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ABSTRACT  
 
Over three percent of people carry a dominant pathogenic variant, yet only a fraction of 
carriers develop disease. Disease phenotypes from carriers of variants in the same gene 
range from mild to severe. Here, we investigate underlying mechanisms for this heterogeneity: 
variable variant effect sizes, carrier polygenic backgrounds, and modulation of carrier effect by 
genetic background (marginal epistasis). We leveraged exomes and clinical phenotypes from 
the UK Biobank and the Mt. Sinai BioMe Biobank to identify carriers of pathogenic variants 
affecting cardiometabolic traits. We employed recently developed methods to study these 
cohorts, observing strong statistical support and clinical translational potential for all three 
mechanisms of variable carrier penetrance and disease severity. For example, scores from our 
recent model of variant pathogenicity were tightly correlated with phenotype amongst clinical 
variant carriers, they predicted effects of variants of unknown significance, and they 
distinguished gain- from loss-of-function variants. We also found that polygenic scores 
predicted phenotypes amongst pathogenic carriers and that epistatic effects can exceed main 
carrier effects by an order of magnitude.  
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INTRODUCTION 

With the rapidly increasing use of exome sequencing in clinical practice, and with over 
three percent of the population carrying a pathogenic variant in genes associated with 
autosomal dominant disease1–3, predicting which carriers will develop disease and how that 
severe the disease will manifest are central questions for the practice of genomic medicine4,5 
(Figure 1A). Addressing the full spectrum of clinical genotypes associated with liability to 
diseases would improve preventative and targeted approaches prior to disease onset. 
However, the causes that affect penetrance and severity are largely unknown, making it 
difficult to determine which patients will require clinical interventions and what degree of 
intervention will be needed.5,6 In this study, we applied recently developed computational 
methods to biobank-level data to study three theorized sources of this heterogeneity in the 
context of clinical metabolic traits: differing pathogenic variant effects within a gene, variable 
polygenic background amongst carriers, and genetic epistasis modifying the impact of carrier 
effects (Figure 1).  

Mounting evidence suggests that each of these factors contribute to incomplete 
penetrance and variable disease severity. For example, loss-of-function (LOF) variants within 
the MC4R gene cause monogenic obesity; however, other missense variants in the same gene 
that are gain-of-function (GOF) are associated with protection against obesity.7 Recently, 
Goodrich, et al.4 and Fahed, et al.8 found that polygenic risk scores (PRS) can independently 
influence the phenotype amongst carriers in several monogenic diseases. Finally, individual 
case reports have identified direct genetic epistatic modifiers, that is genetic background acting 
directly through the carrier variant’s mechanism, that are protective in highly penetrant 
monogenic disorders.9 While studies48 have identified that genetic background variants 
additively influence whether pathogenic variant carriers develop disease and the severity of 
this disease, these studies did not identify whether genetic background variants directly 
interact with pathogenic variants, i.e. provide evidence of marginal epistasis, to affect 
penetrance and/severity in biobank level data.  

Here, we employ recently developed statistical genomics methods in combination with 
phenotypes and exomes from our discovery cohort of the 200,638 exomes release from UK 
Biobank (UKB)10 participants (Table 1), as well as replication in the 28,817 participants from 
the Mt. Sinai BioMe Biobank (Table S1)11 and the 454,787 UKB exomes release12, to 
comprehensively study these factors in genes associated with monogenic cardiometabolic 
conditions: high LDL cholesterol (familial hypercholesterolemia), low LDL cholesterol (familial 
hypobetalipoproteinemia), high HDL cholesterol (familial hyperalphalipoproteinemia), high 
triglycerides (familial hypertriglyceridemia), monogenic obesity, and maturity-onset diabetes of 
the young (MODY) (Table 2, Table S2). Using these biobanks, we identified individuals 
carrying at least one allele of these autosomal dominant pathogenic variants, whom we refer to 
as “carriers.” 

First, to study effect size heterogeneity of variants within monogenic genes, we leverage 
our recently developed method for variant pathogenicity prediction based on the ESM1b 
protein language model (Figure 1B).13,14 The effect of rare missense variants in protein-coding 
genes are often classified as variants of uncertain significance (VUS), or grouped into coarse 
categories such as “pathogenic” or “benign”.5 Of the 206,594 missense variants curated in 
ClinVar15, 57.5% (118,864) are labeled as VUS as of November 202116. Classification of VUSs 
is crucial for diagnoses and treatment of genetic disorders17, but there is still a gap in methods 
to address this problem18. This critically limits studies of effect size heterogeneity as well as the 
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prognostic power of genomic medicine for many patients.19 Our model produces numerical 
scores for any possible amino acid change in any protein, which we demonstrate are tightly 
coupled to phenotype for many genes.  

Next, to examine additive polygenic background effect (Figure 1C), we employ 
polygenic risk scores (PRS), which combine variant effects from genome-wide association 
study (GWAS) loci, to measure the additional genetic load on the phenotypes included in this 
study.20 We improve upon previous studies by binning individuals into finer-grained PRS 
quantiles to identify the threshold at which PRS-risk exceeds that of established clinical, 
pathogenic variants.  

Finally, we employ our recent method, FAst Marginal Epistasis test (FAME)21, that 
quantifies the impact of genetic epistasis on modification of individual variant’s effects (Figure 
1D). Previous methods have identified genome-wide genetic interactions22 and genetic-by-
environment interactions23 that affect phenotype; however, we utilize this method to focus on 
identifying genetic interactions that directly modify the effect size of carrier status of pathogenic 
variants. With FAME, we previously showed that genetic background modifies the effect of 
many common GWAS variants, with epistatic effects sometimes exceeding marginal effects by 
an order of magnitude across diverse traits. Here, we extend this work to study the impact of 
marginal epistasis on autosomal dominant rare variants, i.e. identifying if genetic background 
variants are interacting with pathogenic variants to affect carrier phenotype and penetrance.  

We find that the variant effect heterogeneity, additive polygenic risk, and marginal 
genetic epistasis each contribute to disease severity and penetrance in these traits. 
Importantly, a variant’s ESM1b scores are predictive of phenotype severity in six out of ten 
monogenic genes (Table 2) included in this study. ESM1b outperforms other variant prediction 
methods for predicting clinical effect of monogenic missense variants even at rare allele 
frequencies and distinguishes between GOF and LOF missense variants. These results 
indicate that contemporary variant pathogenicity prediction methods extend beyond binary 
pathogenic/benign classification to provide more nuanced prognoses. We assessed the 
additive and epistatic effect of genetic background on the phenotype of carriers and found that 
PRS was significantly associated with phenotype severity for four of the six monogenic 
diseases examined in this study, demonstrating that polygenic background has an 
independent effect on carrier phenotype. In addition, we show that marginal epistasis, the 
effect of genetic background directly on the monogenic variant, significantly modifies the effect 
of the monogenic variant in carriers of high triglycerides, high LDL, and MODY variants. 
Inclusion of epistasis in prediction of carrier phenotype could improve predictive accuracy by 
as much as 170%.  

METHODS 

Cohort information  
200,632 participants with exomes in UKB10 were included to identify the number of 

carriers and the penetrance of the monogenic diseases in this study. We restricted PRS and 
genetic epistasis analyses to individuals of similar genetic ancestry who are unrelated. Field 
22006 was used to identify individuals who both self-identify as White British and have similar 
genetic ancestry based on PCA. To identify unrelated individuals, common array SNPs were 
extracted from individuals, KING24 kinship coefficients were estimated, and individuals were 
pruned to the third degree of kinship. All individuals with exomes available were included in the 
missense variant analysis. 
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The BioMe biobank is an electronic health record-linked biorepository that has been 
enrolling participants from across the Mount Sinai health system in NYC since 2007. There are 
currently over 50,000 participants enrolled in the BioMe biobank under an Institutional Review 
Board (IRB)-approved study protocol and consent. Recruitment occurs predominantly through 
ambulatory care practices, and participants consent to provide whole blood-derived germline 
DNA and plasma samples which are banked for future research. Participants also complete a 
questionnaire providing personal and family history as well as demographic and lifestyle 
information as has been previously described.25,26 BioMe participants represent the broad 
diversity of the New York metropolitan area, and more than 65% of participants represent 
minority populations in the US. All participants provided informed consent, and the study was 
approved by the Icahn School of Medicine at Mount Sinai’s IRB (#07-0529). 

Cardiometabolic phenotype ascertainment 
Direct LDL, HDL, and triglycerides (respectively, fields 30780, 30760, 30870; mmol/L) 

for each participant were obtained and converted to mg/dL from mmol/L (LDL & HDL: 
multiplied by 38.67; triglycerides multiplied by 88.57).27 The mean of these measurements 
taken across multiple visits were used to represent each individual. LDL and triglycerides 
measures were adjusted to account for patient statin use; for LDL, patient’s measurement was 
divided by 0.7 and triglyceride was divided by 0.85.28,29 

Maximum body mass index (BMI, kg/m2, field 21001) recorded was used to represent 
each individual. A BMI between 25 kg/m2 and 30 kg/m2 was considered overweight; a BMI 
greater than or equal to 30 kg/m2 defined obese participants. 

Glycated hemoglobin or HbA1c (field 30750; mml/mol) and the “Diabetes diagnosed by 
doctor” field were used to identify participants with Type 2 diabetes (T2D). HbA1c was 
converted from mmol/mol to percentage, and the maximum HbA1c measured across all 
instances was used to represent each individual. Participants were identified as having T2D if 
they fulfilled at least one of the following criteria: 1) HbA1c greater than or equal to 6.5%, 2) at 
least one instance of “Diabetes diagnosed by doctor” marked TRUE. Participants were 
identified as pre-diabetic if their HbA1c was between 5.7% and 6.5%. 

 
Gene and variant list curation 
 There are several terms used interchangeably to describe variants that have high effect 
and are associated with monogenic disease (e.g., “pathogenic”, “monogenic”, “clinical”). We 
focus on pathogenic variants as defined by ACMG/AMP criteria.30 We examined pathogenic 
variants for monogenic forms of low LDL or familial hypobetalipoproteinemia (PCSK9, APOB), 
high LDL or familial hypercholesterolemia (LDLR, APOB), high HDL or familial 
hyperalphalipoproteinemia (CETP), high triglycerides or familial hypertriglyceridemia (APOA5, 
LPL), monogenic obesity (MC4R), MODY (GCK, HNF1A, HNF4A) curated in Goodrich et. al4 
and Mirashahi, et al31 (Table 2, Table S2). Any person carrying at least one allele of these 
pathogenic variants will be referred to throughout this text as a “carrier”. We consider several 
classes of variants to identify monogenic variant carriers: “curated”, where variants undergo 
stringent review to be considered pathogenic; “ClinVar-weak”, where variants have at least one 
submission of likely pathogenic or pathogenic, but may also contain conflicting reviews in the 
ClinVar database15; and “ClinVar-strong”, where variants have only likely pathogenic or 
pathogenic submissions. Variants that did not fall under “ClinVar-strong” or “curated” 
categories were considered to be variants of uncertain significance (VUS). Supplemental 
Methods Table 1 summarizes these definitions.  
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“Curated” monogenic variants were identified by applying ACMG/AMP criteria and 
blinded testing by reviewers for variant curation by Goodrich et. al4 and Mirashahi, et al.31. 
Rare protein-truncating variants in HNF1A, HNF4A, and GCK outside of the last exon of each 
gene were classified as pathogenic due to haploinsufficiency of these genes is sufficient to 
cause disease. Missense variants within these genes were also identified as pathogenic for 
MODY if the missense variants were classified as likely pathogenic/pathogenic by ACMG/AMP 
guideline, were rare (minor allele frequency, MAF<1.4E-05), and were also subjected to 
blinded manual review. ClinVar variants were identified based on the “CLIN_SIG” field from the 
Variant Effect Predictor (VEP).32  

Exome sequencing quality control and variant filtering 
UKB exome-sequencing and analysis protocols were published in Szustakowski et al.33 

and are also displayed at https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170. Exome 
variants were called in monogenic disease genes by using PLINK version 1.9 function extract 
on UKB exome PLINK files.34 Anyone carrying at least one pathogenic variant was identified 
as a “carrier”; otherwise, those not carrying pathogenic variants were labeled as “non-carriers”. 
All variants were annotated using Variant Effect Predictor (VEP) version 10732 in GRCh38.  

 
Penetrance calculations  

We define penetrance as the proportion of carriers that meet certain disease or 
phenotype thresholds based on previous studies. In MODY carriers, penetrance was based on 
how many carriers were diabetic. For the other monogenic disorders, the following cutoffs were 
used to calculate penetrance: high LDL or familial hypercholesterolemia - direct LDL greater or 
equal to 190 mg/dl35, low LDL or familial hypobetalipoproteinemia - direct LDL less than or 
equal to 80 mg/dl36, high HDL or familial hyperalphalipoproteinemia - direct HDL greater than 
or equal to 70 mg/dl37, high triglycerides or familial hypertriglyceridemia - direct triglycerides 
greater than or equal to 200 mg/dl35, and monogenic obesity - obese BMI (BMI greater or 
equal to 30 kg/m2.) 

 
Missense variant pathogenicity prediction scores  

ESM1b is a 650 million parameter protein language model that was previously trained 
on all 250 million protein amino acid sequences13 in UniProt38. This unsupervised model is not 
trained on any genetic information or any other protein information outside of amino acid 
sequence. The model can predict the likelihood of any potential single amino acid change 
(missense variants) by calculating a score for the missense variant as the log likelihood ratio in 
comparison to the wildtype variant.14 The ESM1b model was used to calculate the scores for 
any single amino acid change for the protein resulting from the canonical transcript of the 
monogenic disease genes included in this study. Here, we define the canonical transcript as 
the MANE-defined transcript.39 Using the predicted protein change of the genetic variant effect 
generated by VEP, we compared the ESM1b scores for every potential missense variant of 
established cardiometabolic disease genes to the phenotypes of carriers for those missense 
variants.  

We tested if ESM1b predicts mean phenotype of carriers of the same missense variants 
for all genes included in this study, restricting this analysis to single missense variant carriers 
from any ancestry. We define single missense variant carriers as individuals with one 
missense variant in the gene, and any other gene variation is restricted to intronic, 
synonymous, or untranslated region effects. Single missense variant carriers were grouped by 
the missense variant carried, mean phenotype of this group was measured and associated 
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with the missense variant’s ESM1b score. We then identified significant Pearson correlations 
between mean phenotype and ESM1b score via correlation testing; to account for covariates, 
we regressed age, sex, and the first 10 genetic PCs from the phenotype and then used the 
remaining residuals to test for correlation with ESM1b values. These correlations were 
replicated in the UKB 500k exomes release12 by analyzing individuals within the new release 
only and excluding individuals in the 200k release (Figure S3). 

Polygenic risk scores (PRS) 

PRS weights for BMI were previously generated using LDpred40 and were downloaded 
from Cardiovascular Disease KP Datasets on Feb 10, 2022. PRS weights for LDL were 
previously generated using PRS-CS41 and were downloaded Feb 22, 2022 from the Global 
Lipids Genetics Consortium Results. PRS weights for HDL and triglycerides were previously 
generated using PRS-CS42 and downloaded from the PRS Catalog43 on May 6, 2022. PRS 
weights for T2D were previously generated using LDpred44 and were downloaded from the 
PRS Catalog on May 29, 2023. PRSs were then calculated for every UKB participant of 
European ancestry within UKB using PLINK version 2.0 function score. Scores were then 
centered and scaled to have a mean of 0 and standard deviation of 1. All PRS weights chosen 
excluded UKB participants in generation of GWAS training data.  

 
Marginal epistasis to identify interaction between genetic backgroun with monogenic gene 
variants 

Testing for genetic epistasis, or gene-by-gene interactions, is a challenging task that is 
computationally expensive to scale in large datasets like biobanks. FAst Marginal Epistasis 
Estimation (FAME) is a scalable method that tests for marginal epistasis: how an individual’s 
genetic background measured across hundreds of thousands of common genetic variants 
interacts with their carrier status to ultimately influence the trait.21 Rather than a linear-
regression model which measures the independent and additive effect of genetic background, 
in the form of PRS, FAME jointly estimates the variance explained by the additive component 
(σG

2) and by the marginal epistasis component (σCxG
2), where the marginal epistasis is defined 

as the pairwise interaction between the target feature, and all other SNPs of interest. The 
algorithm for fitting these variance components in FAME is based on a streaming randomized 
method-of-moments estimator that has a runtime that has a linear scaling with the number of 
SNPs and individuals.45 FAME also efficiently estimates asymptotic standard errors for the 
variance component estimates. While the original implementation of FAME was designed for 
testing marginal epistasis at common variants, we modified the FAME software to take as input 
the carrier status at the target gene (t) of interest (Ct), and genotypes that potentially interact 
with the target feature (Gt). We partition the set of common SNPs into those that are proximal 
to the target gene of interest and those that are distal leading to corresponding genotype 
matrices, G1 and G2 respectively. We aim to test for interactions between carrier status and 
SNPs that are distal to the target gene (while controlling for additive effects across all common 
SNPs, additive effects of the carrier status, and relevant covariates).  

When we estimated marginal epistasis for the pathogenic variants at a target gene, we 
first excluded the additive effect of carrier status together with the other covariates (top 20 
PCs, sex, and age). Then we applied FAME to jointly estimate the additive SNP effect and the 
marginal epistasis effect on 119,523 unrelated White-British individuals with genotyping arrays 
and exome-sequencing available in the UKB. We have included more detailed FAME 
information in the Supplemental Methods and verified that linkage disequilibrium (LD) has 
little to no effect on our results in Figure S6.   
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RESULTS 

Incomplete penetrance and variable disease severity of monogenic cardiometabolic variants 
 

To establish the full spectrum of genetic contributions to “monogenic” diseases, we 
sought to determine the penetrance and disease severity across a subset of cardiometabolic 
traits within the UK Biobank (UKB). Cardiometabolic traits are pervasive quantitative 
phenotypes available within electronic health record (EHR) systems and have been previously 
associated with rare monogenic variants and common genetic variation. In the UKB, we 
identified a total of 1,356 carriers of the curated monogenic variants that affect cardiometabolic 
phenotypes (Table 2, Table S2) and established that the penetrance for disease within these 
carriers is higher, but incomplete compared to noncarriers using current clinical thresholds 
defined in the Methods (Figure 2A). The monogenic trait with the highest penetrance was high 
triglycerides, where 56.10% (115/205) of carriers had triglycerides levels greater than 200 
mg/dl; the monogenic trait with the lowest penetrance was low LDL, where 42.28% (137/324) 
carriers had LDL levels less than 80 mg/dl.  

Penetrance is also dependent on the gene that the variant was carried in; for example, 
penetrance of low LDL pathogenic variants (LDL<80 mg/dl) overall was 42.28%, but was only 
12.89% (21/163) in PCSK9 pathogenic variants compared to 72.05% (116/161) in APOB 
pathogenic variants. Concomitantly, underlying phenotypes are variable amongst variant 
carriers of different genes (Figure 2B). GCK MODY carriers have a narrower range of HbA1c, 
a measurement of blood glucose concentration46, in comparison to HNF1A and HNF4A MODY 
carriers who have a wider range of values. Across traits and genes, this diversity of variant 
effect spans negligible to clinically actionable. We therefore examine the underlying factors 
that affect this incomplete penetrance and variable disease severity. 

Severity of monogenic missense variants is predicted by ESM1b scores.  

We first consider the possibility that effect size heterogeneity across non-synonymous 
(missense) variants within a gene contributes to phenotypic heterogeneity of known autosomal 
dominant cardiometabolic traits; i.e., each pathogenic variant has each own respective effect 
size β (Table 2). There have been previous reports that different pathogenic variants within the 
same gene display differing disease penetrances47–51 or expressivity52. We expand on this by 
employing ESM1b derived protein language scores13 to predict the severity of missense 
variants across the 10 cardiometabolic genes. ESM1b defines likely pathogenic missense 
variants with a score less than -7.5.14 While we and others have previously shown that variant 
pathogenicity predictors can help classify variants as pathogenic versus benign14,53, we find 
that ESM1b predicts the mean phenotype of missense variant carriers with p<0.05 for six of 
the ten genes considered (Figure 3; binomial enrichment p=2.76E-06). Two of these gene 
ESM1b-mean phenotype correlations are remarkably strong with correlations exceeding 0.25 
and are significant after Bonferroni correction. Filtering to rarer variants further increases 
predictive power; an additional gene ESM1b-mean phenotype gains significance after filtering 
for rarer variants (Table S3).   

We next asked whether ESM1b could distinguish between LOF and GOF variants, 
something that none of the previous variant pathogenicity predictors have been able to do. We 
first explored MC4R, a single exon gene where missense variants have either LOF or GOF 
effects7 leading to either monogenic obesity or protection from obesity, respectively. We 
identified carriers of both curated4,31 and ClinVar-strong missense variants and quantified the 
association of these variants with their ESM1b scores. We found that ESM1b scores of these 
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known pathogenic missense variants are significantly associated with carrier BMI after 
adjusting for age, sex, and the first 10 genetic PCs in UKB (Pearson r=-0.47, p=0.034). ESM1b 
also predicts phenotype in carriers of missense VUS (Figure 3A), allowing for more accurate 
classification in the absence of molecular functional data. We extended our analysis to 14,135 
individuals in UKB harboring any single missense variant in MC4R (134 unique missense 
variants). ESM1b score was significantly correlated with mean BMI of corresponding carriers 
after adjusting for covariates (r=-0.29, p=8.76E-08). Finally, we found that ESM1b separates 
MC4R GOF (pink) from LOF (navy) missense variants (Figure 3A); (t-test p=1.42E-04). We 
replicated these results in an ancestrally diverse cohort of patients from the BioMe biobank 
(Figure 3B). In 1,456 individuals that carry a single MC4R missense variant out of a total 
28,817 individuals, ESM1b was significantly correlated with mean BMI (r=-0.23, p=0.036).  

We next examined ESM1b scores for LDLR and PCSK9 missense variants in 
relationship to LDL levels (Figure 3C & 3D). LDLR encodes for the LDL receptor; 
pathogenic/LOF variants account for 90% of monogenic high LDL cases54 and disrupt LDLR’s 
ability to remove LDL from the bloodstream leading to elevated LDL blood levels.36 The 
ESM1b scores of known pathogenic missense variants are significantly associated with LDL 
after adjusting for age, sex, and first 10 genetic PCs (n=298, r=-0.46, p=1.28E-3). ESM1b 
accurately classifies the curated missense LOF variants (navy, Figure 3C) as likely 
pathogenic; 23/24 (95.83%) had an ESM1b score<-7.5. Interestingly, the remaining pathogenic 
missense variant, with a score>-7.5, also had lower LDL levels compared to the other 
pathogenic missense variants. ESM1b was also able to predict phenotype in carriers of LDLR 
missense VUSs. In all 21,362 individuals carrying a single missense LDLR variant, 
representing 346 unique missense variants, ESM1b was significantly correlated with mean 
LDL (r=-0.49, p=9.59E-22, Figure 3C); these results also replicate in the BioMe exomes (r=-
0.31, p=3.65E-4, nmissense=126, nindividuals=3,889). We observed similar significant correlations 
between PCSK9 missense variants and LDL levels, but in the opposite direction (r=0.20, 
p=0.018, Figure 3D). Interestingly, there was no significant difference in LDL levels of carriers 
reported55 PCSK9 GOF and LOF variants (Figure S2), highlighting complexities in reporting 
based on existing annotations.56,57  

Similar associations between ESM1b pathogenicity scores and phenotype were found 
in known clinical and VUS missense variants for additional genes and traits. APOA5 and LPL 
LOF variants are associated with hypertriglyceridemia yet few missense variants are 
associated with these clinical phenotypes. We found that ESM1b scores are a predictor of 
triglyceride levels in missense variant carriers of both APOA5 (r=-0.19, p=0.015, Figure 3E) 
and LPL (r=-0.19, p=0.013, Figure 3F). These correlations also replicate in the same direction 
and approach significance in BioMe - APOA5: r=-0.26, p=0.066. nmissense=50, nindividuals=3,049; 
LPL: r=-0.23, p=0.11, nmissense=52, nindividuals=2,016. ESM1b scores also predicted HbA1c levels 
in GCK single missense variant carriers. GCK encodes for glucokinase, an enzyme that 
regulates insulin secretion.58 Variation in GCK has been associated with both hyperglycemia 
and hypoglycemia.59 ESM1b predicted the mean HbA1c levels of 401 single GCK missense 
variant carriers in Figure 3G (r=-0.29, p=7.7E-03).  

To assess whether other variant effect predictors had the same features as ESM1b, we 
repeated these analyses using SIFT60, CADD61, PolyPhen262, PrimateAI63, AlphaMissense64, 
and EVE65scores and found that these methods do not classify the pathogenic missense 
variants as accurately as ESM1b, show weaker correlations between variant score and mean 
BMI compared to ESM1b, and do not differentiate between GOF and LOF missense variants 
(Figure S1, Table S3).  
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We also found that ESM1b scores remain predictive of carrier phenotype at missense 
variants with small allele frequencies (Table S3). We replicate these results for five of the six 
phenotype correlations in additional individuals within the 500k UKB exomes, excluding 
individuals already present in the 200k exomes (Figure S3); the remaining phenotype 
correlation approaches significance (p=0.0666). Collectively, these results suggest that effect 
sizes of clinical variants within a gene are heterogeneous and therefore contribute to variability 
in penetrance and disease severity. They also indicate that ESM1b has the potential to 
reclassify thousands of variants that have conflicting classifications or are of uncertain 
significance.  

Polygenic background in carriers and non-carriers of pathogenic variants.  
Next, we addressed another source of phenotypic heterogeneity amongst carriers of the 

same pathogenic genetic variant using tools such as polygenic risk scores (PRS), a weighted 
sum of common variant effects with weights determined by results from GWASs66, and 
emerging large scale biobanks (Figure 1C) for each trait of interest (Table 2). Previous studies 
have shown that polygenic background additively affects disease severity4,8 in rare variant 
carriers across a variety of traits. We leverage a larger, more powered release of UKB to 
investigate PRS and pathogenic variants, restricting to the unrelated white British population to 
reduce confounding from population structure67 (see Methods).  

Consistent with previous studies, each PRS was significantly correlated with the 
corresponding traits in carriers (Figure S4). Then, to compare polygenic and monogenic risk, 
we contrast the phenotypes of noncarriers within the tails of 1000th-tiles (0.1%) bins of the 
PRS to the phenotypes of pathogenic variant carriers to identify the exact percentile where 
noncarriers have more extreme phenotypes than carriers. We tested PRS for non-carriers for 
monogenic obesity, HDL and triglycerides and find that individuals in the tails of PRS have 
more extreme phenotypes than individuals in the tails of PRS for HDL and triglycerides have 
phenotypes larger than individuals harboring curated clinical variant carriers (Figure 4A, 4B, 
and 4C). Across all three traits we observe that hundreds to thousands of individuals have a 
polygenic load that results in a more extreme phenotype than currently reported clinical 
variants. Exact PRS percentiles at which non-carrier phenotypes exceed those of carriers are 
reported in Table S4 and are denoted in red in Figure 4 and S5. These findings replicate that 
individuals within the tails of PRSs are at equivalent or greater risk of disease than pathogenic 
variant carriers.4,68 While individuals in the tails of the current LDL and Type 2 Diabetes (T2D) 
PRS do not have phenotypes exceeding those of clinical variant carriers, this will likely change 
as PRS become more accurate and larger cohorts are studied. We also replicated Ripatti, et 
al.’s69 work in additional phenotypes and observed an enrichment of noncarriers with extreme 
PRSs within individuals that meet disease thresholds (Table S5). 

 We examined several different sets of potentially pathogenic variants when making 
these comparisons: a curated set of variants (Table 2, Table S2), ClinVar-weak/strong 
annotations (see Methods), and VUSs with ESM1b scores exceeding the recommended 
pathogenicity threshold of -7.5 (see Methods). For all traits examined, the curated variants had 
the most extreme phenotypes while carriers of ClinVar’s current set of weak and strong 
variants often had substantially more moderate phenotypes (Figure 4A, 4C, and 4D). ClinVar 
variants for LDL did not distinguish between high or low LDL effects and therefore were not 
included in Figure 4D. We found that ESM1b could be used to identify additional pathogenic 
variants: ESM1b annotated pathogenic VUS missense variants had phenotypes equivalent to 
or more severe than ClinVar variant carriers for some genes (Figure 4A and 4C). 
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Finally, we examined the independent effect of polygenic background in carriers of 
clinical variants for cardiometabolic disease. Studies of other traits have reported correlations 
between PRS and phenotypes amongst rare monogenic disease variant carriers8,70–72. In 
monogenic forms of cardiometabolic disease, this association has not been established due to 
insufficient sample size.4 Here, we found that carrier phenotype was significantly associated 
(Bonferroni-corrected, one-tail p-value<0.01) with carrier PRS while adjusting for carrier sex, 
age, and first 10 genetic PCs in monogenic obesity (β=1.68, p=5.60E-03), high HDL (β=9.79, 
p=1.57E-06), low LDL (β=9.87, p=3.18E-06), and high triglycerides (β=62.46, p=1.33E-05) 
carriers (Figure S4A, B, C, and E). LDL PRS approached significance in high LDL carriers 
(β=6.76, p=0.028, Figure S4D). For MODY carriers, we predicted T2D status using a logistic 
regression including T2D PRS, age, sex, and the first 10 genetic PCs as covariates; the T2D 
PRS covariate was not significant (β=0.44, p=0.15). The PRS covariate for all sets of 
monogenic carriers is positive, indicating that the higher the carrier PRS is, the larger the value 
of the carrier phenotype. Additionally, we adjusted for PRS in unrelated, European individuals 
carrying missense variants in monogenic genes to determine if this improved correlation 
results (Table S3); we found improvement in significance of the correlation. Across all traits, 
our results support previous findings that polygenic background is a source of incomplete 
penetrance and variable disease severity and add well powered studies of cardiometabolic 
phenotypes that demonstrate the effect of the additive effect of PRS to phenotype expression 
in additional monogenic disorders. 

 
Epistasis between genetic background and monogenic genes alters phenotype 
 

We next sought to evaluate the possibility that genetic background magnifies or 
diminishes the effect size of the pathogenic variants through epistasis (Figure 1D).9,73–75 This 
notion of interaction is termed marginal epistasis.76 One of the major challenges in identifying 
marginal epistasis is the computational bottleneck of testing all genetic interactions at scale 
within hundreds of thousands of samples in a biobank. To do this, we employed a novel mixed 
model based approach (FAME)21 that estimates the total contribution to phenotypic variance 
from polygenic background (σG

2), carrier status (�C
2), their interaction (σCxG

2), and 
environmental noise (σ�

2). This allowed us to conduct the first well-powered examination of the 
impact of epistasis on penetrance and disease severity. While others have tested for gene-
environment interactions23 and all pairwise genome-wide interactions that influence 
phenotypes22 (whose estimators have large standard errors and low power), we solely focus 
on identifying the common genetic variation that is interacting with carrier status to modify 
phenotype. We note that testing for PRS-carrier status interaction is an underpowered version 
of our approach with very limiting assumptions; we applied this underpowered test and did not 
identify novel interactions (Table S5, Supplemental Methods).  

In the FAME model, σG
2 is the phenotypic variance explained by genetic background 

and represents the theoretical upper limit of polygenic risk score accuracy for each trait. �C
2 is 

the variance explained by carrier status and σCxG
2 is that variance explained by marginal 

epistasis between carrier status and genetic background. Here, we compute the epistatic 
improvement percentage, EIP = 100*σCxG

2/�C
2, which is the ratio between marginal epistasis 

variance and carrier status variance. It represents the upper bound of improvement in 
phenotype prediction over carrier status that can be achieved through modeling epistasis. An 
EIP of 0% means that epistasis is not present, while an EIP of 100% means that the combined 
epistatic effects are as large as the direct pathogenic variant effect and epistasis is a 
substantial factor modifying phenotype amongst carriers.  
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Our analyses revealed widespread statistical evidence of epistasis with large effect 
sizes; EIP ranged from 48% to 170% amongst the significant associations (Table 3, Table S7). 
EIP was 170% (standard error: 33.35%) for LDL cholesterol (interaction p=1.2E-08), implying 
that an ideal model including epistasis would be 1.7 times more accurate in predicting 
cholesterol compared to using carrier status alone. The fact that EIPs exceed 100% suggest 
that epistasis is a substantial contributor to variable penetrance and disease severity. These 
modifications could act through a variety of mechanisms including eQTLs modifying the 
expression levels of the monogenic gene77, disruptions to enhancer sequences that affect the 
monogenic gene transcription78, and alternative splicing of proteins that interact with 
monogenic genes75. Identifying the loci and pathways involved in these epistatic interactions 
could also reveal opportunities for treatment. We caution that, like all tests of gene-gene and 
gene-environment interaction, endogeneity and scale can induce biases in effect size 
estimates.  

DISCUSSION 

The question of why some monogenic variant carriers have extreme phenotypes while 
others remain healthy is fundamental to clinical genetics. In this study, we established at 
biobank scale three genetic contributors to phenotypic heterogeneity of pathogenic variant 
carriers: differing effect sizes of missense variants in a monogenic gene, genetic background 
independently affecting carrier phenotype, and marginal genetic epistasis modifying phenotype 
through direct effect on the variant. Our study provides clarity on how rare and common 
genetic variants can have independent effects and interact to modify the phenotype severity. 
Importantly, this work lays a foundation for improved prognostic ability by incorporating 
complete genomic information in clinical interpretation.  

There remain a few limitations to our study. Most clinical pipelines define the canonical 
isoform as the longest protein-coding transcript30 or use MANE-defined transcripts39. However, 
the cell-type specific isoforms79, the importance of multiple clinically relevant isoforms80 and 
the ratios of these isoforms81 are understudied areas of variation that can be probed using 
long-read sequencing technologies. Furthermore, each gene and disease phenotype have 
different contributions from rare variants and genetic background to an individual’s phenotype 
requiring large and well-curated data sets across diverse populations to establish the 
contributors to phenotype disease severity and penetrance. 

The measured penetrance of pathogenic variants drifts over time with revisions of 
screening guidelines, diagnostic thresholds and improved therapies. Like polygenic risk 
scores, results can vary based on thresholds used to distinguish between healthy and disease 
states. For cardiometabolic disorders, there are many medications that improve lipid profiles, 
such as statins82, and our study adjusted for statin-usage and predicted pre-medication LDL 
and triglyceride levels utilizing coefficients that were previously calculated.28,29 However, there 
are many different statins and likely each of these have not only dosage- but also genetically-
driven responses to drug therapy.83 Finally, newer drugs for obesity and the rise of procedures 
such as gastric bypass surgery, are artificially reducing BMI and improving lipid profiles84,85 
and, over time, may significantly decrease estimates of penetrance and disease severity of 
metabolic traits.  

Within this study, we take advantage of quantitative traits associated with pathogenic 
variants to study factors that affect disease severity within carriers. This disease severity is a 
limited proxy for expressivity. Clinical expressivity is often used with an alternate definition 
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referring to different phenotypes that arise from individuals carrying the same pathogenic 
variant. Studying this type of expressivity is essential, but will require a priori knowledge of the 
full spectrum of the clinical phenotypes possible, a structured database for these phenotypes 
within a biobank. Even the largest biobanks may be underpowered, particularly when relying 
on EHRs, where absence of the phenotype in records is not an indication of the patient being 
unaffected.  

Going forward, examination of our findings across global populations is essential, but 
will require diverse large-scale biobanks with exome sequences linked with clinical 
phenotypes. While the effect of the isolated pathogenic carrier variants is currently believed to 
be consistent, we and others have observed that heterogeneity of clinical expression is 
influenced by genetic background, which differs between populations. VUS are more common 
in non-European populations for many disease genes86 and exome sequencing analysis that 
takes into account diverse genetic backgrounds will remedy this problem.86,87 Finally, 
extension into other phenotypes will be most successful for quantitative traits that are 
measured in the majority of a biobank’s participants. These hurdles will differ between 
phenotypes assessed and across biobanks.  

In addition to providing a means of studying variable penetrance and disease severity, 
the ESM1b analyses resulted in discoveries with translational potential for the interpretation of 
clinically observed genomic variants. Integration of precision genome medicine into routine 
clinical care requires improved variant pathogenicity prediction models. Early methods60,61 
show diminished variant pathogenicity prediction accuracy as they rely on an imperfect and 
underpowered “gold-standard” truth set. Newer methods, such as ESM1b, 
AlphaMissense64,and PrimateAI-3D53, are based on improved machine learning methods and 
have increased pathogenicity prediction accuracy. ESM1b13,14 is a 650 million parameter 
protein language model trained on 250 million protein sequences that can predict which 
variants are pathogenic at higher accuracy than existing variant pathogenicity prediction 
models, provide scores that correlate with a continuous spectrum of clinical phenotypes, and is 
freely accessible online.13,14 Evaluating variant pathogenicity methods via large-scale biobanks 
allows us to assess the accuracy of these predictors in clinical environments, expanding 
beyond in vitro functional analysis, and previously published cases that are biased towards the 
most severe phenotypes. Our results show that ESM1b outperforms other variant 
pathogenicity predictors in two clinically significant ways: first, it can classify established 
pathogenic variants and variants across a continuous range of effect sizes, and second, it 
distinguishes between GOF and LOF missense variants. A previous analysis of rare variation 
pathogenicity using PrimateAI-3D53 shares some common findings with this study. However, it 
focused on incorporation of scores to quantify rare variant polygenic risk rather than 
understanding penetrance and disease severity.88  

In summary, our study established real-world estimates of penetrance and disease 
severity and discovered how genetic background can have outsized effects on modulating 
rare-variant clinical prediction. It also established a contribution of both rare, monogenic effects 
and the influence of a polygenic background on the clinical phenotype. Our work highlights the 
critical importance of the integration of rare and common variants and how these have the 
power to improve clinical prognosis of genomic precision medicine. 
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Figure 1: Outline of study. A. Phenotypic heterogeneity exits within carriers and noncarriers of pathogenic variants; 
individuals will range from mild to severe diseases. This study applies novel bioinformatic methods to understand the 
genetic factors that affect carrier phenotype at biobank-scale. B. We apply ESM1b, a protein language model, to 
predict the variable effect sizes of monogenic missense variants. C. We utilize polygenic risk scores (PRS) to deter-
mine if pathogenic variant carrier phenotype is modified by additive genetic effects and identify the distribution of PRS 
where noncarriers have greater more severe phenotypes than carriers. D. We employ a novel method, FAME, to 
estimate the contribution of marginal epistasis between carrier status and polygenic background to phenotypic varia-
tion. 
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Table 1: Demographics and distributions of patients in the discovery cohort. Analyses and data generated 
in this paper were performed on the 200k exome-sequencing release from UK Biobank cardiometabolic traits as 
our discovery cohort.

Table 2: Summary of clinical, monogenic conditions and curated variants. Heterozygous clinical variants 
that were previously validated across monogenic genes (referenced through the paper as “curated” variants) 
that affect cardiometabolic traits. The total number of curated pathogenic variant carriers identified in UKB 
exomes 200k release is summarized; some individuals identified carried the same curated, pathogenic variant. 
Additional information, such as variant effect and total number of carriers per variant is available in Supplemen-
tal Table 2.

participants, n 200,628
female, n (%) 110,475 (55.1%)

European ancestry, n (%) 188,027 (93.7%)
age at recruitment, avg (sd) 56.5 (8.1)

HDL mg/dl, avg (sd) 56.4 (14.8)
LDL mg/dl, avg (sd) 145.9 (34.1)

triglycerides mg/dl, avg (sd) 159.1 (94.7)
BMI kg/m2, avg (sd) 27.4 (4.8)

T2D, n (%) 12,382 (6.2%)

Participant information

Condition 
(formal name)

Condition 
(shortened 

name)
Monogenic genes Total unique & curated 

pathogenic variants

Total UKB 200k 
exomes carriers 

identified
Maturity-onset diabetes of the young Low LDL PCSK9, APOB 63 341

Familial hypercholesterolemia High LDL LDLR, APOB 87 414
Familial hyperalphalipoproteinemia High HDL CETP 27 120

Familial hypertriglyceridemia High triglycerides APOA5, LPL 20 211

Maturity-onset diabetes of the young MODY HNF1A, HNF4A, 
GCK 73 128

Monogenic obesity Obesity MC4R 20 148
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Figure 2

Figure 2: Carriers of pathogenic variants that affect cardiometabolic traits have incomplete penetrance and 
variable disease severity. A. Penetrance thresholds were defined based on clinical definitions of disease. Relative to 
noncarriers (blue), carriers (pink) have higher penetrances for disease across all cardiometabolic phenotypes included 
in this study. Carriers also show incomplete penetrance of disease across all monogenic disorders. B. Among patho-
genic variant carriers, we observe different severity of phenotypes. 
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Figure 3: ESM1b scores are predictive of disease 
severity for missense variant carriers. Single 
missense variant carriers for MC4R (A & B), LDLR 
(C), PCSK9 (D), APOA5 (E), LPL (F), and GCK (G) 
were identified and mean phenotype per each 
missense carrier group was measured. p-values 
shown are generated from mean phenptype-ESM1b 
score Pearson correlation tests and adjusted for age, 
sex, and first 10 genetic PCs. ESM1b scores also 
distinguish gain- vs. loss-of-function variants (A), 
which is replicated in Mt. Sinai’s BioMe biobank (B).
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Figure 4
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Figure 4: Comparison of phenotypic distributions amongst differential definitions of carrier status and tails of 
noncarrier PRSs.  Red indicates non-carriers with mean phenotype equivalent or more extreme than curated pathogenic 
variant carriers: monogenic obesity (A), high HDL (B), and high triglycerides (C). Only MODY (D), low (E) and high LDL 
(F) curated pathogenic variant carriers had more extreme phenotypes than noncarriers in PRS tails. Additional carriers 
were identified by using ClinVar and ESM1b. Pathogenic/likely pathogenic ClinVar variants in monogenic genes were 
identified with different filtering stringency (”weak” - less stringent filtering, “strong” - more stringent filtering), and potential-
ly pathogenic missense variants with unknown function were identified with ESM1b<-7.5. ClinVar variants are not included 
in (D) because pathogenic variants were not denoted as high LDL or low LDL effect. 
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Table 3

Table 3: Marginal epistasis with monogenic genes results. Marginal epistatic interactions between common 
background variation and carrier status were tested using the FAME method. After adjusting for age, sex, and the first 
20 genetic PCs, the interaction term between background variation and carrier status remained significant for High 
Triglycerides carriers, High LDL carriers, and MODY carriers (monogenic genes marked with *). We show the propor-
tion of variance in phenotype across carriers and noncarriers modulated by marginal epistatsis (σCxG

2), due to carrier 
status (βC

2), and the ratio between σCxG
2 and βC

2 (epistatic improvement percentage, EIP). EIP represents of the 
potential improvement in carrier phenotype prediction when modeling epistasis.

Trait Monogenic genes
tested σCxG

2 βC
2 EIP (%) EIP SE P

LDL High LDL (APOB, LDLR )* 2.92E-03 6.07E-03 48.02 10.66 2.88E-10
Triglycerides High triglycerides (APOA5 , LPL )* 2.89E-03 1.68E-03 172.36 33.35 1.22E-08

HDL High HDL (CETP ) 5.40E-04 8.74E-04 61.75 30.65 0.010
HbA1c MODY (GCK , HNF1A , HNF4A )* 9.21E-04 1.58E-03 58.17 21.82 3.60E-04
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