaded well (λ > 0.4) onto their respective factors (Supplementary Figure S2) and all factors except 

the idiosyncratic speech and impulsivity factors had moderate to high positive correlations with most 

other factors (Figure 2). Factors covering the broad domains of social/communication, ADHD traits, 

and repetitive behaviors and speech were highly correlated amongst themselves but showed differing 

patterns of correlation with factors outside their broad domains. Parameter estimates of the final 

model are presented in Supplementary Tables S21-24. Finally, measurement invariance testing 
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showed that invariance of thresholds and loadings held so factors were assumed to be largely 

representing the same constructs between males and females (Supplementary Table S25). 

An additional general factor explaining all covariance between the different factors of early 

neurodevelopment had poor model fit indices (Hierarchical CFI: 0.621, TLI: 0.609, RMSEA: 0.032; 

Bifactor: CFI: 0.644, TLI: 0.624, RMSEA: 0.031) compared with the correlated factor model (CFI: 

0.888, TLI: 0.883, RMSEA: 0.018) in the full sample. Besides fit indices, anomalous results in 

parameter estimates, non-uniform (λ = 0.07-0.89; Table S26) loadings, and several specific factors 

with variances estimated close to zero (Supplementary Tables S27) indicated misspecification of the 

bifactor model to the data. This was less apparent in the hierarchical model (Supplementary Tables 

S28-29); therefore, it was used for further analyses. However, the general factor still exhibited varied 

loadings (λ = 0.313 - 0.787) and was characterized by factors encompassing social, communication, 

and motor development, which all had strong loadings from items with low endorsement in the 

general population.  

 

 

Factor validation and correlations with later outcomes  

 

We found that nearly all early neurodevelopmental factors were associated with receiving diagnosis 

of any of the neurodevelopmental conditions, higher perceived impact in daily life at ages 5 and 8, 

later psychiatric inpatient services, and reported early referral to habilitation, special education, and 

psychiatric services (Supplementary Figures S3-5). In a multivariate model all outcomes were still 

associated with at least one factor or group of highly correlated factors, and many were associated 

with multiple (Figure 3; Supplementary Figures S6-7). For example, both the highly correlated groups 

of the ADHD-trait factors, and social and communication factors were still associated with later 

receiving a diagnosis of ADHD. Some of these associations also differed by sex, such as the motor 

factor being associated with an autism diagnosis only in girls in the multivariate model.  

         

[Figure 3] 

 

In the hierarchical model, where specific factors simultaneously predicted the outcomes, all factors 

were still associated with at least one outcome and some factors within the highly correlated factor 

groups had differing magnitude and direction of effects from each other (Figure S8-10). For, example 

out of the highly correlated social and communication factors, only the play and language factors 

were associated with ADHD. These two factors also had the most specific factor associations, both 

being significantly associated with most of the outcomes. The general factor was associated with all 

outcomes (Supplementary Figure S8-10). However, the effect of a general factor on the outcome, 

when moderated by the specific factors, primarily explained additional variance in the outcomes 
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related to early referral, general developmental delay/intellectual disability and, in girls, specific 

language conditions when compared to the correlated factors model (Supplementary Figure S11). 

 

Common genetic variance underlying early neurodevelopmental traits  

 

GWAS of the factor scores from the 11-factor model had low h2
SNP estimates. Four factors had 

estimated confidence intervals that crossed 0 (Supplementary Table S30). The highest estimate was 

the non-verbal communication factor (h2
SNP = 0.037 [0.013 – 0.061], p = 0.003). There were four 

unique genome-wide significant loci identified across the factors (Supplementary Tables S31-35). 

Three of these SNPs were associated with multiple factors (rs61775569, rs12967622, rs10956955 in 

LD with rs4961212, Table S36). Results from gene-based association analyses implemented in 

FUMA, identified three genes associated with specific factors (p < 2.682 x 10-6; Tables S37-47). [60] 

The motor factor was associated with CNGB3 (p = 1.53 x 10-6), while the prosocial behavior factor 

was associated with RSRC1 (p = 3.95 x 10-7) and ADAMTS17 (p = 8.19 x 10-7). Sex-stratified factor 

GWAS were underpowered but showed high genetic correlation with the factors in the full sample. 

These GWAS showed some differences in h2
SNP estimates by sex, but these differences did not reach 

statistical significance (Supplementary Table S48).  34 item GWAS reached our greater than 1 h2
SNP Z 

threshold (Supplementary Table S49), of which, 21 items had h2
SNP that reached statistical 

significance. These items had a large range of estimated h2
SNP (range: 0.02 – 0.27; Supplementary 

Table S50) with differing levels of precision.  

 

 

Early neurodevelopmental traits relationships with genetic liability for neurodevelopmental 

conditions  

 

Genetic correlations between early neurodevelopmental traits and neurodevelopmental conditions 

were observed across multiple domains and were evident at both the factor and item-level (Figure 4, 

Supplementary Tables S51-52). ADHD had the highest genetic correlation with the inattentive and 

overactivity factor (rg = 0.95 [0.13 - 1]). The prosocial behavior factor had the highest significant 

association for both autism (rg = 0.56 [0.29 – 0.83]) and schizophrenia (rg = 0.20 [0.05 – 0.34]). While 

common genetic variance for neurodevelopmental conditions appeared to be broadly correlated across 

a range of different developmental areas in early childhood there were some instances of differing 

effects across conditions. The strongest example of this was the positive genetic correlation between 

the motor factor and autism (rg = 0.42 [0.11 - 0.72]), and to a lesser extent, schizophrenia (rg = 0.17 [0 

– 0.34]) but a negative correlation with ADHD (rg = -0.32 [-0.58 - -0.01]). 

The factors from the sex-stratified GWAS displayed similar genetic correlations with the 

neurodevelopmental conditions as in the entire sample but with slightly higher correlation estimates in 
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males than females with autism and slightly higher in females than males with schizophrenia 

(Supplementary Table S53-54). These correlations were accompanied by large, overlapping 

confidence intervals but were in accordance with findings of the PGS analyses. In these analyses, 

effects surviving multiple testing corrections were found exclusively in males for the autism PGS and 

in females for the schizophrenia PGS (Supplementary Figures S12-13 and Tables S55-56). 

At the item-level, the item “considerate of feelings” had the highest genetic correlation with 

autism, the item “can’t sit still, restless or overactive” with ADHD, and “volunteers” with 

schizophrenia (Supplementary Table S52). A few item GWAS had differing effects compared to their 

specified factor’s GWAS. For example, the item measuring “excessive talking”, which was a part of 

the CBCL and loaded onto the impulsivity factor, was significantly negatively correlated (rg = -0.25 [-

0.37 - -0.124]) with schizophrenia after multiple testing corrections while the impulsivity factor was 

uncorrelated with schizophrenia (rg = -0.01[-0.17 - 0.15]).  

 

[Figure 4] 

 

 

Genomic structure modeling and specificity of SNP effects 

 

Given power constraints, the EFA was run on the smoothed estimated genetic correlation matrix of all 

chromosomes and no further downstream analyses were done. Genetic correlations between all items 

were estimated and are presented in Figure 5. Two to three clusters of items seem to emerge from this, 

the most obvious being the prosocial behavior items and the item “uses hand like a tool.” These items 

were notably the items with the highest genetic correlations with autism. The other two possible 

clusters were made up of items covering ADHD traits, repetitive and restricted behaviors and 

interests, and play behaviors and thus less interpretable. The traditional eigenvalues method indicated 

eight factors to be extracted in an EFA at the genomic level. Extracting one “general” factor in the 

EFA left many items unrepresented and was mainly defined by the “uses hand like a tool” and 

prosocial behavior items, further extraction of factors beyond this were hard to interpret and 

frequently had factors defined by a few items, frequent cross loading, and strong negative loadings.  

The motor, prosocial behavior, RepBehavior, and inattention factors were recreated via a 

CFA at the genomic level. Among these, only the prosocial behavior factor demonstrated an 

exceptional fit (CFI = 1, SRMR = 0.095; Supplementary Figure S14) and exhibited strong and 

significant loadings for most items. Only one item, specifically "pays attention to your instructions" 

did not exhibit a significant loading on this factor. This item differed from the rest as it was not part of 

the SDQ scale but was asked alongside the SDQ in the MoBa questionnaire. The inattention and 

overactivity factor had significant loadings for all items but as it was comprised of three items, fit 

indices could not be estimated. The repetitive and restricted behaviors and interests had excellent fit 
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(CFI = 0.99, SRMR = 0.083) but non-significant loadings for all items. The motor factor did not 

converge.   

Based on the outcomes of the common factor models, we only performed a subsequent 

common factor GWAS for the prosocial behavior factor. This did not yield any genome-wide 

significant loci but identified 6 independent SNPs hits and 17 Qsnp at a suggestive association 

threshold (p < 5 x 10-5; Supplementary Tables S57-58). Removing the item that did not significantly 

load onto the common genetic factor, the common factor GWAS identified 7 SNPs and 9 Qsnp at the 

same threshold (Supplementary Figure S15; Supplementary Tables S59-60).  

 

[Figure 5] 

 

 

Discussion  

 

We leveraged the item-level questionnaire data in n= 58 630 MoBa children to investigate patterns of 

relationships between specific traits from different areas of development in early childhood, the 

underlying genetic contributions, and potential shared etiology to clinically diagnosed 

neurodevelopmental conditions. The main findings are firstly, a high heterogeneity at both the 

phenotypic and genotypic level underlying early neurodevelopmental traits – higher than would be 

expected if these traits were neatly aligned with distinct neurodevelopmental conditions. Secondly, 

despite their etiological and structural heterogeneity, early neurodevelopmental traits in a general 

population sample are phenotypically and genetically associated with neurodevelopmental diagnoses.  

  

Heterogeneity underlying early neurodevelopmental traits in a population-based sample. 

 

We find that most domains of neurodevelopment traits are at least moderately correlated with each 

other at the phenotypic level. The simplest etiological explanation for this would be shared liability 

across all areas of neurodevelopment, such as a general genetic neurodevelopment factor, which has 

been suggested based on twin studies and clinical observations [17,63,64]. However, we also show 

substantial heterogeneity underlying early neurodevelopmental traits both at the phenotypic and 

genetic levels, and little evidence supporting a general factor of liability to all early 

neurodevelopmental traits at either level of analysis. Besides poor model fit of the hierarchical and 

bifactor models, the general factor was not so general, indexed primarily by the specific factors or 

items in the factors of nonverbal communication and social attention. On the genotypic level, we 

observed considerable range in the magnitude and direction of genetic correlations between items. 

Further, the EFA at the genotypic level did not provide support for a single factor of common genetic 

liability. 
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 Notwithstanding the question of the existence of a general factor for neurodevelopmental 

traits, we observe increased heterogeneity compared to what would be expected based on etiological 

factors that neatly lined up with diagnostic criteria. The observed factors are highly correlated 

amongst themselves in domains related to commonly separated neurodevelopmental domains (i.e., 

social and communication, repetitive behaviors, ADHD traits). However, these factors are 

differentially correlated with the factors outside of their domain and, when correlations between 

factors were accounted for by a general factor, have differing associations with later diagnoses. To 

note, while the neurodevelopmental traits are associated with and share some genetic variance with 

neurodevelopmental conditions, traits are non-specific to conditions. This pattern is consistent with 

co-occurrence between neurodevelopmental conditions being commonplace – in many cases being the 

rule, rather than the exception [13,64,65]. 

While limited by power, the results of the genomic factor modeling points towards a similar 

level of heterogeneity in the genetic architecture of early neurodevelopmental traits. We find some 

evidence for common genetic factors that resemble the prosocial and the inattention factors identified 

in the phenotypic models. This is supported by the good fit indices and/or significant loadings in the 

genomic common factor models. Shared genome-wide significant SNPs across the factor GWAS 

indicates the existence of some shared genetic loci, particularly across social and communication 

factors and prosocial factor. However, in other areas such as motor development, increased 

heterogeneity is observed. While the motor factor shares a genome-wide significant locus with 

nonverbal communication and joint attention, the factor is defined by items covering gross motor 

skills. At the item-level, one fine motor item does not exhibit strong correlation with the other two 

motor items and the motor genomic common factor model does not converge. This potentially 

suggesting the presence of different genetic mechanisms underlying different aspects of motor skills. 

Lastly, even among the items measuring prosocial behavior, the higher number of QSNP hits compared 

to SNP hits contributing to the common genetic factor at a suggestive association threshold 

emphasizes the possibility of item-level specificity of genetic effects, even within the most coherent 

genetic factor. 

 

Early neurodevelopmental traits are associated with neurodevelopmental conditions. 

 

The factors identified as underpinning early neurodevelopmental traits in our sample were associated 

with receiving a clinical diagnosis for different neurodevelopmental conditions. We generally find 

stronger associations between conditions and factors that contain items that overlap with diagnostic 

criteria of that condition such as the social and communication factors with autism or the ADHD trait 

factors with ADHD. Stronger associations are also seen for conditions that have higher rates of earlier 

referral or diagnosis in our sample such as intellectual disability and specific motor conditions. The 

strength of these associations is likely impacted by the overlap in items with diagnostic criteria, 
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however we still find associations of factors with conditions with later age of onset, such as specific 

learning conditions as well as with conditions which do not have diagnostic criteria overlapping with 

the factor, such as the social and communication factors with ADHD even after excluding individuals 

who have also received an autism diagnosis.  

Early neurodevelopmental traits shared common genetic liability with ADHD, autism, and 

schizophrenia. While limited by power, many items suggest similar associations to 

neurodevelopmental conditions as their factor. However, we do observe some trait-level heterogeneity 

as in the recent item-level genomic analysis of neuroticism [66].  For example, while the prosocial 

factor was genetically correlated with autism and schizophrenia genetic liability, only the factor’s 

items “kind to young children” and “considerate of feelings” had associations with autism and only 

the items “volunteers” and “kind to young children” with schizophrenia after multiple testing 

corrections. Childhood prosocial behavior has been previously associated with schizophrenia 

polygenic liability; however, this same study did not find an association with autism genetic risk [67]. 

Additionally showing trait-level heterogeneity, items in the motor and repetitive behavior factors have 

a range in the magnitude and sometimes direction of genetic correlations with neurodevelopmental 

conditions. These observations offer some potential areas for follow up work in clinical samples 

identifying differentiating mechanisms of early development across conditions.  

Our findings also identify some potential for shared mechanisms across domains at the sub-

diagnostic level. For instance, the repetitive behavior and repetitive speech factors are more correlated 

with the ADHD trait factors than some of the social and communication factors and had higher 

genetic correlation estimates with ADHD than with autism. While this observation may offer areas of 

potential shared early signs across conditions, the validity of items in a general population should also 

be considered. For example, items such as “says the same thing over and over” could be 

misinterpreted by parents, resulting in it capturing activity level or more common behaviors, rather 

than the idiosyncratic speech typically associated with autism. This may also contribute to the low (or 

lack of) estimated heritability in some of these items.  

  

 

 Limitations  

 

There are some limitations of our study that should be considered. Despite splitting our sample into 

discovery and test halves, the exploratory factor analysis of such a diverse set of items, in a large 

sample, is likely to have led to some level of overfitting. Because of this, we do not suggest 

interpreting all identified factors as necessarily definitive distinct factors with important etiological 

meaning but instead put forward that there is increased dimensionality across areas of development 

with differing relationships to each other and to neurodevelopmental conditions that may be lost at 

diagnostic or scale level.   
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Low power to detect signal for many of the item GWAS limits the claims. For the effects we 

identified the increased variation due to underpowered GWAS may contribute to the large range in 

estimated genetic correlations. However, power concerns are unlikely to fully explain the lack of a 

single general genetic factor. Our genetic analyses were also limited to common genetic variants. 

There is considerable overlap of rare variants associated with different neurodevelopmental 

conditions [22–24] and rare variants are more common in cases presenting with intellectual disability 

and/or developmental delays [68,69], which the general factor in the phenotypic model was most 

associated with in the diagnostic outcome analyses. Finally, the genetic analyses were limited to 

participants in MoBa of European genetic ancestry, limiting the generalizability of our results across 

ancestries.  

 

 

Conclusions  

 

Our exploratory results reveal the multidimensionality underlying early neurodevelopmental traits in a 

population-based birth cohort. These dimensions are broadly associated with receiving a diagnosis of 

neurodevelopmental conditions, and many genetically correlated with ADHD, autism, and/or 

schizophrenia. We find little support for a shared common genetic liability across all traits in the 

general population. Instead, we observe multiple specific factors with certain shared genetic loci 

identified across, particularly, the social and communication domains of neurodevelopment, but none 

that are evidently relevant across all domains. Our trait-level analyses highlight the role of 

heterogenous genetic effects underlying early neurodevelopment traits and their relationships to 

neurodevelopmental conditions. These findings provide areas for further investigation to identify 

shared and distinct mechanisms across neurodevelopmental conditions. 
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Figure 1: Outline of study design and main analyses at the phenotypic and genotypic level. Grey boxes outline the steps where questionnaire items were removed with the exclusion thresholds 
listed to the right. Boxes indicate an analysis with the arrows denoting analyses which are based on (i.e., factor structure) or used results (i.e., summary statistics) from a previous analysis. 
Analyses conducted at the phenotypic level with no sample size listed were conducted in the full sample (N = 58,630). Half-samples for the EFA/CFA conducted in the phenotypic level were 
randomly selected halves of the full sample. Estimating rg refers to estimation of genetic correlations of the items/factors with neurodevelopmental conditions. 1 With the assumptions of an 
OR of 1.2, MAF of 0.01, and alpha of 0.01 in a logistic model with additive genetic effects. 2 Only common factor models with 3+ items run. 3 Common factor GWAS only run on models with 
good fits and significant factor loadings.  
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Figure 2: Correlation matrix of the 11 factors from the correlated factor model in the full population.  
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Figure 3: Estimated effects of factors from the correlated factor model in a multivariate regression controlling for the effects of all factors on the outcome for 5 selected diagnostic outcomes. 
Effects are presented as odds ratios calculated from the exponential of the standardized beta value from the logistic regression in the measurement models. 95% percent confidence intervals 
are shown. Due to high correlations amongst domains in the broad areas of social communication (the language & verbal communication, nonverbal communication and joint attention, play, 
and social attention and interest factors), ADHD-associated traits (the inattention and overactivity, waiting, impulsivity factors), and repetitive and restricted behaviors (the repetitive and 
idiosyncratic speech and repetitive and restricted behaviors and interests factors) effects of these factors were constrained to be equal to avoid collinearity issues.”*”, “**”, “***” denote 
adjusted  p <0.05,<0.01,and <0.001 respectively, after multiple testing correction.  For full results of the outcome models see the supplementary results. 
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Figure 4: Estimated item and factor loading GWAS genetic correlation with PGS GWAS. 95% percent confidence intervals are presented. Results of multiple testing corrections are presented in Supplementary 
Tables S51 and S52 as a reference for the strength of statistical significance.  Items are represented by points and factors bars. Bar width only reflects the number of items from that factor that were included. 
(R) denotes reversed coded items. The inattention factor had an estimated genetic correlation above one but is shown at 1.0. This factor as well as the impulsivity factor had upper bounds of the confidence 
interval estimated over 1. Item-level estimates were removed if confidence intervals were estimated as having a range larger than 1.5. 
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 Figure 5: the estimated smoothed genetic correlations matrix for the 22 neurodevelopmental items used in the EFA and genetic factor 
modeling. Items order using angular order of the eigenvectors (AOE).” *”, “**”, “***” denote uncorrected p <0.05, <0.01, and <0.001 
respectively.  
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