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Abstract 
Telomeres protect the ends of chromosomes from damage, and genetic regulation of their 
length is associated with human disease and ageing. We developed a joint telomere 
length (TL) metric, combining both qPCR and whole genome sequencing (WGS) 
measurements across 462,675 UK Biobank participants that increased our ability to 5 
capture TL heritability by 36% (h2mean=0.058 to h2combined=0.079) and improved predictions 
of age. Exome-wide rare variant (minor allele frequency<0.001) and gene-level collapsing 
association studies identified 53 variants and 22 genes significantly associated with TL 
that included allelic series in ACD and RTEL1. Five of the 31 rare-variant TL associated 
genes (16%) were also known drivers of clonal haematopoiesis (CH), prompting somatic 10 
variant analyses. Stratifying by CH clone size, we uncovered novel gene-specific 
associations with TL, including lengthened telomeres in individuals with large SRSF2-
mutant clones, in contrast to the progressive telomere shortening observed with 
increasing clonal expansions driven by other CH genes. Our findings demonstrate the 
impact of rare variants on TL with larger effects in genes associated with CH, a precursor 15 
of myeloid cancers and several other non-malignant human diseases. Telomere biology 
is likely to be an important focus for the prevention and treatment of these conditions. 
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Introduction 
 
Telomeres are repetitive nucleotide sequences that protect the ends of chromosomes 

from degradation and are thus considered crucial for maintaining genomic integrity. In 

somatically dividing cells, telomeres shorten with each replication cycle until they reach a 5 

critical length that triggers cellular senescence and ultimately cell death (Rossiello et al. 

2022; Harley, Futcher, and Greider 1990). Telomere length (TL) demonstrates 

considerable interindividual variability and is heritable (Njajou et al. 2007; Broer et al. 

2013). Rare germline mutations linked to telomere shortening have been associated with 

severe diseases, including premature aging syndromes, interstitial lung disease, and 10 

immunodeficiencies (Duckworth et al. 2021; Bousfiha et al. 2020; Savage and Alter 2009). 

Whereas, more subtle reductions in TL have been associated with common, age-related 

diseases, such as coronary artery disease (Codd et al. 2021). Although TL is heritable, 

our current understanding of the genetic determinants of TL has been largely limited to 

the study of common variants. A greater understanding of the genetic determinants of TL 15 

could inform disease pathogenesis and expedite the development of novel therapeutic 

strategies.  

 High throughput TL assays have been developed to understand telomere biology 

at the population level. One such method uses quantitative PCR (qPCR) to measure the 

relative abundance of telomere sequences compared to a reference sequence (Cawthon 20 

2009). More recently introduced in silico methods, such as TelSeq, measure average 

telomere length from whole genome sequencing data (Ding et al. 2014). The advances 

in genome sequencing of population-scale biobanks provides unprecedented 

opportunities to leverage these approaches to study the genetic architecture of TL and, 

ultimately its impact on human health at a population scale. In a recent study of over 25 
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400,000 UK Biobank (UKB) participants, a microarray-based genome-wide association 

study (GWAS) identified over 100 independent common variant loci associated with 

qPCR TL measurements (Codd et al. 2021). By combining these measurements with 

whole exome sequencing (WES) data across 418,401 individuals Kessler et al identified 

rare variant associations for several previously established genes (Kessler et al. 2022). 5 

Another study applied the TelSeq algorithm to estimate TL from the whole genome 

sequences of 109,122  multi-ancestry individuals from the TopMed program and identified 

thirty-six associated loci, which largely overlap those identified by qPCR based measures 

(Taub et al. 2022).  

 Here, we leverage a larger sample size of WGS data from 490,560 multi-ancestry 10 

UKB participants to study the genetic architecture of TL, including contributions from both 

rare and common variants. Moreover, in comparing qPCR- and WGS-derived TL 

estimates in the same individuals, we observe that combining both measurements into a 

single statistical metric significantly improves the accuracy of TL estimates and thus 

empowers discovery potential.  15 

 

Results 

Combining qPCR and WGS telomere length estimates increases heritability 

Of the 490,560 UKB participants with whole-genome sequencing data, there were 

462,675 UK Biobank samples (94%) that met our QC thresholds (Methods) and for whom 20 

qPCR TL estimates were available (Supplementary Table 1 and Supplementary Fig. 

1). As an orthogonal method for estimating TL, we also used TelSeq, which estimates 

telomere length from the whole-genome sequencing (WGS) data (Ding et al. 2014).  

 



 

5 
 

As expected, TL estimated from TelSeq and qPCR were both significantly 

associated with age, sex, and ancestry (Supplementary Fig. 2). Interestingly, the qPCR- 

and adjusted TelSeq-TL estimates were only moderately correlated (r2=0.16; Fig. 1A). In 

a joint model, the association between each of the metrics and age remained highly 

significant (Supplementary Table 2), suggesting that each captures orthogonal 5 

information. We derived a PCA linear combination (Aschard et al. 2014) incorporating 

both qPCR and adjusted TelSeq (Fig. 1B, Supplementary Figs. 3 & 4, Supplementary 

Table 3). Using the first principal component, PC1, demonstrated a significant (P < 1 x 

10-16) performance gain in predicting age compared to models employing either of the 

individual measures (Supplementary Fig. 3).  10 

We first sought to determine common variants (MAF > 0.1%) associated with TL, 

focusing on 438,359 Non-Finnish European (NFE) ancestry individuals with array-based 

imputed genotypes available (Supplementary Table 1). Using REGENIE (Mbatchou et 

al. 2021), we performed a common-variant genome-wide association study (GWAS) of 

TL estimates derived from either qPCR, WGS, PC1, or PC2 (Fig 1C, methods) replicating 15 

all signals from Codd et al. (Supplementary Note). LD-score regression (Bulik-Sullivan 

et al. 2015) revealed that the PC1 vector had the highest heritability (h2=0.079, S.E +/-

0.009, Supplementary Table, 4), suggesting the combined TL metric explains more TL 

variance due to genetic variation than either qPCR or TelSeq alone. 

We undertook single variant fine-mapping for all significant (p<5 x 10-8) loci 20 

(excluding the major histocompatibility region) in the qPCR, TelSeq, and PC1 GWAS. 

The PC1 TL score resulted in smaller 95% credible SNP sets (median=9) compared with 

the separate qPCR and WGS GWASs (median=12 and 15, respectively), highlighting that 

PC1 can more effectively highlight potentially causal variants. In total for PC1 we 
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identified 162 significant (p<5 x 10-8) loci (Supplementary Tables 5, 6), 39 of which were 

not within 1Mb of a previously implicated locus. Associations at known loci were also 

stronger with PC1 compared with qPCR or TelSeq, further demonstrating the value of the 

combined metric (Supplementary Figure 5). 

There were also ten significant loci identified in the PC2 GWAS (Supplementary 5 

Tables 5, 6), most of which were driven exclusively by a single underlying TL metric 

(Supplementary Figure 6). Moreover, 70% of these associations (n=7/10; 3q29:LMLN, 

5p15.33:PLEKHG4B, 6p25.3:DUSP22, 7q36.3:VIPR2, 16q24.3:PRDM7, 

18q23:PARD6G and 20p13:DEFB125) were peri-telomeric (< 2Mb). There was one 

qPCR association at 11p15.4 (rs1609812) proximal to HBB (P=8.3 x 10-60 beta=-0.05 [-10 

0.05 to -0.04]), which is used as the reference gene to normalise the qPCR TL assay and 

has been previously thought to be driven by artefactual technical signals (Codd et al. 

2021). Consistent with this being a putative qPCR TL artifact, this locus was not significant 

in the TelSeq GWAS (P=0.85, beta=0.005 [0.005 to 0.006], Supplementary Fig. 7). 

Collectively, these results demonstrate the superior performance of a linear combination 15 

of TL metrics to detect associations and further highlight PC2’s potential to flag spurious 

associations.  
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Figure 1. Combining telomere length metrics improves genetic discovery. (A) 
Correlation between inverse normal transformed qPCR and WGS TelSeq telomere length 
metrics. (B) Biplot for PCA analysis of qPCR and TelSeq TL metrics. (C) Manhattan plot of 
common variant analysis of PC1, PC2, qPCR and TelSeq in NFE ancestral group, dotted 5 
line indicates P=5 x 10-8. For clarity y-axes are truncated at p<1 x 10-40. 

 

Rare variant analysis of telomere length reveals allelic heterogeneity 
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We observe that rare variants have demonstrably larger effects on TL than common 

variants and have also been implicated in numerous telomere-related diseases. Here, we 

focused on protein-coding variants observed in whole-genome sequencing data from 

439,491 UK Biobank participants of Non-Finnish European (NFE) ancestry to examine 

the effect of rare variation on PC-derived TL estimates. We performed both variant-level 5 

(exome wide association study, ExWAS) and gene-level (rare variant aggregated 

collapsing analyses) as previously described (Wang et al. 2021). We observed high 

concordance (r2 = 0.99) between the effect sizes for the common variants included in the 

ExWAS and our separate common variant GWAS (microarray genotyping) analyses. 

Genomic inflation was also well-controlled with a median λGC=1.08 (Supplementary 10 

Figure 8).  

We restricted our downstream analyses of the ExWAS to rare (MAF<0.1%) exonic 

variants that were too rare to be well-represented in the GWAS. Based on our previously 

identified significance threshold of p≤1x10-8(Wang et al. 2021), there were 46 significant 

rare variant germline associations across 17 distinct genes (Fig. 2a, Supplementary 15 

Table 7) for PC1 after excluding variants that were also significantly associated with PC2 

(Supplementary Figure 9). Although all of the variants except 9-136496196-CAG-C 

(NOTCH1.p.Pro2514fs P=3.7 x 10-12 beta=-2.75 [-3.52 to -1.97]) and 8-84862338-A-G 

(RALYL.p.Ala165Ala P=1.5 x 10-10 beta=2.19 [1.52 to 2.86]) overlapped with a previously 

identified GWAS locus, the absolute effect sizes observed for the ExWAS analyses were 20 

generally significantly greater than that previously reported for the same loci. Of the 46 

rare variant germline signals, 24% (11/46) were only significantly associated with PC1 

and not underlying qPCR or TelSeq measurements. 
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 Thirty-two germline rare variants were associated with longer TL and clustered in 

components of the CST (CTC1) and Shelterin (ACD, TERF1, TINF2 POT1) complexes, 

both of which function to protect telomere ends and regulate interactions with telomerase. 

Of these, eight were protein truncating variants (PTVs) in CTC1, POT1, TINF2, and 

TERF1, all of which are genes implicated in telomere-associated diseases. Interestingly 5 

the PTV in CTC1 (17-8237439-GCTTT-G p.Lys242fs P=2.3 x 10-19 beta=0.48 [0.37 to 

0.58]) has been implicated in compound heterozygous recessive cerebroretinal 

microangiopathy with calcifications and cysts (CMCC, also known as Coats plus 

syndrome), which is associated with shorter telomeres (Anderson et al. 2012; Gu and 

Chang 2013). Our results indicate that outside of the context of nullizygosity this PTV is 10 

associated with longer TL, concordant with prior observations of CTC1 depletion 

promoting excessive telomerase activity (L.-Y. Chen, Redon, and Lingner 2012).  We also 

observed three PTVs associated with TL in POT1, which is associated with Familial 

Glioma, Familial Melanoma, cardiac angiosarcoma and chronic lymphocytic leukaemia 

(CLL) (DeBoy et al. 2023; Bainbridge et al. 2015; Speedy et al. 2016; Calvete et al. 2015; 15 

Shi et al. 2014).  
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Figure 2.  Rare variant analysis of telomere length. (A). ExWAS analysis of PC1 TL, 
only rare germline variants significant (P ≤ 1x10-8) for PC1 and not PC2 are shown, for 
clarity the variant with the largest effect for a gene is labelled, variants with opposing effect 
size in the same gene are starred and triangles indicate HGMD pathogenic variants. (B) 5 
Collapsing analysis of PC1, the most significant (p<=1x10-8) association for a gene over all 
qualifying variants models (Supplementary Table 9) is shown, associations driven by 
putative somatic variants are excluded.  

 

Remarkably, the remaining 14 rare non-synonymous germline variants associated 10 

with shorter TL and were clustered in genes previously associated with autosomal 

dominant Dyskeratosis Congenita and/or pulmonary fibrosis (ACD[OMIM:609377], 

PARN[OMIM:604212], RTEL1[OMIM:608833], NAF1[OMIM:620365] and 

TERT[OMIM:613989]). In both ACD and RTEL1, we observed independent rare non-

synonymous variants with opposing effects indicating a possible allelic series in these two 15 

genes. For example, in ACD two rare missense variants clustering within the POT1 
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binding domain (16-67659046-C-A p.Arg259Leu and 16-67659234-T-C p.Asn246Ser) 

were associated with increased TL and one (16-67660036-C-T p.Asp120Asn) in the N-

terminal oligonucleotide/oligosaccharide-binding (OB) domain that acted in the opposite 

direction (Table 1). ACD encodes TPP1, a key component of the 6 protein shelterin 

complex. Consistent with our results, a recent mutagenesis revealed that mutations that 5 

disrupt POT1 binding promote ectopic initiation of ATR- and ATM-mediated DNA damage 

repair programs, resulting in longer telomeres (Grill et al. 2021). Reciprocally, mutations 

within the N-terminal OB are associated with disrupted telomerase recruitment leading to 

progressively shorter TL (Grill et al. 2021), mirroring the effect of the 16-67660036-C-T 

variant we detected in this region.  10 

Although less frequent than common variants, rare variants can still be correlated 

due to linkage disequilibrium (LD). To resolve signal independence among the rare 

variants, we performed conditional analyses (methods) and found that one of our signals: 

SOGA1 (20-36810011-C-T p.Ala852Thr P=1.9 x 10-32 beta=0.46 [0.38 to 0.54])  is likely 

due to LD with a SAMHD1 20-36898455-C-G signal (Supplementary Table 8). SOGA1 15 

is thus unlikely to constitute a novel TL related gene. 

 

Rare variant gene-level collapsing analysis  

We performed gene-level collapsing analyses to identify genes associated with telomere 

length through the aggregated presence of variants too rare and thus underpowered to 20 

be individually discovered in ExWAS analyses. As previously described, we employed 

ten-qualifying variant (QV) models (Wang et al. 2021)(Supplementary Table 9), and 

association statistics were well-calibrated with a median λGC=1.07  (Supplementary Fig. 

10). After filtering putative somatic signals we identified 18 genes significantly (p≤1x10-8) 
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associated with PC1 TL, 3 (17%) of which were uniquely identified in PC1 and not the 

individual qPCR or TelSeq statistics (Fig. 2b, Supplementary Table 10, Supplementary 

Fig. 11).  

Fourteen of the gene-level signals arose from the rare protein-truncating “PTV” QV 

model. Five of these genes were associated with telomere shortening (ATM, RTEL1, 5 

PARN, TERT and NAF1) and all five have been implicated in known telomere-related 

clinical diseases, including pulmonary fibrosis (IPF) (Stanley et al. 2016; Stuart et al. 

2015; Dhindsa et al. 2021) and Dyskeratosis congenita (Revy, Kannengiesser, and 

Bertuch 2023). The remaining nine PTV collapsing model signals associated with longer 

TL. Seven of these nine genes have established biological roles in protection from TL 10 

attrition (POT1, TERF1, TFIN2, CTC1 and STN1), DNA-repair (DCLRE1B; formerly 

APOLLO), and thymidine nucleotide metabolism (SAMHD1) (Mannherz and Agarwal 

2023)).  

Two genes significantly associated with longer TLs in the rare PTV collapsing 

model have not been previously described in increased telomere length biology. G3BP1 15 

(P=1.2 x 10-9 beta=0.84 [0.57 to 1.11]), encodes an RNA-binding protein involved in RNA 

metabolism regulation and stress granule formation.(Ge et al. 2022)  It is also known to 

bind guanine quadruplexes (G quadruplexes), which are a substrate for human 

telomerase(Bryan 2020; Moye et al. 2015). The other gene, ZNF451 (P=8.1 x 10-9 

beta=0.30 [0.20 to 0.41]), encodes a Zinc finger protein that acts as a SUMO ligase and 20 

a DNA repair factor that controls cellular responses to TOP2 damage (Park et al. 2023).  

There were several other novel significant associations that arose in the QV 

models that included protein-truncating variant effects alongside putatively damaging 



 

13 
 

missense variants. TYMS (flexdmg P=3.1 x 10-12 beta=-0.34 [-0.44 to -0.25]), which has 

also been observed as a hit in a CRISPR-Cas9 screen for telomere length (Mannherz 

and Agarwal 2023) and has been causally associated with Dyskeratosis congenita 

(Tummala et al. 2022), was associated with reduced telomere length. WRAP53 (flexdmg 

P=5.9 x 10-9 beta=-0.14 [-0.19 to -0.09]), which encodes a component of the telomerase 5 

holoenzyme complex, was also associated with decreased telomere length. The ZSWIM1 

(UR, P=5.0 x 10-9, beta=0.17 [0.11 to 0.23]) and ZSWIM3 (flexnonsynmtr, P=7.4 x 10-11, 

beta=0.55 [0.38 to 0.71]) zinc finger proteins were associated with increased telomere 

length. ZSWIM1, which was also an ExWAS hit, and ZSWIM3 are in proximity with one 

another, sitting within a peri-telomeric GWAS locus. We thus performed a leave-one-out 10 

analysis (methods), which showed that no individual variants in ZWIM1 and/or ZSWIM3 

were responsible for driving either gene-level association (Supplementary Fig. 12). 

Moreover, conditional analysis indicated that both ZSWIM1 and ZSWIM3 associations 

were independent of each other and of the 20-45884012-G-A ZSWIM1 missense variant 

identified from our ExWAS analysis. Altogether, the rare-variant aggregated gene-level 15 

collapsing analysis framework uncovered several loci that were not detectable in the 

variant-level analyses. 

Multi-ancestry rare-variant analysis 

Including individuals of non-European ancestries is critical for health equity and bolstering 

gene discovery (Petrovski and Goldstein 2016; Ben-Eghan et al. 2020). Therefore, we 20 

performed additional GWAS, ExWAS, and collapsing analysis on PC1 in five additional 

UK Biobank ancestral groups (AMR, EAS, SAS, ASJ and AFR; Supplementary Table 

1). The ancestry GWAS revealed a single locus in the AFR ancestry cohort that was not 
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detected in the NFE analyses (rs146660284, PAFR=2.5 x 10-8, betaAFR=0.67 [0.43 to 0.90]) 

and there were no non-NFE ancestry-specific rare variant associations, likely due to the 

substantially smaller sample sizes of these populations in the UK Biobank. A fixed effect 

meta-analyses was then performed to combine results across ancestral strata, which 

detected an additional 4 loci (Supplementary Table 11) through the GWAS and one 5 

further rare protein-coding variant missense association in RTEL1 (20-63692865-C-G 

p.Gln682Glu  P=7.4 x 10-9 beta=-0.77 [-1.03 to -0.51]). For the collapsing meta-analysis, 

no new study-wide significant genes were identified; however, there was a consistent 

improvement in observed statistical power indicating that future cross ancestry 

sequencing studies are likely to identify further causal gene TL associations 10 

(Supplementary Fig. 13). 

 

Association between telomere length and clonal haematopoiesis 

Telomere length has been shown to be causally associated with clonal haematopoiesis 

(CH) (Nakao et al. 2022). In our rare variant analyses, we identified several TL 15 

associations with five known CH driver genes (ExWAS: CALR and JAK2, Collapsing: 

CALR, TET2, ASXL1, and PPM1D) (Supplementary Tables 7 and 10), which we 

reasoned are likely driven by somatic events rather than germline inherited variation 

(Supplementary Fig. 14). To investigate this further, we performed somatic variant 

calling in 15 established CH and myeloid cancer driver genes (Supplementary Table 12) 20 

using the complementary UK Biobank higher coverage exome sequencing data (Dhindsa 

et al. 2022). Using these somatic CH calls, and adjusting for age, sex and smoking status, 

we performed collapsing analyses with our PC1 metric and replicated the previously 

described association between overall CH and shorter TL (Nakao et al. 2022) (Figure 
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3A). Analysing CH driver genes individually, we found that most followed the same 

pattern of association with shorter TL, including novel observations for SF3B1 (P=5.8 x 

10-12, beta=-0.46 [-0.59 to -0.33]) and PRPF8 (P=0.0028, beta=-0.40 [-0.66 to -0.14]). 

Conversely, we discovered that CH driven by mutations in DNMT3A was significantly 

associated with longer TL (P=5.81 x 10-14, beta=0.07 [0.05 to 0.08]) (Figure 3A, 5 

Supplementary Table 13).  

To investigate these associations further, and particularly to distinguish cause from 

effect in the context of TL measures ascertained from bulk blood, we performed 

subsequent analyses stratifying by the size of the mutant CH clone (Supplementary 

Table 12). Specifically, we reasoned that in individuals with small CH clones (eg. Variant 10 

Allele Fraction (VAF)<5%), most blood leukocytes would derive from wild-type (non-CH) 

cells and therefore reflect background TL. In comparison, in individuals with larger CH 

clones, average TL across blood cells would increasingly reflect TL within the mutant CH 

clone itself.  

Small clones (e.g. VAF 3 – 5 %) were associated with longer TL for overall CH 15 

(P=4.8 x 10-4, beta=0.08 [0.04 to 0.13]) and DNMT3A-mutant CH (P=1.0 x 10-5, beta=0.12 

[0.07 to 0.18), consistent with previous reports that longer TL promotes CH acquisition 

(Figure 3B, Supplementary Table 14) (Nakao et al. 2022; DeBoy et al. 2023). However, 

intriguingly, we discovered the inverse association for some other CH drivers, where small 

clones were associated with shorter TL, suggesting that acquisition of certain CH 20 

subtypes are promoted by shorter telomeres. A notable example was PPM1D, consistent 

with reports of high prevalence of PPM1D-mutant CH in individuals with inherited short 

telomere disorders (Ferrer, Mangaonkar, and Patnaik 2022).  
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Also aligning with previous reports, for CH overall and for most individual CH driver 

genes, we observed progressive shortening of TL with increasing clone size (Any P=1.1 

x 10-11 beta=-0.42 [-0.54 to -0.30]), likely reflecting accelerated telomere attrition with cell 

division in expanding clones (Supplementary Table 15). However, a striking exception 

to this pattern was observed in SRSF2-mutant CH, in which large clones were 5 

unexpectedly associated with longer TL (P=5.37 x 10-6 beta=1.34 [0.77 to 1.90]), 

suggesting that SRSF2 mutations may mediate telomere elongation in CH. 

 

 

Figure 3 .(A) Collapsing analysis of somatic variants in select CH genes with TL PC1 10 
horizontal bars indicate 95% confidence intervals and are labelled with P-values. (B) 
Collapsing analysis of somatic variants in CH genes stratified by VAF intervals (colours), 
associations not reaching significance are shown with dashed horizontal 95% CI bars. ‘Any’ 
indicates an overall analysis of the selected CH genes. 

 15 
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Discussion 

This study of 462,675 multi-ancestry individuals presents the most extensive genetic 

interrogation of TL to date. Importantly, we discovered that qPCR- and WGS-derived 

estimates of TL capture orthogonal data. Combining these metrics via PCA not only 

enhanced downstream analyses, but also allowed us to discriminate artefactual signals 5 

(i.e., associations with PC2). This has important implications for future population-based 

studies, as it suggests that, where possible, the most robust assessments should 

leverage both metrics.  

Through both common and rare variant-oriented studies, we described several 

novel TL loci that give insight into telomere biology. For example, we uncovered 10 

antagonistic allelic heterogeneity in ACD and RTEL1, highlighting the complex role for 

rare variants in telomere homeostasis and their role in disease. Moreover, the disease 

associations with both shorter and longer TL underscores the challenge of therapy 

development, where perturbation of balanced antagonistic effects might lead to significant 

off-target effects. We also identified a previously undescribed association between PTVs 15 

in G3BP1 and longer TL. While G3BP1 is involved in stress granule formation, its role in 

mediating TL is currently unclear and will require functional work in future studies.  

Previous studies (Kessler et al. 2022; Nakao et al. 2022) have highlighted a causal, 

bi-directional relationship between TL and CH. Here, we uncovered novel driver gene-

specific links between CH and TL, providing new insights into the mechanisms driving 20 

clonal expansion. Longer telomeres predispose to DNMT3A-mutant CH, perhaps by 

extending cellular replicative potential, whereas this is not the case for some other CH 

driver genes, including PPM1D. It is notable that PPM1D-mutant CH is known to be 

particularly enriched among individuals with inherited short telomere disorders(Ferrer, 
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Mangaonkar, and Patnaik 2022) and in individuals exposed to DNA-damaging 

chemotherapies that appear to shorten telomeres(Ishibashi and Lippard 1998; Saker et 

al. 2018; Kahn et al. 2018). Taken together, we hypothesise that PPM1D mutations are 

specifically advantageous to blood stem cells in the context of critically short telomeres, 

perhaps by conferring resistance to the replicative senescence that would ordinarily occur 5 

in this setting.  

It is also notable that mutations in particular splicing genes, such as SRSF2, have 

been shown to drive CH exclusively in older individuals (Fabre et al. 2022), by which time 

telomeres have naturally shortened with age. The discovery that telomeres in SRSF2-

mutant CH do not appear to shorten as clones expand, or even to elongate, contrasts 10 

starkly with the accelerated attrition of telomeres with clonal expansion driven by other 

CH genes. The possibility that SRSF2 mutations confer advantage through telomere 

modulation offers a novel explanation for the expansion of these mutant clones 

specifically in older age. In summary, our findings support a key role for telomere 

maintenance in the development of CH, via mechanisms specific to the mutant gene 15 

driving clonal expansion. Since CH is a causal risk factor for progression to myeloid 

cancers and for a range of non-haematologic diseases, with larger CH clones conferring 

higher risks (Weeks et al. 2023; Jaiswal 2020), therapeutic modulation of telomere biology 

might be an important focus as strategies for prevention and treatment of CH and its 

sequelae. 20 
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Methods 

Cohort description 

Whole genome sequences (WGS) were available for 490,560 UK Biobank participants. 

490,503 (99.99%) of sequences remained after removing contaminated sequences 

(verifybamid_freemix >= 0.04) using VerifyBAMID (Jun et al. 2012) or that had low 5 

CCDS coverage (<94.5% of CCDS r22 bases covered with ≥10-fold coverage). A 

further 106 sequences were removed after being identified as sample duplicates with 

multiple birth events. For the remaining 490,397 WGS we used KING(Manichaikul et al. 

2010) to identify individuals with first-degree relatives, which we then randomly pruned 

such there were no pairs of samples with a kinship coefficient > 0.354 to leave 490,216 10 

(99.93%) WGS. We used peddy(Pedersen and Quinlan 2017) and 1000genomes data 

to classify ancestries (peddy_prob>=0.9) using the gnomAD classifier(S. Chen et al. 

2022) to subdivide EUR into individuals of non-Finnish (NFE) and Ashkenazi Jewish 

(ASJ) ancestries. We performed additional QC on NFE ancestry samples using peddy-

derived principal components (PC) removing samples that fell outside of 4 standard 15 

deviations from the mean over the first four PCs. Finally, we removed sex-discordant 

samples to leave 482,848 (98.4%) of samples for analysis. Final cohort sizes stratified 

by ancestry are indicated in Supplementary Table 1. 

 

Whole Genome Sequencing processing and variant calling. 20 

Whole-genome sequencing (WGS) data of the UKB participants were generated by 

deCODE Genetics and the Wellcome Trust Sanger Institute as part of a public-private 

partnership involving AstraZeneca, Amgen, GlaxoSmithKline, Johnson & Johnson, 
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Wellcome Trust Sanger, UK Research and Innovation, and the UKB. These individuals 

were pseudo randomly selected from the set of UKB participants. The WGS sequencing 

methods have been previously described (Halldorsson et al. 2022). Briefly, genomic DNA 

underwent paired-end sequencing on Illumina NovaSeq6000 instruments with a read 

length of 2×151 and an average coverage of 32.5x. Conversion of sequencing data in 5 

BCL format to FASTQ format and the assignments of paired-end sequence reads to 

samples were based on 10-base barcodes, using bcl2fastq v2.19.0. Initial quality control 

was performed by deCODE and Wellcome Sanger, which included sex discordance, 

contamination, unresolved duplicate sequences, and discordance with microarray 

genotyping data checks. 10 

UK Biobank genomes were processed at AstraZeneca using the provided CRAM 

format files. A custom-built Amazon Web Services (AWS) cloud compute platform running 

Illumina DRAGEN Bio-IT Platform Germline Pipeline v3.7.8 was used to align the reads 

to the GRCh38 genome reference and to call small variants, including on the 

mitochondrial genome where a continuous allele frequency model is used; a single 15 

alternate allele is considered as a candidate variant and an allele fraction is estimated for 

emitted variants. All PASS variants emitted had a confidence score (LOD) above the 

default of 6.3. Variants were annotated using SnpEff v4.3(Cingolani et al. 2012) against 

Ensembl Build 38.92(Zerbino et al. 2018). 

 20 

Whole-Exome Sequencing 

Full details of the whole exome sequencing and subsequent variant calling and annotation 

of the UKB cohort are described fully in Wang et al (Wang et al. 2021). Briefly, genomic 

DNA underwent paired-end 75-bp whole-exome sequencing at Regeneron 
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Pharmaceuticals using the IDT xGen v1 capture kit on the NovaSeq6000 platform. Reads 

were aligned to GRCh38 and small indels and SNVs called using running Illumina 

DRAGEN Bio-IT Plat-form Germline Pipeline v3.0.7. The resultant catalogue of variants 

was annotated using snpEFF v4.3(Cingolani et al. 2012), Ensembl v38.92(Zerbino et al. 

2018), REVEL(Ioannidis et al. 2016), and MTR(Traynelis et al. 2017) scores.  5 

 

Estimating telomere length from WGS data 

We used TelSeq (Ding et al. 2014) v0.0.2 to estimate telomere length using whole 

genome sequencing data in 482,848 UKB individuals. We used readlength (-r) 150 and 

kmer size (-k) 10 to match the proportion threshold (40%) for a read to be classified as of 10 

telomeric origin as described in Ding et al.  

 

Correlation analysis 

In total 462,675 samples had TL estimates from both TelSeq and qPCR methods and 

pairwise Pearson correlation was assessed using the R `cor` function. To assess the 15 

contribution and degree of collinearity between Telseq and qPCR methods we fit the 

following model linear model using inverse rank normal transformed age, TelSeq and 

qPCR (adjusted T/S ratio - UKB field 22191)   

age ~ TLTelSeq + TLqPCR + sex 
 20 
We then used the R package olsrr (v0.5.3) to compute variance inflation factors (VIF) for 

each of the predictors, finding a mean VIF of 1.125 indicating no evidence of collinearity. 

Overall removing TLTelSeq or TLqPCR from the model reduced R2 by 0.10 and 0.14 

respectively.  

 25 
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WGS TL measurement confounder analysis and adjustment. 

We fit a linear model to NFE ancestry samples, using TelSeq, qPCR TL metrics as 

dependent variables selecting the available (and non-colinear) WGS metrics ‘total read 

count’, ‘uniformity of coverage’, calling pipeline (deCODE or WTSI), as well as age and 

sex as a biological control. We used the inverse rank normal transform to scale all 5 

variables to facilitate comparison.  

 We found that that all three WGS metrics were significantly associated with TelSeq 

TL measurements (Supplementary Table 3) and so to adjust for this we refit the linear 

model, excluding age and sex and taking the residuals as the adjusted TelSeq TL for 

downstream analyses. 10 

 

PCA TL score 

Across all 461,461 individuals with both TL measurements, we used the R built-in function 

‘prcomp’ to combine the adjusted TelSeq and adjusted T/S Ratio qPCR(UKB Field 22191) 

inverse normal transformed TL estimates. Each PCA consisted of two orthogonal 15 

principal axes whose sample scores were considered separate TL measurements or ‘TL 

scores’ with PC1 and PC2 explaining 70% and 30% of the variance respectively. 

To assess performance for single and combined TL metrics we randomly sampled 

10,000 participants from the full dataset.  We used this training set to fit a simple linear 

model of a given TL metric with age (i.e. age ~ TLmetric). Then using the held-out 20 

participants we used the model to predict age and assessed prediction performance as 

the root mean squared error (RMSE) of the age predictions. To perform cross validation 

and obtain confidence intervals for these performance estimates we performed this 

procedure 100 times sampling with replacement.  
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NFE GWAS 

We used UKB-imputed genotypes (UKB Field 22828) to perform GWAS for qPCR, WGS, 

qPCR+WGS PC1 and qPCR+WGS PC2. Briefly, we performed additional QC only taking 

forward NFE samples with imputed genotypes (INFO>0.7, MAC>5) for which all TL 5 

metrics were available (n=438,359) We used REGENIE (v3.1)(Mbatchou et al. 2021) with 

additional covariates of age, sex, genotyping plate, ancestry PCs 1-10 (as supplied by 

UKB) and WGS sequencing site. We excluded results for SNPs with the following (0.99 

missingness, imputation INFO<0.7, and p.HWE > 1 x 10-5).  We found no evidence of 

genomic inflation (Supplementary Table 4). We selected sentinel SNPs and EUR-only 10 

ancestry summary statistics from Codd et al. for comparison (Supplementary Figure 5). 

 

LD Score regression 

We used ldsc (v1.0.1)(Bulik-Sullivan et al. 2015) to assess heritability and further assess 

possible stratification for each GWAS. Briefly, we used munge_stats.py on the cleaned 15 

summary stats (SNPs removed 0.95 missingness, imputation INFO<0.4 and p.HWE > 

1e-5), then used ldsc.py to estimate h2 using the supplied 1KG Genomes LD score 

matrices. 

 

Defining GWAS loci 20 

To define loci for each phenotype we selected significant variants (p < 5 x 10-8), and 

created regions +/- 1Mb, creating a bespoke region (chr6: 25,500,000 to 34,000,000) for 

HLA. We then merged overlapping regions by phenotype, for each resultant region, where 

the most significant variant was selected as the index, in the case of ties the variant 
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closest to the middle of the region was selected. Finally we used the 

GenomicRanges(Lawrence et al. 2013) `reduce’ function to combine overlapping regions 

regardless of phenotype to define a set of non-redundant loci. 

We used GCTA-COJO(Yang et al. 2012) to perform stepwise model selection to 

define conditionally independent signals for each autosomal locus. Briefly, for each 5 

GWAS we selected summary statistics for all variants (INFO>=0.7) where P<1 x 10-6. 

We then randomly sampled 50,000 individuals from the NFE ancestry cohort for as the 

LD reference using BGENIX and QUTILS (Band and Marchini 2018) to create bgen files 

for these individuals. Finally we used PLINK2(Chang et al. 2015) to convert the resultant 

bgen files to binary PLINK 1.x format suitable for input into GCTA-COJO (gcta 1.94.1 --10 

cojo-slct) using default settings (--cojo-wind 10000; --cojo-p 5e-8; --cojo-collinear 0.9). For 

variants on the X chromosome we applied a similar approach but replaced 50,000 

reference individuals with 50,000 randomly sampled female individuals of NFE ancestry 

and due to increased linkage disequilibrium increased window size to 50Mb(Sidorenko et 

al. 2019). 15 

To assess novelty we compiled a list of significant (p<5e-8) variants from Codd et 

al.(Codd et al. 2021), Kessler et al.(Kessler et al. 2022), Taub et al.(Taub et al. 2022) and 

the GWAS catalogue (Sollis et al. 2023) using ’Telomere Length’ term (EFO_0004505), 

downloaded on 11/07/2023. We then defined 2Mb regions centred on each variant, and 

conservatively defined a locus from our study novel if there was no overlap. 20 

 

Single causal variant fine mapping 

For variant fine-mapping under the single causal variant we selected autosomal variants 

from NFE GWAS and divided these into approximately independent LD blocks using 
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regions defined in (Berisa and Pickrell 2016). We then used the single variant fine-

mapping (Wakefield 2007; Wellcome Trust Case Control Consortium et al. 2012) 

approach as implemented in https://github.com/ollyburren/rCOGS to assign 95% credible 

sets.  

 5 

ExWAS 

We carried out a virtual exome-wide association analysis (ExWAS) of TL using 

WGS genotypes stratified by NFE (n=439,491), SAS (n=9,349), AFR (n=8,162), EAS 

(n=2,362), ASJ (n=1,201), and AMR (675) ancestral groups. Briefly we selected unrelated 

individuals within each ancestry strata with TL and WGS data using the same method as 10 

described in `Sample QC`. We took forward variants that passed the variant QC as 

described in Wang et al. which had a MAC>5. We used a linear model of the form TLPC1~ 

genotype + age + sex + age2 + PeddyPC1:4 + SequenceSite to assess the association of 

genotype with TL using the R ‘PEACOK’ package(Wang et al. 2021). Here genotype was 

coded as either a genotypic (AA=0, AB=1, BB=2), dominant (AA=0, AB=1, BB=1) or 15 

recessive model (AA=0, AB=0, BB=1) where A and B are the reference and alternate 

alleles. For NFE ancestral group we assessed 326,846, 326,846 and 62,716 variants for 

the  dominant, genotypic and recessive models respectively (carrier count >=5). For the 

NFE analyses we report the most significant model-variant pair such that variants P ≤ 

1x10-8 for PC1 and P >1 x 10-8 for PC2 and MAF < 0.1%. For PC1 associated variants 20 

passing QC we reran associations analyses for each variant conditional on other 

significant rare variants within a 2Mb to check for independence.  

 

Collapsing Analysis 
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To assess the contribution of very rare variants we carried out a collapsing burden 

analysis stratified by ancestral groups as per ExWAS analysis, using the method 

described in Wang et al. Briefly, we aggregated qualifying variants based within the unit 

of a gene for each ancestral grouping and use these counts in a linear regression using 

the R ‘PEACOK’ package using the same covariates as for the ExWAS. We defined 10 5 

qualifying variant tests (ST8) that includes a synonymous model as an empirical control. 

We used the empirical modelling of the null distribution from Wang et al. to define a 

genome-wide significant threshold of p<1e-8. In total we assessed 18,930 genes across 

all 10 models. For NFE analyses we report best QV model-gene pair for which P ≤ 1x10-

8 for PC1 and P >1 x 10-8 for PC2. 10 

To assess the leverage of individual variants on collapsing analysis genome-wide 

significant hits we employed a leave-one-out analysis (LOO). For each gene, and 

qualifying variant model, we reperformed collapsing analysis, leaving out one variant at a 

time. In this approach variants with a large influence on the overall collapsing analysis, 

when excluded, result in a concomitant change in statistical significance (Supplementary 15 

Figure 12).  

 

Multi-ancestry meta-analysis 

We performed inverse variance weighted (IVW) meta-analysis for ExWAS and collapsing 

across NFE, SAS, AFR, EAS, ASJ, and AMR ancestral groupings for variants with at 20 

carrier count >=5 within each grouping. In the context of rare variants IVW can be unstable 

so we compared IVW meta-analysis P-values with those generated from Stouffer’s 

method weighting each study by the square root of the sample size. We found that both 



 

27 
 

approaches generated similar p-values indicating that IVW in this setting was stable even 

for rare variants. 

For GWAS multi-ancestral analysis we used REGENIE using the approach 

described for NFE to generate GWAS summary statistics for SAS, AFR, EAS and AMR 

samples. We used the locus definition approach described earlier to define significant loci 5 

for each ancestral strata, defining novelty as before, considering the PC1 NFE ancestry 

TL loci previously described. For GWAS we used METAL (Willer, Li, and Abecasis 2010) 

to perform IVW meta analyses across all ancestry strata. We selected significant variants 

(Pmeta< 5 x 10-8) removing those that were present in a single ancestry, using these to 

define loci and index variants as previously described. We assessed these for overlap 10 

with NFE loci defining novelty as before.  

 

CH Analysis 

To detect putative clonal haematopoiesis, we used the pipeline described in Dhindsa et 

al.(Dhindsa et al. 2022). Briefly, using the same GRCh38 genome reference aligned 15 

reads as for WES germline variant calling, we ran somatic variant calling with GATK’s 

Mutect2 (v.4.2.2.0), After QC we focussed on a set of 15 genes (Supplementary Table 

12) exhibiting age dependent prevalence for further analyses including only PASS variant 

calls with 0.03 ≤ Variant Allele Frequency (VAF) ≤ 0.4 and Allelic Depth (AD) ≥ 3 across 

an annotated set of variants. 20 

For the analysis, we considered four different variant allele frequency (VAF) cut-

offs (3-5%, >5-10%, >10-20% and >20%, Supplementary Table 12) across NFE 

ancestry individuals. In total after excluding 3,585 individuals diagnosed with either a 

haematological malignancy pre-dating sample collection or with a lymphocyte count > 5 
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x109 cells/litre we took forward 435,525 individuals for analysis. For overall CH driver 

subtype association (as shown in Fig1A) We fit a linear model TLPC1 ~ CHVAF>0.03 + age 

+ sex + age:sex + age2 + ancestry PC1:4 + ever.smoked + pack.years.  Where TLPC1 

represents the PC1 telomere length estimate and CH the carrier status for a particular 

CH driver subtype with VAF> 3%. We then repeated this analysis stratifying by non-5 

overlapping VAF cutoffs for each CH driver subtype. Finally, to get an overall association 

statistic between TL and VAF stratified by CH driver subtype we repeated this analysis 

recoding each CH driver gene carrier status by VAF as an ordinal variable.  
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RS Number Variant ID MAF Effect P-value Consequence* Domain 

rs139438549** 16-67658960-T-
C 0.001 0.43  9.9 x 10-11 Thr205Ala 

POT1 
binding 
domain 

rs145007645 16-67659046-C-
A 

1.6 x 10-

4 
0.74 (0.63 

to 0.95) 2.0 x 10-22 Arg176Leu 

rs370512338 16-67659234-T-
C 

3.7 x 10-

4 
0.74(0.63 
to  0.84) 2.3 x 10-44  Asn163Ser 

rs249052024 16-67659240-G-
A 

6.4 x 10-

4 

-0.26 (-
0.34 to -

0.18) 

1.41 x 10-

10 Ser161Leu 

rs142662151 16-67660036-C-
T 

7.2 x 10-

4 

-0.43 (-
0.51 to -

0.40) 
3.2 x 10-12 Asp37Asn OB1 

 
Table 1. Rare variants in ACD modulating telomere length. * Protein coordinates 
with respect to Uniprot (Q96AP0) canonical transcript ENST00000620761.6. **Also 
detected through our GWAS. 5 
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