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Summary: 41 
Vaccine-induced immunity may impact subsequent de novo responses to drifted 42 

epitopes in SARS-CoV-2 variants, but this has been difficult to quantify due to the 43 

challenges in recruiting unvaccinated control groups whose first exposure to SARS-44 

CoV-2 is a primary infection. Through local, statewide, and national SARS-CoV-2 45 

testing programs, we were able to recruit cohorts of individuals who had recovered from 46 

either primary or post-vaccination infections by either the Delta or Omicron BA.1 47 

variants. Regardless of variant, we observed greater Spike-specific and neutralizing 48 

antibody responses in post-vaccination infections than in those who were infected 49 

without prior vaccination. Through analysis of variant-specific memory B cells as 50 

markers of de novo responses, we observed that Delta and Omicron BA.1 infections led 51 

to a marked shift in immunodominance in which some drifted epitopes elicited minimal 52 

responses, even in primary infections. Prior immunity through vaccination had a small 53 

negative impact on these de novo responses, but this did not correlate with cross-54 

reactive memory B cells, arguing against competitive inhibition of naïve B cells. We 55 

conclude that dampened de novo B cell responses against drifted epitopes are mostly a 56 

function of altered immunodominance hierarchies that are apparent even in primary 57 

infections, with a more modest contribution from pre-existing immunity, perhaps due to 58 

accelerated antigen clearance. 59 
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Introduction: 60 

Within a year of the discovery of SARS-CoV-2 as the etiological agent of COVID-61 

191, highly effective vaccines were developed and administered. Leading this class 62 

were the monovalent mRNA vaccines BNT162b2 and mRNA-1273 encoding the 63 

ancestral Spike protein, both of which achieved ~95% efficacies in preventing 64 

symptomatic illness2,3. Other vaccine platforms also achieved high efficacies, especially 65 

against severe illness and hospitalization4–8. Since the initial results of these clinical 66 

trials, however, the protective capacity of these vaccines has declined9–12. This drop in 67 

vaccine effectiveness is due to both waning of antibodies and viral evolution and escape 68 

from vaccine-induced neutralizing antibodies, which are the best-known correlates of 69 

protection13,14. While the known genetic diversity of SARS-CoV-2 was quite modest 70 

through most of 202015, new variants with enhanced transmissibility and/or neutralizing 71 

antibody escape mutations have since emerged and sequentially swept to global 72 

dominance12,16–24. As of this writing, the dominant circulating variant is Omicron, which 73 

comprises sublineages that contain Spike protein mutations located within most known 74 

neutralizing antibody epitopes25. A key issue that will define both protection against 75 

infections and the strategy underlying updates to the vaccines is the extent to which 76 

pre-existing vaccine-induced immunity protects against heterologous challenges like 77 

Omicron. 78 

B cell responses following mRNA COVID-19 vaccination are characterized by 79 

exceptionally long-lived germinal center reactions that persist for months while 80 

continuously improving the breadth and affinity of antibodies26–29. Cells exiting the 81 

germinal center carry affinity-enhancing mutations and can become long-lived antibody-82 
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secreting plasma cells or memory B cells30. Depending on the subset of memory B cell, 83 

re-exposures to antigen trigger differentiation to new plasma cells or germinal center 84 

reactions31–34. After antigens from infection or vaccine antigens have been cleared, 85 

long-lived plasma cells and memory B cells persist to maintain humoral immunity. 86 

 While these features protect against homologous SARS-CoV-2 infections, it is 87 

more difficult to predict the nature of responses to subsequent heterologous infections 88 

or vaccines. Due to their expanded pre-existing numbers and intrinsic signaling and 89 

transcriptional differences relative to naive B cells, memory B cells rapidly mount 90 

responses that are of greater magnitude than those of naïve primary responses35–40 to 91 

either initial infection or vaccination. Because of these properties, memory B cells that 92 

react to epitopes conserved between the original and secondary challenges could 93 

dominate the response to heterologous infections or vaccines41–43. If antigen and T cell 94 

help are limiting, memory B cells might then outcompete naive B cells and new primary 95 

antibody responses aimed at the new variant-specific epitopes. This phenomenon, 96 

known as antigenic imprinting or “original antigenic sin”44, can be beneficial if antibodies 97 

against the conserved epitopes are protective. However, recall responses to 98 

heterologous pathogens can potentially be neutral or even detrimental if antibodies 99 

targeting these conserved epitopes are not protective and variant-specific primary 100 

responses are competitively inhibited45. As an example of the phenomenon, pre-existing 101 

common coronavirus-specific memory B cells compose a majority of the early response 102 

to SARS-CoV-2, but primary responses to epitopes unique to SARS-CoV-2 are readily 103 

observed later26,46,47. Whether common coronavirus immunity is helpful, harmful, or 104 

neutral for de novo responses to SARS-CoV-2 is unknown. 105 
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In influenza infections, antigenic imprinting has been proposed to explain the 106 

age-associated differential in morbidity and mortality based on influenza subtype 107 

exposure history48–51. The various hemagglutinin (HA) subtypes of influenza A virus fall 108 

into one or the other of two phylogenetically distinct HA “groups” (group 1 or group 2). 109 

Individuals have the highest antibody titers against influenza strains encountered early 110 

in life, and they experience enhanced protection against influenza strains that are within 111 

the same HA group as their primary infection strain compared to heterosubtypic 112 

infections from the group that is mismatched to their first childhood infection. Previous 113 

work has shown that childhood exposure to H1N1 (group 1 hemagglutinin (HA)) affords 114 

protection against other group 1 HAs, such as H5N1. The same is true for individuals 115 

with group 2 HAs, whereby childhood H3N2 infection affords protection against H7N9. 116 

Conversely, individuals with group 1 imprinting experience an increase in mortality when 117 

faced with a group 2 influenza virus infection, such as that observed for H7N9 118 

infections48,51.  119 

Though pre-existing immunity can certainly impact primary responses to 120 

heterologous antigens, other mechanisms can also limit antibody responses to drifted 121 

epitopes. Epitopes that were previously immunodominant for antibody responses do not 122 

necessarily remain so once mutated, irrespective of prior immunity52. There are several 123 

possible mechanistic reasons why not all epitopes are equal for antibody responses. 124 

Factors such as naïve antigen-specific B cell precursor frequency and avidity vary 125 

greatly across epitopes, which in turn correlate with their relative contribution to the 126 

subsequent response53–57. Some epitopes can also be biophysically challenging for 127 

antibody binding, such as those sterically blocked by glycan shields or appearing as 128 
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non-complex ‘smooth’ surfaces to B cells58,59. Further, epitopes that mimic self-antigens 129 

also elicit poor responses due to tolerance mechanisms that remove or hamper B cells 130 

from the repertoire that could otherwise respond60–63. Finally, V gene usage during 131 

V(D)J recombination that gives rise to B cell receptors is uneven, as some segments 132 

are more heavily utilized than others64,65. In turn, this can create ‘holes’ in the repertoire, 133 

rendering some epitopes poorly immunogenic66. As SARS-CoV-2 variants of concern 134 

accumulate mutations in antigenic regions, immunodominance might change in ways 135 

that limit responses to drifted epitopes, with or without prior immunity. Thus, it has 136 

remained difficult to examine the degree to which infrequent de novo variant-specific 137 

responses in post-vaccination infections and heterologous boosters are due to changes 138 

in immunodominance, antigenic imprinting, or some combination of both67–75. 139 

Antigenic imprinting has remained nearly impossible to quantify directly and 140 

instead has predominantly relied on historical epidemiological data to make inferences 141 

about biological mechanisms that produce the documented patterns48,76,77. The COVID-142 

19 pandemic presents a unique opportunity to address these questions: it has 143 

encompassed adults with known infection histories and monovalent vaccines that 144 

induce well characterized B cell responses78–81 and the emergence of antigenically 145 

distinct viral variants25,82. Yet, as immunological histories become more complex and 146 

with very few immunologically naïve adults remaining83,84, the Omicron BA.1 (BA.1, for 147 

short) wave likely represented the final opportunity to recruit robust cohorts of 148 

individuals that meet the key experimental and control criteria. Through voluntary saline-149 

gargle PCR testing of University of Arizona students, staff, and faculty as part of COVID 150 

mitigation efforts on campus from August 2020 to July 2023; serological testing at 17 151 
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University of Arizona-managed sites across the state of Arizona; and two CDC-funded 152 

cohorts of essential workers, Arizona Healthcare, Emergency Response, and Other 153 

Essential Workers Surveillance (AZ HEROES)85 and Research on Epidemiology of 154 

SARS-CoV-2 in Essential Response Personnel (RECOVER)86, we recruited 155 

unvaccinated individuals who had recovered from primary Delta (B.1.617.2 or 156 

B.1.617.2-like) or BA.1 (B.1.1.529 or B.1.1.529-like) infections. These cohorts allowed157 

us to characterize the immunodominance hierarchies for both Delta and BA.1 variants 158 

and directly compare the specificity of antibody responses in unvaccinated individuals 159 

infected by the antigenically drifted viral variants to those generated by post-vaccination 160 

infection by Delta or BA.1. In doing so, we were able to quantify the impact of antigenic 161 

imprinting on de novo responses to drifted epitopes. 162 

163 
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Results: 164 

From our voluntary on-campus testing program at the University of Arizona, we 165 

recruited 37 participants who had tested positive for SARS-CoV-2 infections between 166 

July 1, 2021 and December 1, 2021 despite completion of the primary vaccine series of 167 

monovalent BNT162b2 or mRNA-1273 prior to infection (described in detail in Methods 168 

section). We also recruited 12 individuals who tested positive during this period but had 169 

not received any COVID-19 vaccines. Symptoms reported by participants following 170 

infections were similar between primary and post-vaccination infections; none required 171 

hospitalization. A slightly larger portion of post-vaccination infections were 172 

asymptomatic relative to primary infections (Figure S1A), and in general, the duration of 173 

symptoms was significantly shorter in this group relative to those who were 174 

unvaccinated at the time of infection (Figure S1B). All recruited individuals who tested 175 

positive by RT-qPCR and had sufficient sequence coverage to assign a lineage had 176 

sequences confirmed to be Delta (Figure S2A). During this period, the Delta variant 177 

represented 100% of PCR+ samples on campus that could be assigned a PANGO-178 

lineage87, as determined through viral sequencing of all remnant samples below a Ct 179 

value of 35 (Figure S2B). We also selected 71 serum samples as part of our statewide 180 

antibody testing initiative88 from vaccinated participants who had no self-reported prior 181 

SARS-CoV-2 infections. This cohort was chosen based on matching for age, sex, and 182 

time post-vaccination with our post-vaccination infection group. Characteristics of the 183 

cohorts are listed in Table 1. 184 

Participants provided blood samples at an average of 75 days (IQR for primary 185 

and post-vaccination infections = 45.8 days, 97.3 days; Table 1) after testing positive for 186 
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SARS-CoV-2 infections and at an average of nine months (IQR for vaccinated only and 187 

post-vaccination infections = 56 days, 317 days; Table 1) after their last vaccine dose. 188 

Using plasma from these samples, we first performed live virus neutralization assays on 189 

both an early-pandemic virus representative, (WA-1, from January 2020) or on the 190 

antigenically drifted Delta variant. Against both WA-1 and Delta, post-vaccination Delta 191 

infections led to significantly higher titers of neutralizing antibodies than both primary 192 

infections and vaccinated only controls (Figure 1A), indicating a robust recall response. 193 

Elevated neutralizing antibody titers in post-vaccination Delta infections could 194 

arise from both memory B cell responses to conserved neutralizing epitopes and 195 

primary responses against new variant-specific epitopes. To begin to determine the 196 

relative specificities of antibodies following Delta infections, we performed ELISAs to 197 

measure the magnitude of the antibody response against Wuhan/Hu1/2019 (hereafter 198 

WuHu1) and Delta Spike antigens. WuHu1 was sampled in December 2019 and is the 199 

SARS-CoV-2 reference sequence; its Spike amino acid sequence is identical to that of 200 

WA-1. We first measured antibodies that bound the receptor binding domain (RBD), as 201 

most neutralizing antibodies target this region89,90.  Post-vaccination Delta infections led 202 

to elevated RBD-binding antibody titers, both against WuHu1 and Delta, relative to 203 

vaccination only and primary Delta infection controls (Figure 1B), again confirming a 204 

robust recall response. As expected, vaccination-only controls showed slightly elevated 205 

titers of WuHu1 RBD-binding antibodies relative to Delta RBD antibodies (Figure 1B, 206 

right panel). Reciprocally, primary Delta infections led to a skewing towards Delta 207 

RBD-binding antibodies (Figure 1B, right panel). Post-vaccination-Delta infections led 208 

to an even ratio of WuHu1:Delta RBD-binding antibodies (Figure 1B, right panel), 209 
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similar to prior studies91. Aside from the RBD, neutralizing antibodies can also bind 210 

other regions of the S1 domain of Spike92–94. As with RBD, post-vaccination Delta 211 

infections led to an even ratio of antibodies that bound WuHu1 and Delta S1 relative to 212 

vaccination alone or primary Delta infections (Figure S3). 213 

To more directly assess antibody specificities with single cell resolution in post-214 

vaccination Delta infections, memory B cells using WuHu1 S1 and Delta S1 antigen 215 

tetramers were quantified by flow cytometry. We focused our analysis on the isotype-216 

switched CD27+ subset (Figure 2A and Figure S4), since few Spike-specific cells are 217 

observed in other memory B cell subsets95. Memory B cells that bound Delta S1 only 218 

were observed in both primary infections and in post-vaccination Delta infections, 219 

suggesting that in both cases, de novo responses aimed at variant-unique epitopes 220 

were mounted (Figure 2A-B). However, the proportions of these cells in PBMCs were 221 

slightly reduced in post-vaccination Delta infections relative to primary Delta infections 222 

(Figure 2B). Reciprocally, cross-reactive memory B cells that bound both WuHu1 S1 223 

and Delta S1 were elevated in post-vaccination Delta infections relative to primary Delta 224 

infections (Figure 2B), consistent with a robust recall response and antigenic imprinting, 225 

though for a subset of individuals this appears to be more modest. In both primary and 226 

post-vaccination Delta infections, memory B cells that bound Delta S1 uniquely were 227 

rare relative to cross-reactive cells that bound both WuHu1 and Delta S1 (Figures 2A-228 

B). Although these data suggest that pre-existing immunity limits new primary 229 

responses, cross-reactive and Delta-specific memory B cells were positively correlated 230 

in post-vaccination Delta infections (Figure 2C), arguing against a mechanism of 231 

competitive inhibition between these two cellular compartments. 232 
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The RBD of Delta contains two non-synonymous point mutations that deviate 233 

from the vaccine sequence: T478K and L452R. The L452R mutation in particular leads 234 

to neutralizing antibody escape90,96–98. To estimate the epitope preferences of serum 235 

antibodies further, we produced a Delta RBD protein in which R452 was reverted to 236 

L452. Vaccination led to a response that was skewed toward the L452-containing RBD 237 

(Figure 3A, compare to Figure 1B, middle panel), confirming the strong antibody bias 238 

and immunodominance of this epitope reported previously99. Yet reciprocal skewing to 239 

R452-containing RBD was not observed in primary Delta infections, suggesting that a 240 

new immunogenic epitope is not created by this mutation (Figure 3A). Post-vaccination 241 

Delta infections led to a relatively even ratio of antibodies that bound Delta-L452 to 242 

those that reacted to Delta-R452 (Figure 3A), perhaps due to boosted levels of 243 

antibodies that bound other conserved sites on RBD and the T478K epitope. We also 244 

produced chimeric WuHu1 S1 proteins in which the Delta N-terminal domain (NTD) 245 

supersite mutations (T19R, G142D, E156-, F157-, R158G) were introduced onto a 246 

WuHu1 background92–94. Vaccination only controls showed a relatively even distribution 247 

of antibodies that bound WuHu1 S1 and Delta NTD-WuHu1 S1 (Figure 3B compare to 248 

Figure S3, left panel). Primary Delta infections, however, were subtly but significantly 249 

skewed towards the Delta NTD (Figure 3B). Together, these data demonstrate a 250 

shifting of immunodominance profiles, even in the absence of prior SARS-CoV-2 251 

immunity. 252 

To more precisely measure clonal shifts in antibody specificities and 253 

immunodominance than can be achieved by serological assays, we performed LIBRA-254 

seq using PBMC samples from primary and post-vaccination Delta infections100. 255 
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Streptavidin-phycoerythrin (PE) tetramers were constructed using WuHu1 S1, Delta S1, 256 

Delta RBD, Delta RBD-L452, and Delta NTD-WuHu1-S1, as described in Figures 1, 3 257 

and S3, each carrying unique oligonucleotide barcodes. PE-binding memory cells were 258 

then enriched and subjected to scRNA/V(D)J-seq. Consistent with our serological data 259 

(Figure 3A-B), we observed few memory B cells that bound Delta RBD- and NTD-260 

specific epitopes (Figure 3C) in primary Delta infections and post-vaccination Delta 261 

infections (Figure S5A). A clear preference for Delta-unique epitopes in the NTD 262 

relative to the RBD was observed within individuals that had experienced a primary 263 

Delta infection (Figure 3D). Within each group, we did not observe any clear differences 264 

in epitope-dependence of somatic mutation frequencies in memory B cells (Figure 265 

S5B). We did, however, observe a greater frequency of somatic mutations in Spike-266 

specific memory B cells in the post-vaccination Delta infection cohort relative to primary 267 

Delta infections (Figure S5C). Together, these data suggest a marked shift in antibody 268 

specificities in primary Delta variant infections relative to WuHu1 Spike. This explains in 269 

part why responses to at least some drifted epitopes are not observed, irrespective of 270 

prior vaccination. 271 

During the course of this work, the heavily mutated Omicron (BA.1) variant 272 

rapidly overtook Delta and swept to global dominance. To define post-vaccination BA.1 273 

responses, we recruited individuals from our voluntary on-campus testing program who 274 

had tested positive for SARS-CoV-2 between January 1 and March 31, 2022, with the 275 

expectation that primary responses would be robust against this more antigenically 276 

distant variant101. All individuals for this study who tested positive by PCR had 277 

sequences confirmed to be BA.1 (Figure S2A). Individuals with a SARS-CoV-2 278 
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infection caused by a Delta variant or other Omicron sublineages were excluded from 279 

the study. Viral genome sequencing of all remnant PCR+ samples on campus during 280 

this period below a Ct value of 35 demonstrated that 93.7% of samples that could be 281 

assigned a PANGO-lineage87 were caused by the BA.1 sublineage of Omicron (Figure 282 

S2B).  To obtain controls for this cohort, some of whom had received 3 doses of mRNA 283 

vaccines, we also recruited a new group of vaccinated individuals who had never tested 284 

positive in our voluntary university testing system and reported no known prior SARS-285 

CoV-2 infections. After testing plasma for nucleocapsid antibodies as a marker of prior 286 

infection, samples from 5 individuals with titers well above the mean values seen in 287 

verified infections were excluded from further consideration (Figure S6). Relative to 288 

both primary and post-vaccination Delta infections, post-vaccination BA.1 infections 289 

generally led to fewer symptoms such as wet cough (Figure S1A) and shorter duration 290 

of symptoms (Figure S1B). 291 

We were unable to recruit any unvaccinated individuals on campus who had 292 

experienced BA.1 infections. However, we were able to obtain serum and, for a subset, 293 

PBMC samples from a separate study from the Centers for Disease Control and 294 

Prevention HEROES and RECOVER projects85, in which 53 individuals met these 295 

criteria (Table 1). Neutralizing antibody titers were skewed towards WA-1 in individuals 296 

who had been vaccinated but not infected (Figure 4A). Post-vaccination BA.1 infections 297 

led to significantly higher neutralizing antibody titers against BA.1 compared to both 298 

vaccinated controls who had not been infected and primary infections (Figure 4A), 299 

consistent with a memory B cell recall response. 300 
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We next examined binding antibody titers against WuHu1 or BA.1 RBD. Post-301 

vaccination BA.1 infections led to increased levels of RBD-binding antibodies, both for 302 

WuHu1 and BA.1, relative to the vaccinated only control cohort and primary BA.1 303 

infections (Figure 4B, left and middle panels). Vaccination alone led to greater RBD 304 

titers against BA.1 than did primary BA.1 infections, despite the many mismatches in 305 

sequence (Figure 4B, middle panel). As expected, antibodies from vaccinated only 306 

individuals were skewed towards WuHu1 relative to BA.1 RBD (Figure 4B, right 307 

panel). Of the few antibodies induced by primary BA.1 infections, we observed a 308 

skewing of specificities towards BA.1 RBD (Figure 4B, right panel). Ratios of WuHu1 309 

and BA.1 RBD-binding antibodies in post-vaccination BA.1 infections more closely 310 

resembled vaccinated controls than primary BA.1 infections (Figure 4B, right panel). 311 

To further evaluate the specificities of antibody responses in post-vaccination 312 

BA.1 infections, we again used antigen tetramers to identify RBD-specific memory B 313 

cells (Figures S7 and 5A). As expected, primary BA.1 infections generated a lower 314 

frequency of WuHu1 RBD-specific memory B cells compared to vaccinated controls 315 

(Figure 5B, left panel). Unexpectedly, BA.1-specific RBD memory B cells were not 316 

consistently detectable above background in any experimental group, even primary 317 

BA.1 infections (Figure 5B, middle panel). These data seem to differ from the modest 318 

skewing of the serological response seen above in primary BA.1 infections (Figure 4B, 319 

right panel), but can potentially be explained by low overall responses and prior studies 320 

that observed only partial overlap between memory B and antibody-secreting plasma 321 

cell specificities and repertoires43,102,103. Instead, most RBD-specific memory B cells 322 

from all cohorts were cross-reactive against WuHu1 and BA.1 RBD (Figure 5A, 5B, 323 
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right panel). Primary BA.1 infections produced numerically fewer cross-reactive RBD 324 

memory B cells than did post-vaccination BA.1 infections (Figure 5B, right panel). 325 

Given that the overall antibody and memory B cell response to BA.1 RBD was 326 

quite modest (Figures 4B, 5A-B), we employed tetramers of full-length Spike trimers of 327 

WuHu1 and BA.1 Spike to capture a greater breadth of memory B cell specificities than 328 

could be observed with RBD tetramers (Figures 5C). WuHu1-specific memory B cells 329 

were observed in vaccinated controls and post-vaccination BA.1 infections, but not after 330 

primary BA.1 infections (Figures 5D, left panel). We again failed to consistently 331 

observe BA.1-specific memory B cells in any of the groups, including primary BA.1 332 

infections, though a subset of post-vaccination BA.1 infections did appear to generate 333 

such cells well above background levels (Figure 5D, middle panel). As with RBD, 334 

cross-reactive Spike-specific memory cells were significantly elevated in post-335 

vaccination BA.1 infections relative to primary BA.1 infections, but not relative to 336 

vaccinated only controls (Figure 5D, right panel). Cross-reactive memory B cells 337 

composed by far the largest portion of SARS-CoV-2 specific responses within all 338 

experimental groups (Figure S8). 339 

For a subset of primary BA.1 and post-vaccination BA.1 cohorts, we obtained 340 

samples which enabled us to quantify WuHu1, BA.1, and cross-reactive Spike- and 341 

RBD- specific memory B cell frequencies before and after BA.1 infection. Irrespective of 342 

vaccination status, memory B cells that were either WuHu1- or BA.1-RBD-specific 343 

increased in frequency for only a subset of individuals after BA.1 infection (Figure 6A, 344 

left and middle panels). However, cross-reactive RBD memory B cells consistently 345 

and significantly increased after both primary and post-vaccination BA.1 infections 346 
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(Figure 6A, right panel). The frequency of cross-reactive Spike memory B cells also 347 

significantly increased after primary BA.1 infections (Figures 6B, right panel).  348 

To infer potential mechanisms of antigenic imprinting from these samples, we 349 

first correlated pre-infection cross-reactive Spike-specific memory B cells and post-350 

infection BA.1 Spike-specific memory B cells. A negative correlation could indicate 351 

detrimental imprinting, whereby pre-existing memory B cells outcompete naïve B cells 352 

and inhibit the generation of variant-specific responses. Instead, we observed a slight 353 

positive but non-statistically significant correlation between pre-infection cross-reactive 354 

Spike-specific memory B cells and post-infection BA.1 Spike-specific memory B cells 355 

(Figure 7A). Similarly, we observed a non-significant positive correlation between post-356 

infection cross-reactive Spike-specific memory B cells and post-infection BA.1 Spike-357 

specific memory B cells (Figure 7B).  358 

Given that these data do not support a mechanism of competitive inhibition of 359 

naïve B cells by cross-reactive memory B cells, we explored other mechanisms by 360 

which de novo responses to drifted epitopes are indirectly suppressed, such as 361 

accelerated viral clearance by neutralizing antibodies and/or T cells. We found a 362 

negative, but non-statistically significant correlation of de novo responses with pre-363 

infection BA.1 neutralizing antibody titers (Figure 7C). Similarly, we observed a small 364 

and non-significant negative correlation with pre-infection BA.1 Spike-specific T cell 365 

numbers and post-infection BA.1 Spike memory B cells (Figure 7D). The small sample 366 

sizes and variable times of blood sampling prior to infection preclude us from making 367 

definitive conclusions about mechanisms driving antigenic imprinting. Nonetheless, the 368 

data suggest that neutralizing antibody and/or memory T cell-mediated viral clearance 369 
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may indirectly underlie suppression of responses to drifted epitopes. This overall impact 370 

is quite small relative to the marked changes in antibody immunodominance observed 371 

in even primary BA.1 variant infections, irrespective of prior immunity. 372 
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Discussion: 373 

Antigenic imprinting is neither inherently beneficial nor detrimental; rather the 374 

impact of prior immunity is context-dependent45. For example, pre-existing serum 375 

antibodies can improve and focus de novo responses upon reinfection to only mutated 376 

novel epitopes through epitope masking104–106. Similarly, de novo responses to drifted 377 

epitopes can be improved by pre-existing CD4+ memory T cells in what is classically 378 

known as the hapten-carrier effect107. Alternatively, high affinity memory B cells can 379 

competitively inhibit naïve B cells by consuming limited amounts of antigen and T cell 380 

help, leading to a suppression of de novo antibody responses108. If these memory B 381 

cells target non-protective epitopes, this could in theory leave one worse off than if there 382 

were no prior immunity whatsoever44,109. Finally, pre-existing immunity could indirectly 383 

suppress new antibody responses to drifted epitopes simply by clearing away virus and 384 

antigen before naïve B cells can robustly participate.  385 

Though neutralizing antibody titers were robust following post-vaccination 386 

infections, our results demonstrated a small negative impact of prior immunity on de 387 

novo responses to drifted epitopes. Yet we found no evidence to support a mechanism 388 

of competitive inhibition by cross-reactive memory B cells. Though not definitive, our 389 

data instead hint at a role for pre-infection neutralizing antibodies and memory T cells, 390 

suggesting that antigen clearance is the main mechanism by which de novo B cell 391 

responses are indirectly suppressed by prior immunity. Indeed, pre-existing neutralizing 392 

antibodies likely accelerate viral clearance110,111, and viral and vaccine antigens can 393 

potentially also be cleared by T cells or non-neutralizing antibodies via Fc effector 394 

functions112–114. Animal studies offer an attractive way to further test mechanisms of 395 
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antigenic imprinting on heterologous vaccine and viral infection responses. For 396 

example, genetic tracking studies were used to show robust de novo responses to 397 

Omicron boosters in mice previously vaccinated against the ancestral strain. Yet this 398 

required two booster doses, and a small negative impact of prior immunity was 399 

observed in inverse proportion to the antigenic distance between the two 400 

immunizations101. Similar results have been reported in other mouse studies115. These 401 

systems can thus potentially be used to manipulate specific immune parameters and 402 

measure their contributions to antigenic imprinting in ways that are not possible in 403 

human studies, especially since few immunologically naïve adults remain to serve as 404 

controls. 405 

Immunodominance hierarchies can also determine which epitopes are available 406 

to be targeted by antibodies, irrespective of prior immunity. Prior studies, confirmed in 407 

our experiments, showed that a large portion of COVID-19 vaccine-induced antibodies 408 

are aimed at the L452 class 3 epitope116. Yet in the post-vaccination Delta cohort, we 409 

observed few antibodies directed at the epitope containing the L452R mutation. Under 410 

the assumption that one immunodominant epitope was being mutated to another, one 411 

might have concluded that the absence of R452-specific antibodies could be explained 412 

by antigenic imprinting. Yet by including a primary infection cohort, we observed that the 413 

Delta variant intrinsically did not elicit detectable antibody responses against the R452 414 

epitope, even with no prior SARS-CoV-2 exposures, consistent with an independent 415 

study52. We can instead conclude that Delta shifts antibody immunodominance 416 

hierarchies to instead focus more on epitopes located in the NTD. These types of shifts 417 

in immunodominance preempt any considerations of the impact of antigenic imprinting. 418 
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The basis and mechanisms of these shifts for SARS-CoV-2 clearly needs more 419 

investigation to determine whether and how best to overcome them. 420 

This study spanned a period from the Delta wave through the more antigenically 421 

distinct BA.1 Omicron wave. A central expectation of antigenic imprinting is that the 422 

extent to which prior immunity interferes with de novo responses should decrease as 423 

antigenic distance increases101. We used the Delta and BA.1 variants to test this 424 

expectation in SARS-CoV-2 and to understand the impacts of antigenic distance on 425 

antigenic imprinting. Despite our prediction, we observe even less of a variant specific 426 

response in post-vaccination BA.1 infections compared to post-vaccination Delta 427 

infections. Much of this can be explained by shifts in immunodominance in which even 428 

primary BA.1 infections elicited few memory B cell responses to drifted epitopes. Yet 429 

longitudinal sampling during BA.1 infections has also shown that viral titers do not reach 430 

the peak levels observed in Delta infections117, suggesting that immune responses to 431 

drifted epitopes occur in proportion to need and antigen availability.   432 
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Methods: 456 

  457 

Participant selection 458 

All human studies conducted at The University of Arizona were approved by the 459 

Institutional Review Board for the Human Subjects Protection Program†. Individuals who 460 

had participated in the voluntary on-campus saline gargle testing program and had 461 

either never tested positive or had tested positive during the Delta or BA.1 waves were 462 

contacted by email by the program administrators (not the authors on this study) about 463 

willingness to participate in this research study. Participants were provided a link to an 464 

eligibility questionnaire and, once eligibility (no immunosuppressive therapy in the last 5 465 

years and HIV negative) was confirmed, additional demographic questions and a link to 466 

schedule an appointment for blood draws. Written consent was obtained through an 467 

electronic form. All blood draws were performed at the Clinical and Translational 468 

Sciences Center at The University of Arizona. Additional primary and post-vaccination 469 

BA.1 infection samples were acquired from the CDC HEROES-RECOVERS††  cohort85. 470 

This study was reviewed by CDC and approved by the institutional review boards at 471 

participating sites or under a reliance agreement with Abt Associates institutional review 472 

board and was conducted consistent with applicable federal law and CDC policy under 473 

45 C.F.R. part 46, 21 C.F.R. part 56, 42 U.S.C. Sect. 241(d), 5 U.S.C. Sect. 552a, 44 474 

U.S.C. Sect. 3501 et seq. Methods for the HEROES-RECOVER Cohorts have 475 

been published previously85,86. In summary, cohorts consisted of health care 476 

personnel, first responders, and other essential and frontline workers in eight 477 

U.S. locations across six states. Participants collected weekly nasal swabs which 478 
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were tested for SARS-CoV-2 viral material by RT-qPCR and additional swabs 479 

were collected and screened upon the onset of any COVID-19–like illness 480 

symptoms. In addition, blood draws were collected at enrollment, then 481 

approximately every 3 months and after immune modifying events such as 482 

vaccination or infection. Vaccination was documented by self-report and verified 483 

by vaccine cards or electronic medical records or state immunization registries.  484 

HEROES-RECOVER participants were selected based on testing positive for SARS-485 

CoV-2 during Delta or BA.1 waves and having completed a blood draw after infection.  486 

 487 

Saline Gargle PCR testing for SARS-CoV-2 488 

As part of Test All, Test Smart, the University of Arizona’s voluntary campus-wide 489 

testing program, University staff, faculty and students had access to SARS-CoV-2 rRT-490 

PCR tests from August 2020 – July 2023. At testing and collection sites throughout 491 

campus, individuals were given 5 mL of 0.9 % sterile saline (AddiPak 5 mL sterile saline 492 

single use tubes, Teleflex, LLC) and guided to complete three rounds of a 5-second 493 

swish followed by 10 seconds of gargling (adapted from Goldfarb et al.118). Samples 494 

were deposited into collection tubes and then screened for SARS-CoV-2 by rRT-PCR.  495 

 496 

PBMC and plasma preparation 497 

Twenty milliliters of blood was collected by venipuncture in heparinized Vacutainer 498 

tubes (BD). For PBMCs, 15ml of Ficoll-Paque PLUS (Thermo Fisher Scientific) was 499 

added to 50-ml Leucosep tubes (Greiner) and spun for 1min at 1,000g to transfer the 500 

density gradient below the filter. Twenty milliliters of blood from the heparinized tubes 501 
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was then poured into the top of the Leucosep tube and spun at 1,000g for 10min at 502 

room temperature with the brake off. The top plasma layer was carefully collected and 503 

frozen at −20 °C, and the remaining supernatant containing PBMCs above the filter was 504 

poured into a new 50-ml conical tube containing 10mL of PBS and spun at 250g for 505 

10min. Cell pellets were resuspended in RPMI media containing 10% FCS and counted 506 

on a Vi-Cell XR (Beckman Coulter). Cells were diluted to a concentration of 2 × 10! 507 

cells per mL in RPMI media containing 10% FCS. An equal volume of 80% FCS + 20% 508 

dimethyl sulfoxide was added dropwise and inverted once to mix. Suspensions were 509 

distributed at 1ml per cryovial and frozen overnight at −80 °C in Mr. Frosty freezing 510 

chambers (Nalgene). Vials were then transferred to storage in liquid nitrogen. 511 

 512 

 513 

ELISA and quantification of antibody titers 514 

Serological assays were performed as previously described88. WuHu1 RBD (cat. no. 515 

SPD-C52H3), WuHu1 S1subdomain of the SARS-CoV-2 S glycoprotein (cat. no. S1N-516 

C52H3), WuHu1 Spike (cat. no. SPN-C52H9), Delta RBD (cat. no. SPD-C52Hh), Delta 517 

S1 subdomain (cat. no. S1N-C52Hu), Omicron (BA.1) RBD (cat. no. SPD-C522e), 518 

Omicron (BA.1) Spike (cat. no. SPN-C52Hz) and Nucleocapsid (cat. no. NUN-C5227) 519 

were purchased from Acro Biosystems. Chimeric proteins (Delta RBD-L452 and Delta 520 

NTD-WuHu1 S1) were custom synthesized by GenScript. To obtain titers and single-521 

dilution OD450 values, antigens were immobilized on high-adsorbency 384-well plates 522 

at 5 ng mL−1. Plates were blocked with 1% non-fat dehydrated milk extract (Santa Cruz 523 

Biotechnology, sc-2325) in sterile PBS (Thermo Fisher Scientific HyClone PBS, 524 
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SH2035) for 1 h, washed with PBS containing 0.05% Tween-20 and overlaid for 60 min 525 

with either a single 1:60 dilution or five serial 1:3 dilutions beginning at a 1:60 dilution of 526 

serum. Plates were then washed and incubated for 1 h in 1% PBS and milk containing 527 

anti-human Pan-Ig HRP-conjugated antibody (Jackson ImmunoResearch, 109-035-064) 528 

at a concentration of 1:2,000 for 1 h. Plates were washed with PBS-Tween solution 529 

followed by PBS wash. To develop, plates were incubated in tetramethylbenzidine 530 

(Fisher Scientific) before quenching with 2 N H2SO4. Plates were read for 450-nm 531 

absorbance on CLARIOstar Plus from BMG Labtech. All samples were also read at 532 

630 nm to detect any incomplete quenching. Any samples above background 630-nm 533 

values were re-run. Area under the curve (AUC) values were calculated in GraphPad 534 

Prism (v9). 535 

 536 

 537 

Virus neutralization assays 538 

All live virus assays were performed at Biosafety Level 3 and were approved by the 539 

University of Arizona Institutional Biosafety Committee. SARS-CoV-2, isolate USA-540 

WA1/2020, was deposited by Dr Natalie J. Thornburg at the Centers for Disease 541 

Control and Prevention and obtained from the World Reference Center for Emerging 542 

Viruses and Arboviruses. Stocks of WA1/2020 SARS-CoV-2 were generated as a single 543 

passage from received stock vial on mycoplasma-negative Vero cells (ATCC CCL-81).  544 

B.1.617.2 (Delta) was received from WRCEVA, strain designation GNL-1205. B.1.1.529 545 

(Omicron) originated from a nasopharyngeal swab collected at the University of Arizona.  546 

It was passaged once on Calu-3 cells and then once on Vero cells to generate a master 547 
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stock. Viral PANGO-lineage, BA.1.187, was confirmed by Illumina sequencing 548 

(EPI_ISL_17886211) of the master stock.  549 

Supernatant and cell lysate were combined, subjected to a single freeze–thaw 550 

and then centrifuged at 1,800g for 10min to remove cell debris. For PRNTs for SARS-551 

CoV-2, Vero cells (ATCC, CCL-81) were plated in 96-well tissue culture plates and 552 

grown overnight. Vero cells were confirmed by PCR to be free of mycoplasma using the 553 

Universal Mycoplasma Detection Kit (ATCC). Serial dilutions of serum samples were 554 

performed in duplicate and incubated with 100 plaque-forming units of SARS-CoV-2 for 555 

1h at 37 °C. Plasma/serum dilutions plus virus were transferred to the cell plates and 556 

incubated for 2h at 37 °C in 5% CO2 and then overlaid with 1% methylcellulose. After 557 

72h, plates were fixed with 10% neutral buffered formalin for 30min and stained with 1% 558 

crystal violet. Plaques were imaged using an ImmunoSpot Versa plate reader. The most 559 

dilute serum concentration that led to ten or fewer plaques was designated as the 560 

PRNT90 titer. Input PFU for each experiment was confirmed by plaque assay. 561 

 562 

Flow cytometry 563 

One milliliter of pre-warmed FBS was added to a frozen cryovial of 107 PBMCs, which 564 

was rapidly thawed in a 37℃ water bath. Samples were poured into 15 mL conical tubes 565 

containing 5 mL of pre-warmed RPMI with 5% FBS and 1% anti/anti. Tubes were spun 566 

at 250g for 5 min at room temperature.  567 

Delta 568 

Supernatants were removed and cell pellets were resuspended in 200 µL of staining 569 

buffer containing 1 µL each of anti-CD38-APC (BioLegend, clone HIT2), anti-CD13-PE-570 
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Cy7 (BioLegend, clone WM15), anti-CD21-PE-Dazzle (BioLegend, clone Bu32), anti-571 

CD19-APC-efluor-780 (Invitrogen, clone HIB19), anti-IgD-PerCP-Cy5.5 (Biolegend, 572 

clone IA6-2), anti-IgM-FITC (Biolegend, clone MHM-88), anti-CD27-BV510 (Biolegend, 573 

clone M-T271), anti-CD11c-Alexa700 (BioLegend, clone Bu15). Staining buffer also 574 

contained Delta-S1-PE and S1-BV421 tetramers.  575 

BA.1 576 

Supernatants were removed and cell pellets were resuspended in 200 µL of staining 577 

buffer containing 1 µL each of anti-CD38-BV421 (BioLegend, clone HB-7), anti-CD13-578 

PE-Dazzle 594 (BioLegend, clone WM15), anti-CD21-PerCP Cy 5.5 (BioLegend, clone 579 

Bu32), anti-CD19-APC-efluor-780 (Invitrogen, clone HIB19), anti-IgD-BV510 580 

(Biolegend, clone 11-26c.2a), anti-IgM-FITC (Biolegend, clone MHM-88), anti-CD27-PE 581 

Cy 7 (Biolegend, clone M-T271), anti-CD11c-Alexa700 (BioLegend, clone Bu15). Cells 582 

were stained with live-dead marker, Zombie Yellow (BioLegend) according to 583 

manufacturer’s recommendations. Staining buffer also contained BA.1-Spike-PE and 584 

Spike-Alexa Fluor 647 tetramers.  585 

 586 

Antibodies were validated by the manufacturer on human PBMCs. Tetramer reagents 587 

were assembled by mixing 100µg ml-1 of C-terminal AviTagged S1, Delta S1, WuHu1 588 

Spike, or BA.1 Spike (ACROBiosystems) with 100µg ml-1 of streptavidin-PE(BioLegend), 589 

streptavidin-BV421 (BioLegend), or streptavidin-Alexa Fluor 647 (BioLegend), 590 

respectively, at a 6:1 molar ratio for S1 or 4:1 molar ratio for Spike, in which ⅕ of the 591 

final volume of streptavidin was added every 10 min. S1 and Spike  tetramers were 592 

validated by staining Lenti-X 293T cells(Takara Bio) as a negative control or 293T-593 
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hACE2-expressing cells (BEI Resources, NR-52511) as a positive control. Lenti-X 293T 594 

cells were confirmed to be free of mycoplasma; 293T-hACE2 cells were maintained in 595 

media containing 1% pen/strep to minimize chances of contamination. PBMC samples 596 

were stained for at least 20 minutes, washed and filtered through 70-µm nylon mesh. 597 

Data were analyzed on either a BD LSR2 (tetramer validation only), a Fortessa 598 

cytometer (Delta), or BD Cytek Aurora (BA.1). Data were analyzed using FlowJo 599 

software. 600 

601 

Flow cytometry and Fluorescence Activated Cell Sorting 602 

One milliliter of pre-warmed FBS was added to a frozen cryovial of PBMCs and thawed 603 

by pipetting. Samples were added to 15 mL conical tubes containing 10 mL of pre-604 

warmed RPMI with 20% FBS and 1% anti/anti. Tubes were spun at 1200 RPM for 5 605 

minutes at room temperature. Supernatants were removed and cell pellets were 606 

resuspended in 200 µL of staining buffer contained 1 µL each of anti-CD19-607 

BV421(Biolegend, clone HIB19), anti-CD27-FITC(Biolegend, clone O323), anti-CD13-608 

PE-Cy-7(Biolegend, clone WM15), anti-IgD-APC-Cy-7(Biolegend, clone IA6-2). Staining 609 

buffer also contained either 5 or 2 LIBRA-Seq tetramers: S1-PE(Biolegend, TotalSeq-610 

C0951_PE), Delta S1-PE(Biolegend, TotalSeq-C0952_PE),  Delta NTD/S1-611 

PE(Biolegend, TotalSeq-C0953_PE), Delta RBD/L452(Biolegend, TotalSeq-612 

C0954_PE), and Delta RBD-PE(Biolegend, TotalSeq-C0955_PE). Biotinylated tetramer 613 

reagents were assembled by mixing 100µg ml-1 of C-terminal AviTagged S1 614 

(ACROBiosystems), Delta S1 (ACROBiosystems), Delta NTD/S1 (GenScript), Delta 615 

RBD/L452 (Genscript), or Delta RBD (ACROBiosystems) with 100µg ml-1 of 616 
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streptavidin-TotalSeq-C-PE (BioLegend) at a 6:1 molar ratio in which ⅕ of the final 617 

volume of streptavadin was added every 10 min. Tetramers were validated by staining 618 

Lenti-X 293T cells(Takara Bio) as a negative control or 293T-hACE2-expressing cells 619 

(BEI Resources, NR-52511) as a positive control. Lenti-X 293T cells were confirmed to 620 

be free of mycoplasma; 293T-hACE2 cells were maintained in media containing 1% 621 

pen/strep to minimize chances of contamination. Additionally, TotalSeq-C anti-human 622 

Hashtag antibodies (Biolegend, TotalSeq™-C0251-10) were added to individual 623 

samples and pooled after staining and washing. PBMCs were stained in the dark for 30 624 

minutes at 4˚C, washed, pooled and filtered through a 35 µm strainer (Fisher Scientific). 625 

SARS-CoV-2 specific memory B cells (CD19+IgD-IgM-CD27+) as well as non-antigen 626 

specific memory B cells were sorted using a FACSAria II. 627 

628 

Single-cell RNA sequencing and analysis 629 

Cells were prepared and processed according to the 10X Genomics Single Cell 5’ Dual 630 

Index protocol with Feature Barcoding Technology for Cell Surface Protein and Immune 631 

Receptor Mapping kit (10X Genomics). Reads were processed and aligned using the 632 

10X CellRanger multi pipeline to GRCh38 gex and vdj reference genomes (10X 633 

Genomics). Each sample feature barcode matrix was loaded into R and analyzed 634 

utilizing the Seurat package for gene expression, vdj and antibody capture analysis119. 635 

Cell processing was conducted as previously described100. Data are available at NCBI 636 

GEO accession number GSE242775. 637 

638 

ELISpot Assay 639 
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Cryopreserved PBMC (5 × 106/sample) were thawed in prewarmed RPMI-1640 media 640 

supplemented with L-glutamine + 10% FCS and 300ug DNAse. Thawed PBMCs were 641 

rested overnight at 37 °C in X-VIVO™-15 Medium (Lonza) supplemented with 5% 642 

human-AB serum. Cells were stimulated with ~1 nmol of peptide pool corresponding to 643 

spike of Omicron (B.1.1.529) variant (16-mer peptide pools, overlapping by 10 amino 644 

acids (21st century Biochemicals Inc.)  on pre-coated human IFN-γ ELISpot plates 645 

(Mabtech, Inc.) and developed after 18 hours according to manufacturer instructions. 646 

Spots were imaged and counted using Iris FLUOROspot reader (Mabtech). 647 

648 

Statistical methods 649 

All analyses are listed in the figure legends and were performed in GraphPad Prism 9 650 

and/or the R programming language (v4.0.5). 651 

652 

Footnotes 653 

† See 45 C.F.R. part 46; 21 C.F.R. part 56 654 

†† This study was reviewed by CDC and approved by the institutional review boards at 655 

participating sites or under a reliance agreement with Abt Associates institutional review 656 

board and was conducted consistent with applicable federal law and CDC policy under 657 

45 C.F.R. part 46, 21 C.F.R. part 56, 42 U.S.C. Sect. 241(d), 5 U.S.C. Sect. 552a, 44 658 

U.S.C. Sect. 3501 et seq.659 

660 

661 

662 
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Figure 1. Primary and recall antibody responses to Wuhan and Delta strains of 1135 

SARS-COV-2. (A) Virus neutralization assays were performed using the WA-1 and 1136 

Delta isolates of SARS-CoV-2. Serial 1:3 dilutions of serums were performed and tested 1137 

for the ability to prevent plaque formation on Vero cells. The lowest concentration 1138 

capable of preventing more than 90% of plaques was considered to be the PRNT90 1139 

value. Each symbol represents an individual. Two-sided P values from t-test statistics 1140 

were calculated for pairwise differences using two-way ANOVA. Post hoc testing for 1141 

multiple comparisons between draws was performed using Tukey’s multiple 1142 

comparisons test. P values greater than 0.05 are not depicted. (B) Quantitative titers of 1143 

WuHu1- and Delta RBD-specific antibodies. Serum was initially diluted 1:60, serially 1144 

diluted 1:3, assessed by ELISA for binding to the listed antigens, and area under the 1145 

curve (AUC) values were calculated. Each symbol represents an individual. WuHu1 1146 

AUC values were divided by their Delta AUC titer in the same individual to calculate a 1147 

WuHu1:Delta RBD ratio in the rightmost panel. Two-sided P values from t-test statistics 1148 

were calculated for pairwise differences using one-way ANOVA. Post hoc testing for 1149 

multiple comparisons between draws was performed using Tukey’s multiple 1150 

comparisons test. P values greater than 0.05 are not depicted. 1151 
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Figure 2. WuHu1 and Delta Memory B cell flow cytometric analysis and 1154 

quantification. (A) Representative flow cytometric plots of Wuhu1 and Delta S1-1155 

specific memory B cells (full gating strategy shown in Figure S2) in naïve, primary Delta 1156 

infection, and post-vaccination Delta infection cohorts. Cells that bind both WuHu1 S1 1157 

and Delta S1 are annotated as cross-reactive S1+, whereas cells that bind only WuHu1 1158 

S1 or Delta S1 are annotated as WuHu1 S1+ or Delta S1+, respectively. (B) 1159 

Quantification of isotype-switched memory B cells as a percentage of total PBMCs for 1160 

Wuhu1 S1+, Delta S1+ and cross-reactive S1+ specificities for each cohort of SARS-1161 

CoV-2 immune histories. Each symbol represents an individual. Two-sided P values 1162 

from t-test statistics were calculated for pairwise differences using one-way ANOVA. 1163 

Post hoc testing for multiple comparisons between draws was performed using Tukey’s 1164 

multiple comparisons test. P values greater than 0.05 are not depicted. (C) Correlation 1165 

of post-infection cross-reactive S1 MBCs (calculated as in Figure 2B) plotted against the 1166 

frequency of post-infection Delta S1-specific MBCs (calculated as in Figure 2B) in 1167 

individuals that experienced a post-vaccination Delta infection. Pearson correlation 1168 

analysis was performed. 1169 

 1170 

  1171 
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Figure 3. Epitope-specific quantification of Delta RBD- and Delta NTD-specific 1172 

antibodies and memory B cells. (A) A chimeric protein (Delta RBD-L452) was 1173 

generated in which R452 was reverted to the ancestral L452. ELISAs were used to 1174 

quantify serum antibodies that bound to Delta RBD-L452 in each cohort. Delta RBD-1175 

L452 AUC titers were divided by Delta RBD titers (Figure 1B) in the same individuals to 1176 

calculate a L452:R452 titer ratio. Each symbol represents an individual. Two-sided P 1177 

values from t-test statistics were calculated for pairwise differences using one-way 1178 

ANOVA. Post hoc testing for multiple comparisons between draws was performed using 1179 

Tukey’s multiple comparisons test. P values greater than 0.05 are not depicted. (B) A 1180 

chimeric protein (Delta NTD-WuHu1 S1) was generated in which Delta NTD mutated 1181 

epitopes (T19R, G142D, E156-, F157-, R158G) were incorporated into the otherwise 1182 

WuHu1 S1 backbone. ELISAs were used to quantify serum antibodies that bound to 1183 

Delta NTD-WuHu1 S1 in each cohort. Delta RBD-L452 AUC titers were divided by their 1184 

Delta RBD (Supplemental Fig 1A) titer to calculate a WuHu1 NTD:Delta NTD titer ratio. 1185 

Each symbol represents an individual. Two-sided P values from t-test statistics were 1186 

calculated for pairwise differences using one-way ANOVA. Post hoc testing for multiple 1187 

comparisons between draws was performed using Tukey’s multiple comparisons test. P 1188 

values greater than 0.05 are not depicted. (C) LIBRA-seq plots of isotype-switched 1189 

memory B cells enriched for Spike-binding specificities from primary Delta infections. 1190 

Read count thresholds to determine positivity were set using samples in which cells 1191 

lacking Spike-binding specificities were sorted and sequenced. Plots are concatenated 1192 

from ten individuals. (D) Quantification of Delta RBD-specific and Delta NTD-specific 1193 

memory B cells (MBCs) in individuals that experienced a primary Delta infection. Lines 1194 
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connect specificities within the same individual. Delta RBD-specific cells were classified 1195 

by cells that had Delta RBD read counts of greater than 160 and WuHu1 S1 read 1196 

counts of less than 35. Delta NTD-specific cells were classified by cells that had Delta 1197 

NTD-WuHu1 S1 read counts of greater than 23 and WuHu1 S1 read counts of less than 1198 

35. Two-sided P values were calculated for pairwise differences using paired t-tests.1199 

1200 
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Figure 4. Primary and recall antibody responses to Wuhan and BA.1 strains of 1205 

SARS-COV-2. (A) Virus neutralization assays were performed using the WA-1 and 1206 

BA.1 isolates of SARS-CoV-2. Serial 1:3 dilutions of serums were performed and tested 1207 

for the ability to prevent plaque formation on Vero cells. The lowest concentration 1208 

capable of preventing more than 90% of plaques was considered to the PRNT90 value. 1209 

Each symbol represents an individual. Two-sided P values from t-test statistics were 1210 

calculated for pairwise differences using two-way ANOVA. Post hoc testing for multiple 1211 

comparisons between draws was performed using Tukey’s multiple comparisons test. P 1212 

values greater than 0.05 are not depicted. (B) Quantitative titers of Wuhu1 and BA.1 1213 

RBD antibodies. Serum was initially diluted 1:60, serially diluted 1:3, assessed by 1214 

ELISA for binding to the listed antigens, and area under the curve (AUC) values were 1215 

calculated. Each symbol represents an individual. WuHu1 AUC values were divided by 1216 

their BA.1 RBD AUC titer in the same individual to calculate a ratio in the rightmost 1217 

panel. Two-sided P values from t-test statistics were calculated for pairwise differences 1218 

using one-way ANOVA. Post hoc testing for multiple comparisons between draws was 1219 

performed using Tukey’s multiple comparisons test. P values greater than 0.05 are not 1220 

depicted. 1221 
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Figure 5. WuHu1 and BA.1 Memory B cell flow cytometric analysis and 1224 

quantification. (A) Representative flow cytometric plots of Wuhu1 and BA.1 RBD-1225 

specific memory B cells (full gating strategy shown in Figure S3) in naïve, vaccinated 1226 

only, primary BA.1 infection, and post-vaccination BA.1 infection cohorts. Cells that bind 1227 

both WuHu1 RBD and BA.1 RBD are annotated as cross-reactive RBD+, whereas cells 1228 

that bind only WuHu1 RBD or BA.1 RBD are annotated as WuHu1 RBD+ or BA.1 1229 

RBD+, respectively. (B) Quantification of isotype-switched memory B cells for Wuhu1 1230 

RBD+, BA.1 RBD+ and cross-reactive RBD+ specificities for each cohort of SARS-CoV-1231 

2 immune histories. Each symbol represents an individual. Two-sided P values from t-1232 

test statistics were calculated for pairwise differences using one-way ANOVA. Post hoc 1233 

testing for multiple comparisons between draws was performed using Tukey’s multiple 1234 

comparisons test. P values greater than 0.05 are not depicted. (C) Representative flow 1235 

cytometric plots of Wuhu1 and BA.1 Spike-specific memory B cells (full gating strategy 1236 

shown in Figure S3) in naïve, vaccinated only, primary BA.1 infection, and post-1237 

vaccination BA.1 infection cohorts. Cells that bind both WuHu1 RBD and BA.1 Spike 1238 

are annotated as cross-reactive Spike+, whereas cells that bind only WuHu1 Spike or 1239 

BA.1 Spike are annotated as WuHu1 Spike+ or BA.1 Spike+, respectively. (D) 1240 

Quantification of isotype-switched memory B cells for Wuhu1 Spike+, BA.1 Spike+ and 1241 

cross-reactive Spike+ specificities for each cohort of SARS-CoV-2 immune histories. 1242 

Each symbol represents an individual. Two-sided P values from t-test statistics were 1243 

calculated for pairwise differences using one-way ANOVA. Post hoc testing for multiple 1244 

comparisons between draws was performed using Tukey’s multiple comparisons test. P 1245 

values greater than 0.05 are not depicted. 1246 
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Figure 6. Frequency of WuHu1- and BA.1-specific memory B cells before and after 1247 

BA.1 infection. (A) Frequencies of isotype-switched memory B cells with Wuhu1 1248 

RBD+, BA.1 RBD+ and cross-reactive RBD+ specificities in both unvaccinated and 1249 

vaccinated individuals before and after BA.1 infection. Lines connect the same 1250 

individual from pre-infection frequency to post-infection frequency. In primary infections, 1251 

pre-infection blood draws were taken on average 75.6 days before infection and post-1252 

infection blood draws occurred on 37.8 days after infection. In post-vaccination 1253 

infections, pre-infection blood draws were taken on average 87.6 days before infection 1254 

and post-infection draws were taken an average of 38.3 days after infection. Individuals 1255 

that received a vaccine after the pre-infection draw were excluded from analysis.  P 1256 

values were calculated using Wilcoxon matched-pairs signed rank test on each row and 1257 

post hoc testing for multiple comparisons between draws was performed using two-1258 

stage linear step-up procedure of Benjamini, Krieger and Yekutieli. P values greater 1259 

than 0.05 are not depicted. (B) Frequencies of isotype-switched memory B cells with 1260 

Wuhu1 Spike+, BA.1 Spike+ and cross-reactive Spike+ specificities in both 1261 

unvaccinated and vaccinated individuals before and after BA.1 infection. Lines connect 1262 

the same individual from pre-infection frequency to post-infection frequency. P values 1263 

were calculated using Wilcoxon matched-pairs signed rank test on each row and post 1264 

hoc testing for multiple comparisons between draws was performed using two-stage 1265 

linear step-up procedure of Benjamini, Krieger and Yekutieli. P values greater than 0.05 1266 

are not depicted. 1267 
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Figure 7
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Figure 7. Correlations of pre-infection and post-infection BA.1-specific antibody, 1270 

T and B cell responses. (A) Correlation of pre-infection cross-reactive Spike MBCs 1271 

(calculated as in Figure 5C) plotted against the frequency of post-infection BA.1 Spike 1272 

MBCs (calculated as in Figure 5C) in individuals that experienced a post-vaccination 1273 

BA.1 infection. Pearson correlation analysis was performed. Pre-infection blood draws 1274 

were taken on average 87.6 days before infection and post-infection draws were taken 1275 

an average of 38.3 days after infection. Individuals that received a vaccine after the pre-1276 

infection draw were excluded from analysis. (B) Correlation of post-infection cross-1277 

reactive Spike MBCs (calculated as in Figure 6B) plotted against the frequency of post-1278 

infection BA.1 Spike MBCs (calculated as in Figure 5C) in individuals that experienced a 1279 

post-vaccination BA.1 infection. Pearson correlation analysis was performed. (C) 1280 

Correlation of pre-infection BA.1 neutralizing antibody titer (calculated as in Figure 4a) 1281 

plotted against post infection BA.1 Spike MBCs (calculated as in Figure 5c) in 1282 

individuals that experienced a post-vaccination BA.1 infection. Pearson correlation 1283 

analysis was performed. (D) Correlation of pre-infection BA.1 Spike-specific T cells as 1284 

measured by IFNg ELISPOTs plotted against post-infection BA.1 Spike MBCs in 1285 

individuals that experienced a post-vaccination BA.1 infection. Pearson correlation 1286 

analysis was performed. 1287 
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Figure S1
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Figure S1. Test All, Test Smart (TATS) symptom report. (A) Percentage of 1290 

individuals from each TATS cohort that reported experiencing various respiratory/cold 1291 

symptoms in study entry survey. (B) Reported days until symptoms resolved for each 1292 

TATS cohort. Two-sided P values from t-test statistics were calculated for pairwise 1293 

differences using one-way ANOVA. Post hoc testing for multiple comparisons between 1294 

draws was performed using Tukey’s multiple comparisons test. P values greater than 1295 

0.05 are not depicted. 1296 
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Figure S2
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Figure S2. PANGO-lineage assignments from TATS PCR positive individuals. (A) 1298 

Delta or BA.1 PANGO-lineage assignments after SARS-CoV-2 viral amplicon 1299 

sequencing (Integrated DNA Technologies). Unassigned sequences could not be 1300 

assigned to a PANGO-lineage due to insufficient viral RNA recovery and low sequence 1301 

coverage. (B) PANGO-lineage assignments of all TATS samples submitted during the 1302 

period of Delta cohort recruitment, July 1, 2021-December 1, 2021 (left panel) or during 1303 

the period of BA.1 cohort recruitment, January 1, 2022-March 31, 2022 (right panel). 1304 

Unassigned sequences could not be assigned a lineage due to insufficient viral RNA 1305 

recovery and low sequence coverage.  1306 

74

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.12.23295384doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.12.23295384


Figure S3
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Figure S3. Primary and recall antibody responses to Wuhan and Delta strains of 1307 

SARS-COV-2.  Quantitative titers of WuHu1- and Delta S1-specific antibodies. Serum 1308 

was initially diluted 1:60, serially diluted 1:3, assessed by ELISA for binding to the listed 1309 

antigens, and area under the curve (AUC) values were calculated. Each symbol 1310 

represents an individual. WuHu1 AUC values were divided by their Delta AUC titer in 1311 

the same individual to calculate a WuHu1:Delta S1 ratio in the rightmost panel. Two-1312 

sided P values from t-test statistics were calculated for pairwise differences using one-1313 

way ANOVA. Post hoc testing for multiple comparisons between draws was performed 1314 

using Tukey’s multiple comparisons test. P values greater than 0.05 are not depicted. 1315 
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Figure S4. Flow cytometric gating strategy with Delta S1 and WuHu1 S1 1320 

tetramers. Examples of a sample from a primary Delta infection (top) and post-1321 

vaccination Delta infection (bottom) are shown. 1322 
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Figure S5
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Figures S5. LIBRA-seq analysis in primary and post-vaccination Delta infections 1324 

and quantification of somatic mutations. (A) A chimeric protein (Delta NTD-WuHu1 1325 

S1) was generated in which Delta NTD mutated epitopes (T19R, G142D, E156-, F157-, 1326 

R158G) were incorporated into the otherwise WuHu1 S1 backbone. Quantification of 1327 

Delta RBD-specific (left) and Delta NTD-specific memory B cells (right) in individuals 1328 

that experienced a post-vaccination Delta infection. Delta RBD-specific cells were 1329 

classified by cells that had Delta RBD read counts of greater than 300 and WuHu1 S1 1330 

read counts of less than 35. Delta NTD-specific cells were classified by cells that had 1331 

Delta NTD-WuHu1 S1 read counts of greater than 23 and WuHu1 S1 read counts of 1332 

less than 35. Read count thresholds to determine positivity were set using samples in 1333 

which cells lacking Spike-binding specificities were sorted and sequenced. Plots are 1334 

concatenated from ten individuals. (B) Somatic mutations were calculated using the 1335 

observedMutations command in the Shazam Immcantation package in R. Specificities 1336 

of cells are determined using the same cutoffs described in Figure S3A and 3D. (C) 1337 

Quantification of somatic mutations of all Spike specific cells subjected to scRNAseq 1338 

from either ten primary or post-vaccination Delta infections. 1339 
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Figure S6
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Figure S6. anti-Nucleocapsid titers in uninfected individuals. Individuals with ⍺-1345 

Nucleocapsid titers of greater than 0.6 at a1:60 serum dilution were considered 1346 

previously infected and excluded from the study. 1347 
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Figure S7
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Figure S7. Flow cytometric gating strategy with BA.1 RBD, BA.1 Spike, WuHu1 1350 

RBD and WuHu1 Spike tetramers. An example of a sample from a post-vaccination 1351 

BA.1 infection is shown. 1352 
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Figure S8
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Figure S8. WuHu1 and BA.1 Memory B cell flow cytometric quantification. (A) 1355 

Cells that bind both WuHu1 RBD and BA.1 RBD are annotated as cross-reactive RBD+, 1356 

whereas cells that bind only WuHu1 RBD or BA.1 RBD are annotated as WuHu1 RBD+ 1357 

or BA.1 RBD+, respectively. Quantification of isotype-switched memory B cells as a 1358 

percentage of total PBMCs for Wuhu1 RBD+, BA.1 RBD+ and cross-reactive RBD+ 1359 

specificities for each cohort of SARS-CoV-2 immune histories. Each symbol represents 1360 

an individual. Two-sided P values from t-test statistics were calculated for pairwise 1361 

differences using two-way ANOVA. Post hoc testing for multiple comparisons between 1362 

draws was performed using Tukey’s multiple comparisons test. P values greater than 1363 

0.05 are not depicted.  (B) Cells that bind both WuHu1 RBD and BA.1 Spike are 1364 

annotated as cross-reactive Spike+, whereas cells that bind only WuHu1 Spike or BA.1 1365 

Spike are annotated as WuHu1 Spike+ or BA.1 Spike+, respectively. Quantification of 1366 

isotype-switched memory B cells for Wuhu1 Spike+, BA.1 Spike+ and cross-reactive 1367 

Spike+ specificities for each cohort of SARS-CoV-2 immune histories. Each symbol 1368 

represents an individual. Two-sided P values from t-test statistics were calculated for 1369 

pairwise differences using two-way ANOVA. Post hoc testing for multiple comparisons 1370 

between draws was performed using Tukey’s multiple comparisons test. P values 1371 

greater than 0.05 are not depicted. 1372 
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Table 1

vaccinated only 
(statewide antibody 

testing initiative) 
(n=74)

primary Delta 
(n=12)

post-vaccination 
Delta (n=37)

vaccinated only 
(TATS) (n=62)

primary 
BA.1 (n=69)

post-
vaccination 
BA.1 (n=62)

Age 38.0 (32.0, 54.0) 21.9 (20.2, 40.7) 23.3 (18.6, 65.8) 31.9 (18.6, 65.0) 44 (25, 62) 40 (19, 71.5)
Mean (s.d.)

Sex
Male 22 (32%) 5 (42%) 8 (22%) 24 (39%) 24 (39%)

Female 52 (68%) 7 (58%) 29 (78%) 37 (60%) 34 (55%)
Prior COVID infection

Yes 12 (100%) 37 (100%) 69 (100%) 64 (100%)
No 74 (100%)

Time since COVID infection
67.5 days (32, 

99.3)
71.5 days (48.5, 

89.5)
40 days (31, 

44.5)
54.4 days 
(34.5, 71)

paired pre- and post- infection samples 10 21

Time from vaccination to pre- infection 
draw

138 (32.5, 
217)

Time from pre- infection draw to 
infection

73.3 days 
(30, 99)

112 days 
(33, 187)

Time from infection to post- infection 
draw

42.7 days 
(29.5, 47.5)

44.8 days 
(34, 49.3)

COVID Vaccination 37 0 37 62 0 62
# of shots

2 37 (100%) 37 (100%) 16 (26%) 13 (20%)
3 46 (74%) 15 (23%)
4 3 (5%)

time since vaccination 135.6 days (126, 270)
273.9 days (56, 

317)
176.0 days 

(113.5, 188)
192.2 days 

(107, 302.3)
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Table 1. Characteristics of cohorts 1374 

Interquartile range (IQR) is listed in parentheses unless otherwise stated in the table. 1375 
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