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   Abstract 

Rationale: Duration of mechanical ventilation is associated with adverse outcomes in critically 

ill patients and increased use of resources. The increasing complexity of medication regimens 

has been associated with increased mortality, length of stay, and fluid overload but has never 

been studied specifically in the setting of mechanical ventilation.  

Objective: The purpose of this analysis was to develop prediction models for mechanical 

ventilation duration to test the hypothesis that incorporating medication data may improve 

model performance. 

Methods: This was a retrospective cohort study of adults admitted to the ICU and undergoing 

mechanical ventilation for longer than 24 hours from October 2015 to October 2020. Patients 

were excluded if it was not their index ICU admission or if the patient was placed on comfort 

care in the first 24 hours of admission. Relevant patient characteristics including age, sex, body 

mass index, admission diagnosis, morbidities, vital signs measurements, severity of illness, 

medication regimen complexity as measured by the MRC-ICU, and medical treatments before 

intubation were collected. The primary outcome was area under the receiver operating 

characteristic (AUROC) of prediction models for prolonged mechanical ventilation (defined as 

greater than 5 days). Both logistic regression and supervised learning techniques including 

XGBoost, Random Forest, and Support Vector Machine were used to develop prediction 

models.  

Results: The 318 patients [age 59.9 (SD 16.9), female 39.3%, medical 28.6%] had mean 24-

hour MRC-ICU score of 21.3 (10.5), mean APACHE II score of 21.0 (5.4), mean SOFA score 

of 9.9 (3.3), and ICU mortality rate of 22.6% (n=72). The strongest performing logistic model 

was the base model with MRC-ICU added, with AUROC of 0.72, positive predictive value 
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(PPV) of 0.83, and negative prediction value (NPV) of 0.92. The strongest overall model was 

Random Forest with an AUROC of 0.78, a PPV of 0.53, and NPV of 0.90. Feature importance 

analysis using support vector machine and Random Forest revealed severity of illness scores 

and medication related data were the most important predictors.  

Conclusions: Medication regimen complexity is significantly associated with prolonged 

duration of mechanical ventilation in critically ill patients, and prediction models incorporating 

medication information showed modest improvement in this prediction.  

Introduction 
   

Mechanical ventilation (MV) is a frequently encountered supportive care modality in 

critically ill patients. (1) While life-saving, mechanical ventilation predisposes patients to 

notable sequalae that can adversely affect patient-centered outcomes including ventilator 

induced lung injury (VILI), infection, intensive care unit (ICU) acquired muscle weakness, etc. 

that make the decision to intubate, daily evaluation of extubation potential, and need for 

tracheostomy essential bedside assessments. (2) Moreover, the risk of these MV-related 

complications increases as duration of mechanical ventilation increases, and given that over 

750,000 patients are supported by MV and approximately 5-25% of those patients in a mixed 

ICU require MV for greater than 5 days, prediction of patients at most risk becomes 

increasingly relevant. (3-5) The ability to identify those patients more likely to require 

prolonged mechanical ventilation (PMV) may alter clinical decision-making, including 

ventilation or medication management strategies, that may ultimately reduce the duration of 

therapy.  

Previous studies that developed prediction models for PMV have included primarily 

laboratory and vital sign information (e.g., serum creatinine, acidosis, bicarbonate, etc.); 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.09.18.23295724doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.18.23295724
http://creativecommons.org/licenses/by-nc-nd/4.0/


however, mechanical ventilation cannot be viewed as an isolated intervention but is deeply 

intertwined with a patient’s overall clinical status and associated pharmacotherapy regimen. 

(1,5-11) Indeed, associated pharmacotherapy regimens are complex with over 30% of patients 

in the ICU setting having greater than 20 medications prescribed. (12,13) This same study 

showed that 70% of patients had more than 13 medications at any given point. (12,13) Further, 

comprehensive medication management strategies aimed at optimizing drug selection (e.g., 

preferring medications with lower risk of delirium) have shown reductions in duration of 

mechanical ventilation. (14,15)   

Given that medications play a significant role in mechanical ventilation management, 

quantifying patient-specific, medication-related data is a potentially important prediction 

variable that has not been well explored. Previous studies have observed associations between 

medication regimen complexity-intensive care unit (MRC-ICU) score and other relevant 

outcomes including mortality, length of stay, and fluid overload. (16-24) Moreover, use of 

machine learning techniques in combination with MRC-ICU appears to improve prediction and 

has shown utility in a variety of ICU prediction questions. (20,25)   

In this study, we aimed to employ both traditional and machine learning techniques to 

develop and validate PMV prediction models with the goal of identifying the most useful 

predictors at the bedside. We hypothesized that advanced machine learning techniques may be 

useful to identify the most important clinical factors that can differentiate between patients 

with high versus low risk of PMV. Additionally, we aimed to test the hypothesis that the 

addition of medication related variables would enhance prediction of PMV.  
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Methods 

Source of data 

Patient data were gathered from the Carolina Data Warehouse, which houses Epic® 

electronic health record (EHR) data from the University of North Carolina Health System. The 

protocol for this study was reviewed and approved by the University of Georgia Institutional 

Review Board (approval number: (Project00001541). Due to the retrospective, observational 

design, waivers of informed consent and HIPAA authorization were granted. 

This was a retrospective cohort study of adults aged 18 years and older with an ICU 

admission and duration of mechanical ventilation greater than 24 hours between October 2015 

and October 2020. Patients were excluded if it was not their index ICU admission or if the 

patient was placed on comfort care within the first 24 hours of ICU stay. Types of ICUs 

included medical, surgical, trauma, neurosciences, cardiac, and burn. De-identified data from 

the first ICU admission per each patient was included.  

The primary outcome was the presence of prolonged duration of mechanical ventilation, 

defined as greater than 5 days. De-identified patient data were collected through a trained data 

analyst including: 1) baseline demographic data: age, sex, admission to the medical ICU, 

primary admission diagnosis, and data to calculate the sequential organ failure assessment 

(SOFA), Acute Physiology, Chronic Health Evaluation (APACHE II) score, and medication 

regimen complexity-intensive care unit (MRC-ICU) score at 24 hours; 2) data at time of 

mechanical ventilation: highest FiO2 positive end expiratory pressure (PEEP), and minute 

ventilation in 12-24 hours after intubation, mode of ventilation at initiation, duration of non-

invasive respiratory support prior to intubation, arterial blood gas values, and heart rate; 3) 

patient outcomes: mortality, ICU length of stay, presence of fluid overload, acute kidney injury 
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(AKI), and need for vasoactive medications and/or renal replacement therapy; and 4) 

medication variables: sedatives, analgesics, vasoactive agents, and diuretics taken before 

intubation. Additionally, the MRC-ICU was calculated at 3 separate time points: 24 hours after 

ICU admission, at the time of intubation, and 24 hours after intubation. The MRC-ICU 

measures medication regimen complexity with each line of 35 discrete line items assigned a 

weighted value and then summed to create a score for a patient’s regimen at the given time 

point. (19) For example, a patient would be given 3 points for vancomycin, 1 point for 

norepinephrine, and 1 point for insulin for a total score of 5. 

Statistical Analysis  

Following a literature review of prolonged mechanical ventilation in the ICU, a total of 

30 potential predictor variables were identified by investigator consensus to include in each 

PMV regression model. (5,10,26-33) These variables included the following: 1) ICU baseline: 

age, sex, admission to medical ICU, and primary ICU admission diagnosis (cardiac, chronic 

kidney disease, heart failure, hepatic, pulmonary, sepsis, trauma); 2) 24 hours after ICU 

admission: APACHE II and SOFA score (using worst values in the 24 hour period); presence 

of acute kidney injury; 3) Flowsheet and laboratory values at time of intubation: duration of 

oxygen support devices prior to intubation, pulse, arterial blood gas values, and ventilator 

settings (positive end expiratory pressure (PEEP) and fraction of inspired oxygen (FiO2); fluid 

overload. The fourth category was added to assess the role of medications at 24 hours and 

included: MRC-ICU score at 24 hours after ICU admission, time of intubation, and 24 hours 

after intubation, dichotomized MRC-ICU less than or greater than or equal to 10 at the same 

three time points, and certain medications (bumetanide, clonazepam, dexamethasone, 
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dexmedetomidine, dobutamine, ertapenem, lorazepam, norepinephrine) selected by the 

investigators following univariate analysis. 

Due to the hypothesis-generating nature of this evaluation, no attempt was made to 

estimate the sample size, and all eligible patients from the available database were included to 

maximize statistical power of the predictive models developed. Descriptive statistics on the 

data were calculated before model development. Numerical predictors were summarized by the 

mean and standard deviation and categorical variables reported count and corresponding 

proportion of the total population. Clinical characteristics between those patients with and 

without PMV were compared using either Student t test or Chi-square test, as appropriate. 

Univariate analysis was performed on baseline variables to detect potential important variables 

for the basic model and select important baseline medications for predicting prolong MV. 

Multiple imputation was applied for missing data. Under the assumption of missing at 

random, a chained equations approach carried out five imputations. (34) After multiple 

imputation, each of the five completed datasets was split into training data and testing data 

using an 85:15 ratio in a cross-validation splitting manner. Subsequently, a logistic model was 

built to predict PMV on each of the five complete training sets. Parameter estimation were 

pooled using Rubin’s rule. (35) Corresponding odds ratio (OR) and 95% confidence intervals 

(CI) of coefficients were reported respectively, which can reflect the influence of each 

predictor.  

Model development and performance 

Multivariable logistic models were developed to predict PMV. First, a benchmark model 

was derived using logistic regression and investigator selection that included the following 

variables: duration of oxygen support devices prior to intubation, highest PaCO2 and 
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bicarbonate on arterial blood gas in 12-24 hours after intubation, presence of elevated pulse 

(>110 beats per minute) in 24 hours prior to intubation, presence of fluid overload before 

intubation (defined as greater than 10% of admission body weight in volume), highest FiO2 

and PEEP in 12-24 hours after intubation, minute ventilation, and a product of PaCO2 and 

minute ventilation in the first 12-24 hours after intubation.   

Then, the effects of inclusion of standard severity of illness scores (SOFA score at 24 

hours, APACHE II score at 24 hours) and medication related data including both the MRC-

ICU at 24 hours and presence of individual drugs were assessed. To evaluate the influence of 

the MRC-ICU score on PMV, MRC-ICU as a continuous score and MRC-ICU as a 

dichotomous variable as < 10 or ≥10 were included separately, with selection of the rest of the 

variables following this addition. Additional models including all medications taken before 

intubation and selected medications known to play a significant role in mechanical ventilation 

were evaluated for their presence at initiation of mechanical ventilation and 24 hours after 

intubation. For this process, univariate analysis and then least absolute shrinkage and selection 

operator (LASSO) based logistic model were conducted on the medication dataset for variable 

screening resulting in two models (base + selected drugs and base + LASSO drugs). All 

variables were examined, and certain variables were excluded from the models if potential 

collinearity or mediation effects were present. A full model was fitted with all predictors, and a 

stepwise regression was conducted. Additionally, variable selection was performed in the 

MRC-ICU model by mediation analysis. Variables as mediators with significant relationship 

between MRC-ICU and PMV were removed from the model. The final model was selected 

based on the best performance.  
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Figure 1 in the Supplemental Content summarizes the full model development 

procedure. Multiple logistic models with different predictor variable were built including basic 

variables, basic variables and MRC-ICU, basic variables and important medications selected 

via LASSO technique, basic variables with SOFA and APACHE II scores, and basic variables 

with MRC-ICU, SOFA and APACHE II scores at 24 hours. To compare performance of the 

models, a series of values were calculated including for the models with classification task: 

area under the receiver operating characteristic (AUROC), positive predictive value (PPV), 

negative predictive value (NPV), specificity, and sensitivity. To evaluate performance of the 

developed model, metrics were calculated on test data from each imputed dataset and 

averaged. A p-value less than 0.05 was used to determine statistical significance for all 

outcomes. All analyses were performed using R (version 4.1.2). 

Random Forest, support vector machine (SVM), and XGBoost were employed for the 

task of predicting PMV. For these methods, the dataset was imputed and split one time. The 

mean was used to impute numerical predictors and mode for categorical variable imputation. 

The dataset was then split into training and test subsets by the ratio of 85:15. Predictions for 

probability of PMV were made on each of the five imputed testing sets with the corresponding 

optimal model. Cross-validation was employed for hyperparameters. For Random Forest, two 

hyperparameters were tuned (number of trees and number of variables randomly sampled as 

candidates at each split). With the optimal models, the prediction performance on the test 

dataset was evaluated. For XGBoost, feature importance was measured as the frequency a 

feature was used in the trees. For Random Forest, feature importance was measured by mean 

decrease in node impurity. For SVM, feature importance was measured via permutation test 
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from R package ‘vip’. Then, impacts of predictors on the outcome via the evaluation of feature 

importance and logistic parameter estimation results were compared.   

Results 
 

Of the 318 patients included, 145 patients (45.6%) were over the age of 65, and 125 

(39.3%) were female. Of these, 90 (28.3%) had PMV. Overall, the mean APACHE II score 

was 21.0 ± 5.4, mean SOFA score was 9.9 ± 3.3, and MRC-ICU was 21.3 ± 10.5. The mean 

length of MV was 5.5 ± 12.8 days, and overall, the mortality rate within MV period was 22.6% 

(72 out of 318). Patient outcomes differed by the presence and absence of PMV, with those 

that had PMV having a higher mortality rate (38.9% vs. 16.2%, p < 0.001) and longer mean 

length of ICU stay (19.9 vs. 3.9, p < 0.001).  Description of variables used for model 

development are provided in Table 1.  

When predicting PMV, statistical and machine learning models were developed, and 

model performance is summarized in Table 2. Using logistic regression, a base model was 

developed and demonstrated an AUROC of 0.67 (0.39 – 0.94) with an accuracy of 0.78 (0.60 – 

0.90). A series of candidate models were then developed using MRC-ICU and severity of 

illness scores. The nested model using the MRC-ICU at 24 hours was superior to the others 

and following variable selection, AUROC was improved to 0.73 (0.45 – 0.99) and accuracy of 

0.85 (0.68 – 0.95) with a sensitivity of 0.63 and specificity of 0.91, respectively, when 

Youden’s threshold was applied. No evidence of collinearity was found among the predictors. 

Results for the full regression model are provided in Supplemental Content – Table 1.  The 

mediation analysis showed duration of support devices and HCO3 are mediators between the 

outcome and MRC-ICU (p-value = 0.016 and <0.001, respectively). After reviewing the effect 
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of the three mediators, the final selected model in predicting PMV was developed (see 

Supplemental Content - Table 2).  

Among the machine learning models, Random Forest and SVM shared the highest 

AUROC (0.78) compared to XGBoost (0.69); however, the SVM model was limited by a 

relatively low accuracy (0.51), potentially secondary to imbalanced data due to the lower 

overall rate of PMV. To test this, we used smote function in R to oversample PMV and create a 

balanced dataset. With additional observations of PMV, the accuracy increased to 0.70, which 

suggested that the imbalanced outcome is one of the reasons leading to the low accuracy of 

SVM model. Model performance is summarized in Table 2. AUROC graphs are plotted in 

Figure 2. Finally, feature importance graphs were plotted for Random Forest (see Figure 3), 

SVM (see Supplemental Content - Figure 2), and XGBoost (see Supplemental Content - 

Figure 3). The top five features for each analysis were plotted by count. For Random Forest, 

the top five included duration of support devices prior to intubation, SOFA score at 24 hours, 

PaO2/FiO2 ratio, MRC-ICU score at the time of intubation, and PaCO2, with MRC-ICU at 24 

hours and a product of minute ventilation times PaCO2 scoring in the top ten. For SVM, the top 

five most important features (in descending order) were duration of support devices prior to 

intubation, PaCO2, elevated pulse, midazolam, and dexmedetomidine, though again MRC-ICU 

at 24 hours and the time of intubation also were in the top ten. For XGBoost, the top 5 features 

(in descending order) were similar: MRC-ICU at intubation, minute ventilation, PaCO2, a 

product of minute ventilation times paCO2, and SOFA, with again MRC-ICU at 24 hours and 

24 hours after intubation scoring in the top ten. These variables had overlap with the regression 

model, with arterial blood gas values, ventilator settings, and MRC-ICU at the time of 

intubation being included. 
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Discussion 

In the first machine learning analysis for predicting PMV risk in critically ill patients to 

include detailed medication data, both logistic regression and machine learning analyses 

demonstrated similar predictive power to identify patients at risk of PMV at the end of the first 

24 hours of their ICU stay. Compared to SVM and XGBoost, Random Forest displayed the 

more robust predictive capabilities, balancing AUROC with reasonable accuracy and high 

NPV. The machine learning analyses revealed differences with regard to the feature 

importance variables compared to logistic regression, with the importance of medication-

related variables as top predictors repeatedly observed. This finding is particularly salient 

because while certain medications are known to prolong duration of mechanical ventilation, 

they are not frequently captured in other analyses that have aimed to predict PMV.  

In particular, the logistic regression model with MRC-ICU and Random Forest model 

achieved reasonable AUROCs, and negative predictive values were high for all models 

developed. These results are in line with previous evaluations PMV (see Table 3), notably with 

relatively high NPV. (10,11,26-28,31,36,37) Several machine learning analyses of PMV have 

been conducted in narrow populations (i.e., traumatic brain injury, congestive heart failure, 

after coronary artery bypass grafting) or used to predict mortality, whereas the present study 

evaluated a diverse scope of critically ill patients across a variety of ICU settings, which may 

support external generalizability. (38-41) Moreover, some studies (see Table 3) have included 

elements of medication therapy in their modeling (e.g., duration or dependency on inotropes), 

but to date, none have taken into account the entire medication administration record or 

attempted to quantify the additive effects of various medications, as the MRC-ICU has been 

validated to do. (11,16,29,42) The studies outlined in Table 3 incorporated traditional 
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statistical modeling to evaluate predictors of PMV; however, the majority of studies that 

evaluated medication use found that variable nonsignificant in multivariate analysis. 

(28,31,33,37) Notably, one study evaluating use of common sedatives, vasopressors, steroids, 

and neuromuscular blocking agents found the duration of vasopressor support to be an 

independent predictor of PMV. (11) 

In contrast to the decision to extubate (i.e., a de-escalation of care in a stable patient that 

can be delayed in situations of high uncertainty), the decision to intubate is an escalation of 

care often performed in a generally time-sensitive scenario for an unstable patient. Thus, while 

the rapid shallow breathing index to predict extubation success has a PPV of approximately 

78%, it is still a widely used tool. (43) Given the present findings, the ability to predict a high 

risk of PMV with certainty is limited, and thus as a guide to decisions like early tracheostomy 

it is likely not viable; however, high NPV may be useful in guiding medication-related 

decisions (e.g., the decision to use light sedation or be aggressive with diuresis knowing that 

extubation within 5 days is likely) because it serves as a screening test for PMV. The clinical 

utility of a model with high NPV is increased clinician confidence that despite the present 

requirement to intubate the patient, this need is transient. As such, it may direct goals of care 

discussions and more importantly may guide a more aggressive weaning strategy, both 

regarding ventilator settings and medication therapy. Indeed, even hours on non-optimized 

ventilator settings are associated with worse outcomes, including heightened mortality risk. 

(44-46)  

Ventilator settings and medication therapy do not occur in silos but are highly 

intertwined: liberalizing ventilator settings can reduce the need for sedation (which is known to 

prolong mechanical ventilation and reduce extubation success). (2,47,48) As opposed to 
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“settling in” for an intubation that is expected to last for an extended period, such a model may 

guard against clinical inertia towards more active interventions to get the patient successfully 

extubated (e.g., early mobility, avoidance of benzodiazepines). (49,50) Despite knowing the 

importance of light sedation and early mobility, translating this knowledge into action has 

remained a challenge, but quantitative risk prediction data indicating a short intubation period 

may guard against this inertia. (50) Beyond the intertwined role of drug and device, 

medications are a unique element to predictive models, because they represent both 

independent risk factors for PMV but also potentially modifiable ones. It has been previously 

proposed that medications represent intervenable events in the ICU. Intervenable events have 

three characteristics: without action by a clinician, they are associated with poor outcomes; 

however, they are both preventable and predictable. (51) For example, an idiosyncratic, 

allergic reaction to the antibiotic cefepime would not be intervenable; however, rapid 

recognition of sepsis that reduces time to cefepime is intervenable. It is well-established that 

medications play an integral role in the management and outcomes of mechanically ventilated 

patients, but in contrast to initial severity of illness indicators (repeatedly demonstrated to both 

predict and cause PMV), they are frequently modifiable, with appropriate clinical decision 

support. (14,52,53) For example, diuretics and aggressive volume management are associated 

with reduced time on the ventilator. (54) Interestingly, the MRC-ICU at the time intubation had 

a negative association with PMV while the MRC-ICU at 24 hours had a positive association 

with PMV, indicating the possibility that high complexity may at times be a protective factor. 

As such, models that incorporate medications present a unique opportunity to guide clinical 

decision-making that reduces duration of mechanical ventilation.   
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Limitations of this study include sample size, which though reasonable within many 

critical care evaluations is comparatively small for machine learning applications. While 

validation and training sets were used, this evaluation lacks external validation in a separate 

dataset, and the results do not address the means by which to operationalize such a prediction 

metric at the bedside. Finally, while the presence or absence of certain medications appeared to 

play a role in PMV, timing and dosing of these medications (also known to be important for 

intubated patients) were not evaluated at this juncture.   
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Conclusion 

PMV is a potentially intervenable event in the ICU population with the appropriate 

prediction modeling that can guide timely intervention. The incorporation of medication-

related variables and exploration modeling techniques is an important step towards the 

prevention of this ICU complication.  
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Table 1. Description of model co-variables  
 
Feature 
(n = 318) 

Presence of 
Prolonged 
Mechanical 
Ventilation  
(n = 90) 

No Presence of 
Prolonged 
Mechanical 
Ventilation  
(n = 228) 

p-value Total Cohort 

ICU Baseline 
Age 57.6±16.4 60.8±17.1 0.125 59.9±16.9 
Female 35 (38.9) 90 (39.5) 0.923 125 (39.3) 
Admission to medical 
ICU 

37 (41.1) 54 (23.7) 0.002 91 (28.6) 

Primary ICU Admission Diagnosis 
   Sepsis/Infection 7 (7.8) 14 (6.1) 0.176 21 (6.6) 
   Pulmonary 10 (11.1) 13 (5.7) 23 (7.2) 
   Neoplasm 4 (4.4) 10 (4.4) 14 (4.4) 
   Gastrointestinal 6 (6.7) 16 (7.0) 22 (6.9) 
   Cardiovascular 11 (12.2) 64 (28.1) 75 (23.6) 
   Dermatology 2 (2.2) 1 (0.4) 3 (0.9) 
   Renal 1 (1.1) 3 (1.3) 4 (1.3) 
   Neurology 14 (15.6) 34 (14.9) 48 (15.1) 
   Endocrine 0 (0) 2 (0.8) 2 (0.6) 
   Trauma 9 (10.0) 18 (7.9) 27 (8.5) 
ICU Type 
    Burn 6 (6.7) 5 (2.2) <0.001 11 (3.5) 
    Cardiac 14 (15.6) 95 (41.7) 109 (34.3) 
    Medical 37 (41.1) 54 (23.7) 91 (28.6) 
    Neurosciences 13 (14.4) 24 (10.5) 37 (11.6) 
    Surgical 16 (17.8) 40 (17.5) 56 (17.6) 
    Mixed 4 (4.4) 10 (4.4) 14 (4.4) 
Mode of Ventilation 
    Pressure control 4 (5.5) 6 (3.4) 0.675 10 (4.0) 
    Pressure regulated 
volume control 

61 (83.6) 134 (80.3) 204 (81.3) 

    SIMV/Pressure 
regulated volume 
control 

5 (6.9) 15 (8.4) 20 (8.0) 

    SIMV/Volume 
Control 

0 (0) 3 (1.7) 3 (1.2) 

    Volume Control 3 (4.1) 11 (6.2) 14 (5.6) 
24 hours after ICU admission 
  APACHE II at 24 
hours  

21.0 ± 5.7 20.5 ± 5.3 0.443 21.0 ± 5.4 

  SOFA at 24 hours 10.4 ± 3.9 9.8±3.1 0.307 9.9 ± 3.3 
AKI at 24 hours 34 (37.8) 26 (11.5) <0.001 90 (28.48) 

Medication data 
Selected Drugs      
  Bumetanide 5 (5.6) 4 (1.8) 0.124 9 (2.8) 
  Chlorothiazide 1 (1.1) 2 (0.9) 0.846 3 (0.9) 
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  Cisatracurium 4 (4.4) 4 (1.8) 0.118 8 (2.5) 
  Clonazepam  0 (0) 9 (4.0) 0.065 9 (2.8) 
  Dexamethasone 10 (11.1) 14 (6.1) 0.202 24 (7.5) 
  Dexmedetomidine  11 (12.2) 70 (30.7) 0.001 81 (25.5) 
  Dobutamine 3 (3.3) 34 (14.9) 0.007 37 (11.6) 
  Dopamine 6 (6.7) 46 (20.2) 0.003 52 (16.4) 
  Ertapenem 3 (3.3) 1 (0.4) 0.070 4 (1.3) 
  Epinephrine 9 (10.0) 44 (19.3) 0.045 53 (16.7) 
  Hydromorphone 17 (18.9) 62 (27.2) 0.123 79 (24.8) 
  Lorazepam 28 (31.1) 41 (18.0) 0.016 69 (21.7) 
  Midazolam 35 (38.9) 122 (53.5) 0.019 157 (49.4) 
  Milrinone 1 (1.1) 25 (11.0) 0.002 26 (8.2) 
  Norepinephrine 42 (46.7) 88 (38.6) 0.233 130 (40.9) 
  Phenylephrine 19 (21.1) 57 (25.0) 0.464 76 (23.9) 
  Rocuronium 14 (15.6) 61 (26.8) 0.034 75 (23.6) 
  Sodium Chloride 65 (72.2) 185 (81.1) 0.081 250 (78.6) 
  Vasopressin 20 (22.2) 59 (25.9) 0.497 79 (24.8) 
  Neuromuscular 
blockers 

17 (18.9) 64 (28.1) 0.091 81 (25.5) 

  Vasopressors 46 (51.1) 107 (46.9) 0.501 153 (48.1) 
  Steroids 25 (27.8) 72 (31.6) 0.507 97 (30.5) 
  Benzodiazepines 53 (58.9) 140 (61.4) 0.679 193 (60.7) 
  Inotropes 12 (13.3) 62 (27.2) 0.008 74 (23.3) 

MRC-ICU at 24 
hours of ICU 
admission 

19.9 ± 10.0 21.8 ± 10.7 0.153 21.3 ± 10.5 

MRC-ICU at time of 
intubation 

17.9 ± 10.7 22.6±15.0 0.002 21.3 ± 14.1 

MRC-ICU at 24 
hours after intubation 

18.6 ± 10.1 17.6±10.7 0.464 17.9 ± 10.5 

  MRC-ICU at 24 hours after ICU admission 
          <10 12 (13.3) 28 (12.3) 0.799 40 (12.6) 
          ≥10 78 (86.7) 200 (87.7) 278 (87.4) 
  MRC-ICU at time of intubation 
          <10 21 (23.3) 52 (22.8) 0.920 73 (23.0) 
          ≥10 69 (76.7) 176 (77.2) 245 (77.0) 
  MRC-ICU at 24 hours after intubation 
          <10 18 (20.0) 62 (27.2) 0.183 80 (25.2) 
          ≥10 72 (80.0) 166 (72.8) 238 (74.8) 
Flowsheet and laboratory values at time of intubation  
  Duration of support devices before intubation (HFNC, BiPAP, CPAP)  
  1 day 10 (58.8) 21 (70.0) 0.038 31 (66.0) 
  2 days 1 (5.9) 1 (3.3) 2 (4.3) 
  3 days 1 (5.9) 5 (16.7) 6 (12.8) 
  ≥ 4 days  5 (29.4) 3 (10.0) 8 (17.0) 
  Elevated pulse n/N 
(%) 

13/37 (22.2) 22/77 (28.6) 0.687 35/114 (30.7) 

  HCO3 < 20 mEq/L 
n/N (%) 

19/52 (53.3) 31/110 (18.4) 0.372 50/116 (30.9) 
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  PaCO2 36.8 ± 6.3 40.4 ± 10.0 0.002 39.2 ± 9.1 
  FiO2 55.1 ± 22.3 46.7 ± 17.1 0.053 49.3 ± 19.2 

PaO2 / FiO2 median 
(interquartile range 
(IQR)) 

320 (216-446) 307 (237-435) 0.434 308 (234-438) 

PEEP 6.6 ± 2.3 7.4 ± 3.1 0.002 6.9 ± 2.6 
Minute Ventilation 6.9 ± 3.4 7.0 ± 3.9 0.779 7.0 ± 3.7 
PaCO2 * Minute 
Ventilation 

255.2 ± 131.4 285.1 ± 192.0 0.346 272.3 ± 168.6 

Fluid overload n/N 
(%) 

17/90 (57.8) 23/227 (19.3) 0.054 40/317 (12.6) 

Data are presented as n (%) or mean ± std unless otherwise stated. 
SOFA: sequential organ failure assessment, APACHE II: Acute Physiology and Chronic Health 
Evaluation; ICU: intensive care unit; PEEP: positive end expiratory pressure; SIMV: synchronized 
intermittent mandatory ventilation  
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Table 2. Performance of prolonged duration of mechanical ventilation prediction models 
 

  AUROC Accuracy Sensitivity Specificity PPV NPV
Traditional regression 
Base  0.67 (0.39, 0.94) 0.78 (0.60, 0.90) 0.57 0.84 0.60 0.88
Base + MRC-ICU 0.73 (0.45, 0.99) 0.85 (0.68, 0.95) 0.63 0.91 0.68 0.90
Base + MRC-ICU 
(categorical)  

0.66 (0.39,0.92) 0.72 (0.53, 0.86) 0.63 0.74 0.43 0.88

Base + LASSO 
Selected Drugs  

0.74 (0.52, 0.97) 0.83 (0.65, 0.93) 0.57 0.90 0.67 0.88

Base + Selected 
Drugs 
 

0.74 (0.54, 0.94) 0.80 (0.62, 0.92) 
0.71 0.75 0.50 0.91

Base + SOFA  0.65 (0.38, 0.91) 0.73 (0.55, 0.87) 0.60 0.77 0.53 0.88
Base + APACHE II 0.71 (0.46, 0.97) 0.78 (0.61, 0.90) 0.66 0.82 0.64 0.90
Base + MRC-ICU, 
SOFA, APACHE II  

0.75 (0.52, 0.97) 0.76 (0.59, 0.89) 0.77 0.76 0.55 0.93

All Variables 0.63 (0.33, 0.91) 0.78 (0.60, 0.90) 0.40 0.66 0.54 0.90
Traditional regression with variable selection 
Base + MRC-ICU 0.77 (0.51, 1.00) 0.82 (0.64, 0.93) 0.71 0.85 0.60 0.92
Base + MRC-ICU 
(categorical)  

0.72 (0.50,0.94) 0.74 (0.56, 0.87) 0.71 0.74 0.50 0.91

Supervised learning models 
Random Forest  0.78 (0.61, 0.95) 0.75 (0.60, 0.86) 0.77 0.74 0.53 0.90
Support Vector 
Machine 

0.78 (0.62, 0.94) 0.51 (0.36, 0.73) 0.94 0.08 0.73 0.33

XGBoost 0.69 (0.51, 0.87) 0.75 (0.60, 0.86) 0.62 0.80 0.53 0.85
MRC-ICU: Medication regimen complexity-intensive care unit; AUROC: area under the receiver operating 
characteristic; PPV: positive predictive value; NPV: negative predictive value  
Base model included the following variables: duration of support devices prior to intubation, fluid overload in ICU 
stay before first MV, pulse at time of intubation, ventilator parameters in 12-24 hours after intubation (PEEP, FiO2, 
HCO3, minute ventilation), arterial blood gas values in 12-24 hours after intubation (PaCO2, PaO2), PaO2/FiO2 ratio,
PaCO2*Minute Ventilation  
LASSO selected drugs included: bumetanide, clonazepam, dexamethasone, dexmedetomidine, dobutamine, 
ertapenem, lorazepam, norepinephrine   
Selected drugs included: Bumetanide, Chlorothiazide, Clonazepam, Cisatracurium, Dexamethasone, 
Dexmedetomidine, Dobutamine, Dopamine, Ertapenem, Epinephrine, Hydromorphone, Lorazepam, Midazolam, 
Milrinone, Norepinephrine, Phenylephrine, Rocuronium, Sodium Chloride, Vasopressin, Neuromuscular blockers, 
Vasopressors, Steroids, Benzodiazepines, Inotropes 
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Table 3. Summary of studies evaluating prolonged mechanical ventilation   
 

Author (Year) Definition of 
PMV (days) 

Patient 
Population 

Variables significantly 
associated with PMV 

Performance 

Traditional statistical modeling approaches  

Légaré et al. (2001) (31) 
 

>1 
 

Following CABG Stroke 
Re-operation for bleeding 
Perioperative MI 
Unstable angina 
Ejection fraction < 50% 
COPD 
Preoperative renal failure 
Female gender 
Age > 70 

Not reported 

Estenssoro et al. (2005) 
(32) 

>21 Mixed medical-
surgical ICU 

Shock on ICU admission 
Shock present beyond ICU day 3 

Not reported 

Natarajan et al. (2006) 
(33) 

>1 Following on-
pump CABG  
 

Ejection fraction < 40% 
Re-intervention 
CPB duration > 120 min 
Creatinine > 1.2 mg/dl 
Emergency operation 

Not reported 

Agle et al. (2006) (55) 
 

>14 Major torso 
trauma 

Initial 24 hour fluid resuscitation 
Presence of facial fractures  
Age 
Admission PEEP > 10 mmHg 
PaO2/FiO2 ratio < 300 at 24 hours 
Chest AIS score 

AUROC 0.79 

Lei et al. (2009) (56) 
 

>3 Following aortic 
arch surgery with 
deep hypothermic 
circulatory arrest  

CPB duration > 180 min 
Age > 60 
Emergency operation 
Preoperative creatinine 

AUROC 0.83 

Piotto et al. (2012) (57) 
 
 

>2 Following CABG Age 
Chronic kidney disease 
COPD 
CABG associated with other 
procedures 
Clamping time 

Not reported 

Sellares et al. (2012) (30) >7 Respiratory ICU Heart rate > 105 bpm 
PaCO2 > 54 mmHg at the end of 
the first SBT 

Not reported 

Clark et al. (2013) (5) >7 Medical ICU Intubated in the medical ICU 
Heart rate > 110 bpm  
BUN > 25 mg/dL 
pH < 7.25 
Creatinine > 2.0 mg/dL  
HCO3 < 20 mEq/L  

AUROC 0.75 

Totonchi et al. (2014) 
(29) 
 
 

>2 Following open 
heart surgery 

Female gender 
Hypertension 
COPD 
Chronic kidney disease 

Not reported 
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History of endocarditis 
CPB duration 
CABG 
Operation time >4 hrs 
Blood transfusion in OR 
Bleeding 
Inotrope dependency  

Pu et al. (2015) (28) >7 Medical-surgical 
ICU 

Glasgow Coma Scale score 
Hypercapnia at the beginning of 
the first SBT 

Not reported 

Jin et al. (2017) (27) >2 Following Acute 
Type-A Aortic 
Dissection Repair  

Postoperative hyperlactatemia 
Preoperative platelet count  

AUROC 0.76 

Clark et al. (2018) (26) 

 

>14 Medical ICU Intubated in medical ICU 
Heart rate > 110 bpm 
BUN > 25 mg/dL 
pH < 7.25 
Creatinine > 2 mg/dL 
HCO3 < 20 mEq/L  
Acute kidney injury 

AUROC 0.82 

Sharma et al. (2017) (26) >2 Following 
cardiac surgery 
with CPB 

Previous cardiac surgery 
Low LVEF 
Cardiogenic shock 
Surgery involving repair of 
congenital heart disease 
CPB duration > 120 min 

AUROC 0.78 

Mori et al. (2020) (10) >14 Age >75 Diabetic co-morbidities 
Diagnoses of the circulatory 
system on admission 

Not reported 

Machine learning model approaches 

Author (Year) Definition of 
PMV (days) 

Patient 
Population 

Machine learning methodology Performance 

Wise et al. (2017) (58) >1 Following CABG Artificial Neural Network AUROC 0.73 

Parreco et al. (2018) (59) >7 Surgical and 
medical ICU 

Gradient-Boosted Decision Tree 
Algorithm 

AUROC 0.82 

Abujaber et al. (2020) 
(39) 

>10 Traumatic brain 
injury 

Support Vector Model AUROC 0.84 

Lin et al. (2021) (60) >21 Respiratory care 
center 

XGBoost AUROC 0.90 

Li et al. (2022) (41) 
 

>4 Congestive heart 
failure 

CatBoost AUROC 0.79 

PMV: prolonged mechanical ventilation; AUROC: area under the receiver operating characteristic; CABG: 
coronary artery bypass graft; MI: myocardial infarction; COPD: chronic obstructive pulmonary disease; ICU: 
intensive care unit; CPB: cardiopulmonary bypass; PEEP: partial pressure of carbon dioxide; SBT: spontaneous 
breathing trial; AIS: Abbreviated Injury Scale; PaCO2: partial pressure of carbon dioxide; PaO2: partial pressure 
of oxygen; FiO2: fraction of inspired oxygen; BUN: blood urea nitrogen; OR: operating room; LVEF: left 
ventricular ejection fraction 
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Figure 1. Mean AUROC curve comparing prediction models for prolonged duration of 
mechanical ventilation  
 

  

Figure 5.1 Regression models I Figure 5.2 Regression models II

Figure 5.3 Regression models with variable selection Figure 5.4 Supervised learning models
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Figure 2. Feature importance graph using Random Forest 
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