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Abstract
Post-Acute Sequelae of SARS-CoV-2 infection (PASC), also known as Long-COVID,
encompasses a variety of complex and varied outcomes following COVID-19 infection that are
still poorly understood. We clustered over 600 million condition diagnoses from 14 million
patients available through the National COVID Cohort Collaborative (N3C), generating hundreds
of highly detailed clinical phenotypes. Assessing patient clinical trajectories using these clusters
allowed us to identify individual conditions and phenotypes strongly increased after acute
infection. We found many conditions increased in COVID-19 patients compared to controls, and
using a novel method to predict patient/cluster assignment over time, we additionally found
phenotypes specific to patient sex, age, wave of infection, and PASC diagnosis status. While
many of these results reflect known PASC symptoms, the resolution provided by this
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unprecedented data scale suggests avenues for improved diagnostics and mechanistic
understanding of this multifaceted disease.

Introduction
The long-term health consequences of SARS-CoV-2 are not fully understood.1 Research
suggests that between 7% and 30% of infected patients experience persistent symptoms,2

known as Post-Acute Sequelae of SARS-CoV-2 infection (PASC; also known as Long-COVID),
affecting multiple organ systems, including pulmonary, cardiovascular, hematological,
neurological, and renal systems.3 The disruption of the host immune response is suspected to
play a role in various PASC-associated conditions, including reactivation of dormant persistent
infections,4 autoimmune responses,5 and multi-inflammatory syndrome of children (MIS-C).6

Emerging evidence indicates that PASC has clinical sub-phenotypes, comprising clusters of
symptoms.7–10

Various methods have been used to identify potential PASC sub-phenotypes, including
rule-based and machine learning approaches. Reese et al. combined k-means clustering with
disease ontology data to identify six clusters of patients representing unique clinical
manifestations.8 Kenny et al. applied multiple correspondence analysis with hierarchical
clustering of self-reported symptoms, identifying three clusters of patients.7 Fischer et al. utilized
hierarchical ascendent classification to cluster PASC patients based on select symptoms and
demographics, producing three clusters stratified by severity.11 Bowyer et al. used Latent Class
Analysis (LCA) to compare patterns across PASC and non-PASC cohorts using 21
PASC-associated symptoms, revealing two clusters.12 Overall, these studies suggest that PASC
is a complex and heterogeneous condition, and further research is needed to fully understand
its clinical sub-phenotypes and implications for patient care.

Topic modeling is a natural language processing technique that aims to identify commonly
co-occurring terms or words, called ‘topics,’ in a corpus of documents. The objective is to
associate each document in the corpus with one or more topics, based on the distribution of
words and their frequency across the corpus.13 In this study, we treat each patient’s clinical
record (or phase of their clinical history, such as pre-infection, acute, or post-acute) as a
‘document,’ and their associated medical codes as ‘terms,’ resulting in topics representing
clinical phenotypes. Topic modeling approaches have been previously applied to electronic
health record (EHR) data, with Latent Dirichlet Allocation (LDA) or its variants being the most
commonly used. Bhattacharya et al. applied LDA to SNOMED medical codes and identified
clusters of co-occurring conditions that strongly match co-occurrence of symptoms reported in
medical literature.14 Pivovarov et al.15 and Mustakim et al.16 both provide useful reviews of LDA
applications to EHR data. LDA is a probabilistic model that represents topics as probability
distributions over terms, and documents as probability distributions over topics.

Topic modeling has also been used in various studies of COVID-19 cohorts. For example,
Humphreys et al. compared two LDA models trained on sets of ICD10 codes assigned prior to
COVID-19 infection and during the last 21 days of life, respectively.17 Their results identified
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pre-existing topics that lead to mortality topics, such as a pre-existing cancer topic leading to a
pulmonary mortality topic, indicating an immune-mediated response triggered by
chemotherapy.17 However, due to a small sample size, only six mortality topics were identified,
and the application of multiple models complicates comparisons. Scarpino et al. applied LDA to
free-text patient narratives, comparing those of PASC and non-PASC patients, and identified
three topics that were differentially associated with PASC patients.18 Zhang et al. used Poisson
factor analysis to generate topics based on presence or absence of 137 putative PASC
conditions in PASC patients, identifying ten topics as potential disease phenotypes.19 Huang et
al. applied non-negative matrix factorization to EHR data and identified five acute and five
post-acute symptom clusters.20 Additionally, the authors generated a predictive model for PASC
indication from select symptoms and evaluated feature importance, similar to our work in Pfaff et
al.21 However, these studies showed similarities and differences in the major features of the
clusters, indicating that there is still much to learn about PASC sub-phenotypes.

To gain a better understanding of long-term COVID-19 outcomes, we utilized topic modeling on
electronic health record (EHR) data from the National COVID Cohort Collaborative (N3C),
consisting of over 14 million patients from 63 clinical sites representing >230 healthcare
locations.22 This approach allowed us to identify condition clusters, or topics, that are specific to
PASC-labeled patients and non-PASC labeled patients, compared to COVID-naïve patients over
a similar timeframe. We also investigated the potential relationship between key demographics
of age and sex, as well as other covariates, such as the wave of infection, and the development
of PASC sub-phenotypes. The significant range of potential post-acute sequelae presents a
considerable challenge in defining, identifying, and characterizing PASC, and our study provides
important insights into this complex and heterogeneous condition.

Methods
This study involved topic modeling and predictive analyses using a dataset of 13,998,246
patient condition diagnoses from the OMOP common data model’s Condition Era domain, from
63 contributing sites in the N3C23 with record dates ranging from Jan. 2018 to Aug. 2022. This
dataset includes patients both with and without COVID-19 for comparative purposes. To ensure
data quality, we applied a minimal quality filter to the site inclusion criteria (see Suppl. Methods).
The patient dataset was randomly split into three sets (see Suppl. Figure 1): training for LDA
model training (N=8,959,498), validation for LDA model validation (N=2,240,842), and
assessment (N=2,797,906) for downstream statistical analyses. Some N3C-contributing sites
reported no U09.9 PASC diagnosis codes, possibly due to lack of implementation in their EHR
software. Therefore, the assessment set was limited to patients from the 39 sites with at least
one record (N=1,648,012).

Model training and validation
A summary of our modeling efforts is illustrated in Figure 1. We applied the online Latent
Dirichlet Allocation (LDA) method of Hoffman et al.,24 which was implemented in Apache Spark
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version 3.2.125 to train our topic model. To prevent significant bias towards the COVID-19
condition code and other problematic condition terms, we removed them from the corpus prior
to training (Suppl. Methods). This resulted in a corpus of 48,372 unique condition identifiers with
an average of 48.4 condition eras recorded per patient.

We employed the UCI Coherence metric26 on the validation set to determine the number of
topics K and measure the model's quality. This metric assesses how frequently the top-weighted
terms co-occur in patient records relative to their expected occurrence if they were unrelated
(see Suppl. Methods). We found that the mean topic coherence increased from K=150 to
K=300, after which coherence began to decline (Suppl. Figure 2). Therefore, we selected K=300
as the final number of topics. We generated all other model and topic summary statistics using
both the training and validation sets to ensure completeness.

Figure 1: Experimental design summary. (A) The LDA topic model was trained on all training
patient data (8.9M patients from 63 sites) using held-out validation data, resulting in the
identification of K=300 clusters of co-occurring conditions (see Methods). (B) Held-out
assessment patient histories were separated into pre- and post-infection phases. (C) The top 20
conditions with relevance score greater than zero (see Results) were analyzed for new
incidence pre-to-post for both COVID and PASC patients compared to Controls. (D) Topic
distributions were predicted independently for pre and post phases, and these predictions were
modeled per-topic via logistic regression to assess demographic-specific increases in the PASC
and COVID cohorts compared to Controls.

Test cohorts and clinical phases
To generate meaningful results, it is necessary to control for normal patient trajectories when
studying PASC, which are defined as new-onset, persistent conditions and symptoms occurring
after a COVID-19 infection. For instance, adolescents may have a tendency to be diagnosed
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with ADHD and related conditions over time,27 so a topic containing these conditions would be
expected to increase over time.

To address this, we divided the ~1.6M assessment patients into three cohorts: PASC, COVID
(without PASC), and Control. We excluded all other patients (N=469,325) from analysis. We
defined an index date delineating pre- and post-infection “phases”. Control patients were given
a mock index date to allow longitudinal comparisons, while the index dates were uniquely
defined for each cohort (see below). In all analyses, we disregarded the period from 15 days
prior through 45 days after the index date as a likely acute infection phase. We only considered
conditions occurring during what we define as the ‘pre’ and ‘post’ phases: 1 year prior to and 6
months after the acute phase, respectively. Patients without this observation history or those
without at least 2 weeks of recorded active conditions in both the pre and post phases were
excluded from our analyses. Additionally, patients whose only indication of COVID-19 or PASC
were one or more visits to a Long-COVID specialty clinic were excluded, as this distinct
information was provided by only six sites.

PASC (N=6,481): This cohort includes patients with the U09.9 PASC diagnosis code on or after
Oct. 1, 2021, when this code was released, and/or those labeled with B94.8 Sequelae of other
specified infectious and parasitic diseases prior to this date (the CDC-recommended label until
U09.9 became available28). For 36.4% of this cohort, we assigned the index date as the date of
their first strong COVID-19 indicator (defined below). For another 30.9% patients who do not
have a strong COVID-19 indicator, we used the first PASC indicator as the index date. The
remaining patients in this cohort had a strong COVID-19 indicator, but it occurred less than 45
days prior to their PASC indicator. In this case, we assumed the COVID-19 indicator date was
unreliable and used the PASC indicator as the index date.

COVID (N=340,096): These patients have a confirmed primary COVID-19 infection indicated by
a positive SARS-CoV-2 Polymerase Chain Reaction (PCR) or Antigen (Ag) test (Suppl. Table 1),
or a U07.1 diagnosis. Their index date was the first of any of these indicators.

Control (N=832,110): Control patients are those without any indication of COVID-19 in their
available data, including positive antigen, antibody, or PCR test, COVID-19 or PASC diagnosis
(Suppl. Table 2), or a visit to PASC specialty clinic (unique information provided by only six
sites). We also excluded patients with a diagnosis of M35.81 Multisystem inflammatory
syndrome as potential confounders. Control patients were assigned a mock infection date,
chosen uniformly at random to simulate pre-acute, acute, and post-acute phases contained
entirely within their longest continuous observation period. Mock infection dates were
additionally constrained to be after March 1, 2020; patients not meeting these criteria were
excluded.
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Topic-specific repeated-measures models
Logistic models are useful for assessing incidence rates stratified by demographic factors such
as age and gender. However, in condition-specific analyses, the context provided by the topic
model is lacking, and statistical power is often insufficient due to the rarity of individual
conditions. To address these issues, we utilized an LDA model to assign each patient a
probability distribution over topics and to assign patient histories, such as a patient’s pre- or
post-infection phase, a topic distribution. The generative model assumed by LDA supposes that
an assigned topic weight represents the probability that a new condition will be sourced from
that topic rather than some other, suggesting a logistic regression model with unobserved binary
outcomes but a known positive rate.

We conducted a logistic regression analysis for each topic, including phase (pre or post) as a
repeated-measure covariate, as well as patient cohort, sex (Male, Female), race (White, Black
or African American, Asian or Pacific Islander, Native Hawaiian or Other Pacific Islander, Other
or Unknown), BMI, life stage (Pediatric 0-10, Adolescent 11-18, Adult 19-65, Senior 66+),
Quan-based Charleson comorbidity index,29 site CDM (PCORnet, ACT, OMOP, TrinetX, and
OMOP (PedsNet)), and date-based “wave” of infection as covariates. Site CDM represents the
Common Data Model used by the contributing N3C site, a known source of data variation.30 We
defined infection wave based on CDC surveillance data,31 categorizing them as Early (prior to
March 1, 2021), Alpha (March 1, 2021 to June 30, 2021), or Delta (July 1, 2021 to Dec. 31,
2021); patients during the Omicron wave were excluded due to limited data across covariates.
Patients without complete information were excluded from analyses. The cohorts included 2,859
PASC patients, 89,374 COVID patients, and 303,017 Control patients (Suppl. Figure 1).

Contrast analyses were used to assess differences in the estimated marginal means for
different subgroups and phases within each topic regression model. Specifically, we evaluated
changes in topic probability between the pre- and post-infection phases for each subgroup, such
as females in the PASC cohort compared to females in the Control cohort. This resulted in an
estimated odds ratio for the increase or decrease in the propensity for PASC-indicated females
to experience conditions from the topic compared to Control females over a 6-month period. We
ran similar contrasts for each life stage, gender, and index wave within both the COVID and
PASC cohorts compared to the Control group.

To evaluate models’ effectiveness, we conducted additional contrasts with the same models to
evaluate expected topic propensity for females vs males, and pediatric, adolescent, and senior
patients vs adults. Overall, we conducted 22 contrasts for each of the 300 topic regression
models, resulting in a total of 6,600 tests that were multiply-corrected using Holm’s method.
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Results

Topics vary by usage and coherence across sites
Figure 2 displays selected topics as word clouds, illustrating the top conditions by their
probability in the topic. The font size of each term in the cloud is proportional to its probability in
the topic, while color indicates term relevance, with values greater than zero indicating terms
more specific to the topic than overall (see Suppl. Methods). For instance, Essential
Hypertension is a common and highly weighted condition across many topics, resulting in its low
relevance in most topics. Conversely, High-Risk Pregnancy is highly weighted in topic T-2
compared to others, indicating its high relevance to that topic. The topics are named T-1 to
T-300 in order of the relative probability mass of patients assigned to the topics. Each topic is
annotated with three values: U, representing the relative usage of the topic by total weight
assigned to patients in the training set (range 0-100%); H, a measure of how uniformly the topic
is used by N3C-contributing sites (range 0-1, with values closer to 0 being site-specific); and C,
a measure of each topics’ coherence (see below) compared to the mean over all topics (as a
z-score). Supplementary materials contain word clouds for all topics (Suppl. Figure 3).

Figure 2: Word clouds illustrating top-weighted terms (conditions) for a subset of topics.
Terms are sized according to probability within their topic and colored according to relevance,
with positive relevance indicating terms more probable in the topic than overall. Each term
displays the numeric OMOP concept ID encoding the relevant medical code, as well as the first
few words of each corresponding OMOP concept name. Per-topic statistics are also shown,
summarizing overall usage of each of each topic across sites (U), how uniformly the topic is
used across contributing sites (H), and relative topic quality as a normalized coherence score
(C).

Topic coherence is an important measure in addition to model validation. Coherence scores
follow a roughly normal distribution (Suppl. Figure 4), and coherence tends to increase with
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rarer, more specific topics except for the last 10 topics. Although we chose 300 topics to
optimize the overall mean topic coherence, Suppl. Figure 5 shows that mean topic coherence
varies by topic and site. All sites exhibit low coherence for the final 10 topics, and most of the
final ~35 topics are low coherence for most sites, except for one site that shows high coherence
for these rarer topics. Two sites report low coherence for most topics. N3C sites contribute data
from one of several source CDMs (Suppl. Figure 5). The source CDM used by the sites
generally do not correlate with coherence, except for two sites in the PEDSnet network
specializing in pediatric care. These two sites, along with one other using the TriNetX CDM,
exhibited distinctive patterns in topic coherence, such as having low coherence and usage for
T-153, which pertains to Gout.

We also investigated topic usage per-site (Suppl. Figure 6). Most sites and topics follow similar
patterns of usage, with a few notable exceptions. For example, T-4 was used almost exclusively
by a single site and has very low coherence with only a few high-relevance terms, although this
site uses other topics similarly to other sites. As with coherence, topic usage was generally
uncorrelated with the site’s CDM, except for the PEDSnet sites and one TriNetX site that again
used topics in distinct ways. For instance, T-127 was heavily used by these sites and not others,
and pertains to male-pediatric-associated conditions such as Phimosis and Undescended
testicle. We evaluated topics’ similarity to other topics using the Jensen-Shannon Distance
metric over their term-weight distributions (Suppl. Figure 7). Overall topics had little overlap, with
a median distance of 0.82 (range 0.39–0.83). The last 10 topics, T-290 to T-300, form a cluster
with increased co-similarity in addition to previously mentioned low coherence and usage.

Topics surface PASC conditions
Topics reveal potential clinical sub-phenotypes in PASC patients by surfacing the top-weighted
terms of each topic, which are the most commonly used and representative terms. After
selecting the top 20 conditions from each topic with positive relevance scores to identify
conditions of potential significance, we evaluated the new-onset incidence of each in the
post-infection phase of PASC patients as compared to Controls’ mock post-infection. This
resulted in 4,794 unique conditions, and 9,588 two-sided Fishers’ exact tests for the two
cohorts, due to 533 conditions present in the top 20 terms of more than one topic. After multiple
test correction (Bonferroni), we identified 213 individual conditions that were significant for the
PASC cohort, 208 for the COVID cohort, and 89 for both with p < 0.05. The complete list of
significant results is available in Suppl. Table 3.

Figure 3 labels a subset of significant conditions identified from the analysis. The PASC cohort
showed larger effect sizes compared to controls for most conditions, although several prominent
conditions were represented in the COVID cohort as well, such as Pneumonia caused by
SARS-CoV-2, Viral pneumonia, and Postviral fatigue syndrome. Additionally, the following
conditions had significant estimated odds ratios (ORs) greater than 2 in both cohorts: Loss of
sense of smell, Disorder of respiratory system, Acute lower respiratory tract infection, Upper
respiratory tract infection due to Influenza, Telogen effluvium, and Non-scarring alopecia.
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Figure 3: Over-represented conditions in PASC and COVID patients compared to
Controls post-infection. The x-axis shows estimated odds ratios and the y-axis shows the
adjusted p-values for new incidence of top-weighted, positive-relevance terms from all topics
amongst COVID (left) and PASC (right) cohorts compared to Controls over a six month
post-acute period. Many known PASC-associated conditions increased in both cohorts, while
some conditions are cohort-specific. Additionally, in the COVID cohort, incidence of many
conditions associated with regular care or screening is reduced compared to controls.

Several conditions are more common in the PASC cohort, including well-known conditions such
as Chronic fatigue syndrome, Malaise, Finding related to attentiveness, Headache, Migraine
(with and without aura), and Anxiety disorder. Neurosis is also present, but it should be noted
that site-labeled source codes for this were almost entirely ICD-10-CM F48.9, Non-psychotic
mental disorder, unspecified or similar (F48.8 and ICD-9 300.9). Notably, Impaired cognition was
more common in PASC patients (OR 4.26) but less common in COVID patients (OR 0.53)
compared to Controls. Other neurological conditions more common in PASC include
Inflammatory disease of the central nervous system, Disorder of autonomic nervous system,
Polyneuropathy, Orthostatic hypotension, and Familial dysautonomia (see Discussion).

The significant results for PASC also highlight a variety of symptoms related to the
cardiovascular, pulmonary, and immune systems. Cardiac conditions such as Tachycardia,
Palpitations, Congestive heart failure, Myocarditis, Cardiomyopathy, and Cardiomegaly were
observed. Pulmonary issues are well represented with Pulmonary embolism, Bronchiectasis,
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Fibrosis of lung, and various generic labels for respiratory failure or disorder. Amongst
immunological conditions are Reactive arthritis triad, Elevated C-reactive protein,
Lymphocytopenia, Hypogammaglobulinemia, Systemic mast cell disease, and generic
Immunodeficiency disorder. In addition, bacterial, viral, and fungal infections were common,
including Bacterial infection due to Pseudomonas, Aspergillosis, and Pneumocystosis. Other
common themes include musculoskeletal issues (Fibromyalgia, Muscle weakness, various types
of pain) and hematological issues (Blood coagulation disorder, Anemia, Hypocalcemia,
Hypokalemia).

Out of the 83 conditions significantly increased in the COVID cohort, 36 were not found to be
significantly increased in the PASC cohort. Examples include Intestinal infectious disease,
various forms of sinusitis, and a number of female reproductive health conditions such as
Irregular periods, Excessive and frequent menstruation, Human papillomavirus positive, and
Acute vaginitis. Abnormal menstrual cycle was significantly increased for both COVID and
PASC patients.

The analysis also revealed estimated odds ratios less than 1, indicating decreased incidence,
for 219 conditions in one or both cohorts. Most of these conditions (174) were significant only for
the COVID cohort, and several related to routine screening or elective procedures potentially
disrupted by a COVID-19 infection or lack of care access during the pandemic, such as
Pre-operative state, Nicotine dependence, Radiological finding, Gonarthrosis, and Hypertensive
disorder.32 Preoperative state was largely coded as SNOMED CT 72077002 or ICD-10-CM
Z01.818, both widely used across sites and indicative of pre-surgical examination. Unable to
Assess Risk appears to be a custom code used by a single site, mapped to OMOP concept ID
42690761 by N3C. Other conditions may be more difficult to identify in the six months after a
COVID-19 infection due to symptom masking or altered care-seeking behavior. Examples
include Diverticulosis of large intestine and Esophageal dysphagia.33,34 In addition to
Pre-operative state, five conditions were significantly decreased for PASC patients, all related to
late-term pregnancy, while Third trimester pregnancy was increased in COVID patients (see
Discussion).

Patient demographics predict topic migration
As described in the Methods section, we used LDA models to assign probabilities of generating
new conditions for each patient from specific topics. These assignments were interpreted as
success rates for logistic regression models. For each topic, we fitted a regression model and
used contrast analyses to identify increases or decreases in topic assignment post-infection
relative to the control group, for sub-cohorts defined by sex, life-stage, and pandemic wave. The
models were subjected to effectiveness tests (see Methods) to ensure their quality, resulting in
expected trends specific to gender and life stage across topic (Suppl. Figure 3). For example,
T-2 pertains to pregnancy, and the regression model estimated an odds ratio of 45 for
female/male, 0.06 for pediatric/adult, 0.2 for adolescent/adult, and 0.03 for senior/adult.
Similarly, T-3 has a high weight for neonatal conditions and an estimated pediatric/adult ratio of
43, but no significant female/male trend was observed. While unsurprising, these results
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validate regression modeling and interpretation of LDA topic probabilities, themselves dense
representations of patient cohort characteristics.

We tested 5,400 sex, life-stage, and wave-specific contrasts for the PASC and COVID cohorts,
and 314 were significant after multiple corrections, representing 68 distinct topics. Most of these
topics had small effect sizes, with only 30 contrasts across 9 topics having an OR of 2 or higher,
and the large majority of strong effects were found for the PASC cohort. Figure 4 illustrates
results for the subset of topics with significant odds ratio estimates >2 for more than one
demographic group. All effectiveness and contrast results are listed in Suppl. Table 4 and
visualized in Suppl. Figure 3.

Figure 4: Topics with significant odds ratio estimates >2 for PASC or COVID cohorts,
broken out by patient demographics. The top row shows the topics evaluated for increased
probability of condition generation for PASC (middle row) and COVID (bottom row) patients
compared to Controls. For example, female PASC patients were found to have a ~7 times
higher odds ratio of generating terms from T-23 than Control females over a similar timeframe
post-acute-infection. Lines show 95% confidence intervals for estimates; semi-transparent
estimates are shown for context but were not significant after multiple-test correction.

T-23 stands out as a topic with strong migration among PASC patients, with all subgroups
having a significant estimated ORs of 5-10 for generating conditions from this topic compared to
controls. High-weight, high-relevance conditions in T-23 include Fatigue, Malaise, Loss of sense
of smell, and other well-known PASC symptoms, as well as the diagnosis code for PASC itself
(Post-acute COVID-19). By contrast, COVID patients do not show statistically significant
migration to this topic, with the exception of Adults with a small OR of 1.2.
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T-19 shows significant OR estimates for several PASC and COVID groups with similar
magnitudes. This topic includes several variants of pneumonia and acute respiratory infection
symptoms (Disorder of respiratory system, Dyspnea, Hypoxemia, Cough), suggesting significant
long-term COVID-19 or secondary infections at least 45 days post-primary-infection. For both
PASC and COVID cohorts, these increases are most associated with early-wave infections.

Topics 86 and 137 show increases for several PASC groups, especially pediatric and adolescent
patients. While T-86 is characterized by Pleural and Pericardial effusion and related pain, T-137
describes skin conditions, particularly hair loss, including Non-scarring alopecia and Telogen
effluvium, both identified individually above. While effusion is a known factor for severe
COVID-19 pneumonia, especially in older patients35, these results suggest differential long-term
effects. A systematic review of alopecia in COVID-19 patients by Nguyen and Tosti found that
Anagen effluvium was associated with younger patients compared to other types of alopecia,
but few of the reviewed studies included young patients.36

Figure 5 displays additional results for selected topics with cohort or demographic-specific
patterns. T-8 represents cardiovascular conditions, and shows a mild but significant increase for
adult COVID patients compared to controls. T-43 (not shown) is also significant for PASC adult
patients, and encompasses pulmonary conditions. Several of the top-weighted conditions within
these topics were individually significant, such as Palpitations, Cardiac arrhythmia, Chronic
obstructive lung disease, and Pulmonary emphysema for both cohorts, and for PASC Dizziness
and giddiness and Tachycardia. While all of these were individually increased in the PASC
cohort, Cardiac arrhythmia, Chronic obstructive lung disease, and Pulmonary emphysema were
decreased in the COVID cohort relative to controls.
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Figure 5: Other select topics with demographic or cohort-specific trends. T-8 is statistically
significant only for COVID adults compared to controls. Topics 72 and 77 include diffuse sets of
conditions, while T-36 is reduced for PASC pediatric and senior patients, despite representing
known PASC outcomes (see text).

T-72 shows a significant increase in COVID pediatric patients but not PASC. It covers a range of
non-specific PASC-like conditions, including Illness, Neurosis (also discussed above), Ill-defined
disease, Mental health problem, and Disease type and/or category unknown. Brain fog and
Neurocirculatory asthenia are additionally found in this topic. The fact this topic is distinct from
T-23 and significant for COVID but not PASC cohorts suggests that these conditions represent a
cluster of symptoms and diagnoses separate from PASC.

T-77 is increased in female PASC patients compared to controls. This topic is diffuse and has no
particularly highly weighted conditions, although many had high relevance scores to the topic.
Several of these are laboratory-based, such as Hypokalemia, Anemia, and Hyponatremia.
Tachycardia, Pleural effusion, Deficiency of macronutrients, and Adult failure to thrive syndrome
are also present. The low specificity and coherence of T-77 make it difficult to interpret, although
many of these conditions were individually significant above. T-20 (not shown) was increased
for COVID adults and COVID delta-wave patients, and also has few high-weight terms, but
relevant conditions include Acute renal failure syndrome, Sepsis, and Acidosis.

T-36 strongly decreased for both pediatric and senior PASC patients, and covers only a few
conditions with high weights and relevance scores, including Acquired hypothyroidism and
Autoimmune thyroiditis. This result is paradoxical, as these conditions are common long-term
outcomes of COVID-19 infection.37 Another paradoxical result is a strong (OR 11.7) increase in
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T-92 for adolescent PASC patients, which covers a variety of physical contusions, lacerations,
and abrasions. The highest-weighted condition in this topic however is Traumatic and/or
non-traumatic injury, all of which were originally coded as ICD-10 T14.8 Other injury of
unspecified body region for these patients.

Ignoring the last 10, low quality, high co-similarity topics, adolescent PASC patients are
increased in four topics: T-23, T-86, and T-137 already discussed, and T-174 which highly
weights Thyrotoxicosis, C-reactive protein abnormal, and Polymyalgia rheumatica. PASC
pediatric patients increase significantly in T-23 and T-137 already discussed, as well as T-57
covering a variety of pulmonary issues such as Chronic cough, Bronchiectasis, and Hemoptysis.
On the other hand, PASC adolescent patients were reduced in seven topics and PASC pediatric
patients showed a reduction in sixteen, covering a broad range of conditions. These
assessment cohorts are small, with 49 pediatric and 66 adolescent patients. Chart reviews
revealed that they were distributed across 18 and 20 sites, respectively, and had a similar mean
number of conditions recorded in the year prior to infection as other cohorts in the same life
stages. However, mean condition counts for these PASC patients were nearly 50% higher in the
6-month post-infection phase (Suppl. Table 5).

Discussion
While an ICD-10-CM diagnosis code (U09.9) and specialty clinics exist to treat Long COVID,
there is still work to be done identifying PASC conditions and how these new diagnoses and
referrals are being used in practice.21,28 Topic modeling is a data-driven investigation method
that is well-suited for exploring new diseases, as an unsupervised machine learning technique.
Our model, which was trained on 387 million condition records of 8.9 million patients in the N3C
Enclave, is one of the most extensive applications of topic modeling to EHR data to date,
generating hundreds of diverse and clinically-relevant topics. Only a handful of topics were of
low quality, and those in the middle by usage tended to have the highest coherence scores. We
hypothesize that common topics are encumbered by a larger diversity in coding options and
practices, while rare topics support only a few relevant conditions on top of more common and
unrelated background conditions. We found these trends across our validation tests on models
with different topic counts, potentially driven by the use of Dirichlet distributions initialized with
sparse uniform priors. Topic usage and coherence varied across contributing sites, with notable
patterns of usage at PEDsnet sites in particular. As such, topic modeling may provide insights
into site differences in coding practices or data quality, which are issues of concern in federated
and centralized data repositories.30

Investigating top-weighted topic terms for increased new-onset rates in PASC and COVID
cohorts compared to Controls identified many significant conditions, including neurocognitive,
cardiovascular, pulmonary, and immune-related ones. Most of these were significant for both
cohorts or only the PASC cohort, but the few significant only for COVID patients included
Irregular periods, Excessive and frequent menstruation, Human papillomavirus positive, and
Acute vaginitis. Reproductive issues have been documented with PASC,38 and these symptoms
may thus be under-recognized. A number of conditions had a lower new incidence in COVID
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patients compared to Controls, possibly due to decreased access to routine care (as in the case
of breast cancer39) or behavioral changes (as for diverticulosis33) through the pandemic. Similar
trends in the PASC cohort were significant only for late-term pregnancy observations (and
Pre-operative state), suggesting difficulties in identifying PASC during late pregnancy.

Modeling patient-topic assignment supports queries across patient demographics at a topic
level. This approach identified several topics increasing in usage in PASC and COVID
sub-cohorts relative to Controls. T-23 stands out as the clearest PASC-related topic across
demographics and includes many conditions commonly associated with Long COVID, such as
fatigue, malaise, new daily headache, and dyspnea. Other topics are demographic specific,
such as T-86 covering Pleural and Pericardial effusion, T-137 with Non-scarring alopecia and
Seborrheic dermatitis, and T-57 covering other pulmonary issues for younger PASC patients.

While most effects were larger for PASC patients, T-19 shows similar effect sizes for COVID
adults and seniors. This topic largely represents secondary pneumonias and related symptoms,
suggesting that while these are not used as indicators for PASC, they are nevertheless
long-term issues for COVID-19 patients. It was also most significant for the earliest waves of the
pandemic, reflecting severity of illness and lack of effective treatment protocols during this
period.40 Few such wave effects were significant overall; T-20 with Acute renal failure syndrome,
Acidosis, and Sepsis is an exception showing increases for COVID delta-wave patients.

Despite the few young PASC pediatric patients and wide confidence interval ranges, several
topics were significant for this group indicating a unique cohort with significant long-term
COVID-19 health outcomes. On the other hand, estimates for COVID-only pediatric patients for
most topics, including T-23, T-57, and T-137, are non-significant despite representing many
more patients. Long-term COVID-19 symptoms thus appear to be rare amongst young patients,
but severe and diverse when they occur.

While this study replicates many known PASC trends, a few individual results are worthy of
follow-up. There was a significant increase for female PASC patients in T-77, which is diffuse,
multisystem, and covers many conditions identified in other tests. More targeted analyses of this
set may reveal a unique phenotype or mix of phenotypes experienced by a unique population.
Additionally, T-72 represents a unique cluster of ill-defined conditions; its increase for COVID
pediatric patients may reflect difficulties in PASC identification for this group. For example, the
highest-weighted term, Illness, was originally coded as ICD-10 R69 Illness, unspecified in the
vast majority of cases. Amongst individual conditions, Impaired cognition was one of the few
that increased in PASC patients but decreased in COVID patients. Many of these were originally
coded as R41.844, Frontal lobe and executive function disorder. Executive dysfunction has
been linked to COVID-19, particularly for patients with acute respiratory distress syndrome.41

This diagnosis is distinct from those typical for ADHD (F90), so it is unclear whether the
reduction observed in COVID patients was a result of reduced healthcare access.

In contrast to other studies,42,43 we found few gastrointestinal conditions increased in PASC or
COVID patients, though Abdominal pain, Viral gastroenteritis, and Dysphagia were increased in
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PASC patients (Suppl. Table 4). Neither did we find statistically significant sex differences,
despite a known increased risk for PASC in female patients. Our experiments, however,
evaluate cohorts defined by PASC diagnosis. While female patients are more likely to develop
PASC, our results suggest minimal sex differences amongst patients who have been positively
identified. Still, other work has suggested sex differences,44 and similar non-significant trends in
our results may be worthy of followup.The apparent reduction in late-term pregnancy conditions
for PASC patients and simultaneous increase for COVID patients is notable. We hypothesize
that pregnant patients are less likely to be diagnosed with PASC given the similarity of
presentation, but more likely to be monitored if infected during pregnancy.

A high incidence of postural orthostatic tachycardia syndrome (POTS) has been identified in
PASC clinical research,45 but a POTS-specific ICD-10 code did not exist prior to October 1,
2022, and therefore POTS is not present in our dataset. The closest available term in the
SNOMED hierarchy, Orthostatic hypotension, was found to be significantly elevated in PASC, as
were Disorder of the autonomic nervous system and Familial dysautonomia. Many symptoms
significant for the PASC cohort, such as Tachycardia, Palpitations, Dizziness and giddiness,
Fatigue, and Finding related to attentiveness are suggestive of POTS or similar forms of
dysautonomia. The presence of Familial dysautonomia (ICD-10-CM G90.1), a rare genetic
disorder, is unlikely to be due to increased screening given that we saw no corresponding
uptake in genetic testing. Rather, we suspect that frequent mis-coding may occur because the
ICD-10-CM catalog has only one match for the term "dysautonomia" (G90.1 Familial
dysautonomia), which when used alone encompasses multiple PASC-related conditions.46 Such
errors are not uncommon when using medical record software.47

Many of our results are immune-related, including conditions (Lymphocytopenia,
Hypogammaglobulinemia, Systemic mast cell disease) and infections more common in
immunocompromised patients (Aspergillosis, Pneumocystosis). Topic 36 highly weighting
Hypothyroidism and Thyroiditis shows reductions for PASC pediatric and senior patients, a
paradoxical result given that these are known post-acute sequelae.37 It may be that patients with
pre-existing thyroid disorders are underdiagnosed for PASC, while new thyroid disorders after
COVID-19 infection are identified as PASC and related symptoms alone. Together these results
suggest an important role for thyroid-mediated dysfunction in PASC patients, and we
recommend investigation into how these related diseases are diagnosed and treated.

Limitations of this study should be considered when interpreting results. Our observational EHR
data is large, but not a random sample. Indeed, records are sourced from many healthcare
organizations across the United States, representing heterogeneity in specialty, coding
practices, and other factors. Topic usage and coherence differ across sites; results for topics
primarily used by PEDSnet sites for example may be driven by trends at these sites specifically.
Unfortunately, our data are too sparse for some sites to fully control for site-level effects. To
mitigate these possibilities our statistical analyses excluded patients from sites that did not have
any U09.9 PASC diagnoses, and our logistic models include covariates to adjust for site U09.9
usage and relative topic usage. However, to maximize the number and specificity of testable
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topics, we trained our model on a broad cohort of patients with and without COVID-19 and
PASC, and condition comorbidity within a topic should be interpreted accordingly.

Like predictive models, topic models generally benefit from larger datasets.48 Topic modeling on
a large EHR dataset proves to be highly effective for assessing the progression of post-acute
sequelae of SARS-CoV-2 infection. Interpreting the probabilistic assignment of patients to topics
through logistic regression is a novel and flexible method, supported by effectiveness tests
based on known demographic/topic relationships. Future investigations may consider other
covariates such as acute disease severity or vaccination status, contrast other cohorts, consider
multiple temporal phases, or investigate migration patterns between topics to reveal
sub-phenotype-specific risk factors.

Ultimately, a finer understanding of presentations across populations can inform research,
diagnostics, treatment, and health equity for multi-faceted diseases such as PASC. By applying
topic modeling to a large-scale EHR dataset we identified hundreds of fine-grain condition
clusters, or phenotypes, in the data. Tracking patient clinical trajectories over time in light of
these revealed post-acute sequelae of SARS-CoV-2 infection, several of which were associated
with patient sex, age, wave of infection, or presence of a PASC diagnosis. Some results, such
as those highlighting immune dysfunction, thyroid involvement, and secondary infections
improve our understanding of potential mechanisms for PASC. Others, such as those
highlighting non-specific phenotypes in the COVID cohort, may lead to improved diagnostics
and support for patients suffering from Long-COVID but yet to receive a PASC diagnosis.
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Supplemental Figures

Suppl. Figure 1
Consort diagram illustrating stratification of patients into sets and cohorts, number of unique
sites represented by those groups, and how each is used in analysis. The site quality filter
removed sites with inpatient serum creatinine or white blood cell count results for fewer than
25% of patients, the site U09.9 filter removed patients from sites with no U09.9 diagnoses, and
filter variables are as described for specific tests (see Suppl. Methods).
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Suppl. Figure 2

Mean topic coherence scores for LDA models varying the number of topics generated (K). Topic
coherences are computed as intrinsic UCI Coherence26 using the top 20 terms per topic. UCI
coherence evaluates, for all term pairs amongst these top 20, how frequently they occur
together in patient histories compared to the expectation assuming terms occur independently,
on the validation data set. K=300 was chosen as the final number of topics.

Suppl. Figure 3

Full topic clouds for all 300 topics generated and visualizations of corresponding contrasts.

Available at https://doi.org/10.5281/zenodo.7960028
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Suppl. Figure 4
Histogram of topic coherence values.
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Suppl. Figure 5

Mean UCI coherence scores per topic and contributing data site. Site identifiers are masked, but
labeled with the source common data model in use at the site.
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Suppl. Figure 6

Relative usage of topics per contributing site. For a given site and topic, relative usage is
computed as the sum of assigned weights to that topic for patients from that site divided by the
number of patients, representing a distribution over topics per site.
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Suppl. Figure 7

Topic/topic dissimilarity as Jensen-Shannon Distance. Topic self-distances of 0 are not shown.
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Supplemental Methods

Data Cleaning

EHR data from the National COVID Cohort Collaborative (N3C), released Aug. 2, 2022
represent records from 75 contributing sites. All analyses were restricted to data from 63 sites
passing minimal quality checks. Sites were excluded if greater than 25% of inpatient visits were
not accompanied by serum creatinine or white blood cell count measures (N=11), or if greater
than 5% of COVID-19 confirmed patients were indicated as inpatient continuously for 200 or
more days prior to and including their confirmed COVID-19 date (as potential long-term care
facilities, N=1).

Records from the condition_era OMOP v5.3 table49 were filtered to exclude suspicious entries
beginning prior to Jan. 1, 2018 (the earliest date N3C requests records for) and those ending
after each site’s last reported contribution date. Data used for model training, evaluation, and
testing excluded several OMOP concepts, including COVID-19, Viral disease and Disease due
to coronaviridae, uninformative entries No matching concept and Clinical finding, and various
Findings of sexual activity used primarily by a single site passing other quality checks. Individual
concepts excluded are listed in Suppl. Table 6, and we also excluded all concepts not in the
OMOP “Condition” domain.

Model Training

Model training utilized the online Latent Dirichlet Allocation (LDA) method of Hoffman et al.24 as
implemented in Apache Spark (pyspark.ml.clustering.LDA) version 3.2.1.25 Parameters used
include k (the number of topics, 300 in the final model), seed (42, a random seed to initialize the
training), and maxIter (200, providing 10 passes over the training data in batches of 5% each).
Condition counts passing data cleaning (above) were included in the training data.
Determination of term-topic and topic-patient distributions were produced by the fitted LDA
model.

Topic Annotations

As illustrated in Figure 2, each topic is annotated with three values: U, representing the relative
usage of the topic by total weight assigned to patients (range 0-100%), H, a measure how
uniformly the topic is used by N3C-contributing sites (range 0-1, with values closer to 0 being
site-specific), and C, a measure of each topics’ coherence compared to the mean over all topics
(as a z-score). All three are computed over the training and validation sets.
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U is computed as the sum over patients of the weight assigned to the topic, divided by the
number of patients (which is also the total weight assigned over all topics).

H is computed as the information entropy of the relative usage of the topic across sites,
normalized to a maximum value of 1.0 when the usage is uniformly distributed. Relative usage
for a given site is computed as the total weight assigned to the topic for patients from the site,
divided by the total number of patients from that site; these are also plotted in Suppl. Figure 11.

Finally, per-topic coherence C is calculated for each topic using the UCI Coherence metric (see
Model Validation below). These values are not meant to be interpreted on an absolute scale, but
since they are normally distributed amongst topics (Suppl. Figure 13) we adjust them to
z-scores for comparative use. Suppl. Figure 10 illustrates non-adjusted scores broken out by
site and topic.

Suppl. Figure 12 illustrates topic/topic similarity via pairwise Jensen-Shannon Distance. The
Jensen-Shannon Distance between topics and is a true metric and is defined as the square𝑡

𝑖
𝑡

𝑗

root of the Jensen-Shannon divergence:
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Topic Term Relevance
Term relevance provides a measure of term-topic-specificity, with values greater than zero
indicating terms more likely for the topic than overall.50 For term and topic , we define𝑐

𝑖
𝑡

𝑗

relevance as

Model Validation

UCI coherence for a given topic is computed over the top N terms by probability for the topic,𝑡
𝑖

where we used N = 20. Letting be the set of top 20 terms for , a sum score is computed for𝑇
𝑖

𝑡
𝑖

each distinct pair of terms a and b, where the score for a given pair is the log of the measured
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probability of their occurring together in a patient compared to the joint probability assuming
independence. To avoid undefined scores, 0 is used for pairs where the denominator is 0, and 1
is added to the joint probability.26

Overall model quality was evaluated as the mean of coherence scores across topics, computed
over the validation dataset only.

Per-Condition Tests
All tests were performed in R v3.6.51 As described in the main text, patients in the test data set
were included for evaluation of new-onset conditions if they satisfied requirements for being in
the PASC, COVID, or Control cohorts. The top 20 conditions from each topic with relevance
score > 0 were evaluated by considering only patients without the condition in the pre phase,
comparing counts of PASC (and COVID) patients further indicated and not indicated for the post
phase, to those same counts in the Control cohort. R’s fisher.test() was used with
simulate.p.value = TRUE to support tests where counts are large.52 Reported p values were
multiple-test corrected using Bonferroni’s method.

BMI and Quan Comorbidity Scores

Patient BMI values used in modeling were the maximum over those reported after Jan. 1 2018,
or the maximum of those computed as weight/(height^2) if no BMI measurement was directly
available. Weight values outside 5kg– 300kg and height values outside 0.6m–2.43m were
excluded from BMI calculations. Quan comorbidity scores29 were computed from available
source ICD code prefixes as shown in Suppl. Table 7.

Topic Regression Tests

Regression models were fitted using the geepack v1.3.2,53 with contrasts computed using
emmeans v1.6.0.54 Individual patient histories defined by their pre- and post- phase data were
assigned topic probability distributions by the fitted LDA model. For each topic, a logistic
regression model was fitted predicting the model-assigned topic probability as the trial success
rate with equal weight, from covariates phase (pre or post), cohort (PASC, COVID, or Control),
patient life stage and wave of the index date (see main Methods), sex, race, Quan comorbidity
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score, BMI, source CDM (PCORnet, ACT, OMOP, TrinetX, and OMOP (PedsNet)). To account
for potential differential usage of PASC labels or topics, we also included percentage of patients
at the given patients’ site in the PASC cohort, and baseline usage of the topic by the patients’
site relative to all sites (summing to 1.0 across sites). Interactions were included for terms of
interest for contrast using the R/geepack formula topic_probability ~ phase * cohort *
(index_wave + sex + life_stage) + site_percent_pasc * phase * cohort +
site_relative_topic_usage + race + quan_score + bmi + cdm. Only patients from the
assessment set with complete information for all variables were included. Because the assigned
topic probability for a phase models the probability that a new condition will be drawn from the
topic, the equal-weight approach considers the probability that, should a new condition be
recorded, it is generated by the topic of interest.
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Supplemental Tables

Suppl. Table 1
OMOP Concepts describing COVID-19 PCR or Antigen tests.

Concept Name
OMOP
Concept Id

SARS-CoV-2 (COVID-19) N gene [Presence] in Respiratory specimen by Nucleic
acid amplification using CDC primer-probe set N2 586525

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Saliva (oral fluid) by NAA with
probe detection 36032174

SARS-related coronavirus RNA [Presence] in Specimen by NAA with probe
detection 723472

SARS-CoV-2 (COVID-19) N gene [Cycle Threshold #] in Specimen by Nucleic acid
amplification using CDC primer-probe set N2 706155

SARS-CoV-2 (COVID-19) S gene [Cycle Threshold #] in Specimen by NAA with
probe detection 723468

SARS-CoV-2 (COVID-19) N gene [#/volume] (viral load) in Respiratory specimen
by NAA with probe detection 36661370

SARS-CoV-2 (COVID-19) S gene [Cycle Threshold #] in Respiratory specimen by
NAA with probe detection 723467

SARS-CoV-2 (COVID-19) N gene [Presence] in Serum or Plasma by NAA with
probe detection 586520

SARS-CoV-2 (COVID-19) S gene [Presence] in Respiratory specimen by NAA
with probe detection 723465

SARS-CoV-2 (COVID-19) [Presence] in Specimen by Organism specific culture 586516

SARS-CoV-2 (COVID-19) N gene [Cycle Threshold #] in Specimen by NAA with
probe detection 706167

SARS-CoV-2 (COVID-19) Ag [Presence] in Respiratory specimen by Rapid
immunoassay 723477

SARS-CoV-2 (COVID-19) RNA [Log #/volume] (viral load) in Specimen by NAA
with probe detection 715262

SARS-related coronavirus N gene [Cycle Threshold #] in Specimen by Nucleic
acid amplification using CDC primer-probe set N3 706172

SARS-CoV-2 (COVID-19) RNA [Presence] in Saliva (oral fluid) by NAA with probe 715260
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detection

SARS-CoV-2 (COVID-19) S gene [Presence] in Serum or Plasma by NAA with
probe detection 586519

SARS-CoV-2 (COVID-19) ORF1ab region [Cycle Threshold #] in Respiratory
specimen by NAA with probe detection 723469

SARS-CoV-2 (COVID-19) RNA [Cycle Threshold #] in Specimen by NAA with
probe detection 586529

SARS-related coronavirus E gene [Presence] in Respiratory specimen by NAA
with probe detection 586523

SARS-CoV-2 (COVID-19) ORF1ab region [Presence] in Saliva (oral fluid) by NAA
with probe detection 36031506

SARS-CoV-2 (COVID-19) S gene [Presence] in Specimen by NAA with probe
detection 723466

SARS-CoV-2 (COVID-19) RNA [Presence] in Nasopharynx by NAA with
non-probe detection 723476

SARS-CoV-2 (COVID-19) N gene [Presence] in Saliva (oral fluid) by Nucleic acid
amplification using CDC primer-probe set N1 36032258

SARS-CoV-2 (COVID-19) RNA [Presence] in Nasopharynx by NAA with probe
detection 586526

SARS-related coronavirus E gene [Presence] in Serum or Plasma by NAA with
probe detection 586518

SARS-CoV-2 (COVID-19) S gene [Presence] in Respiratory specimen by
Sequencing 36031213

SARS-CoV-2 (COVID-19) RNA [Presence] in Nose by NAA with probe detection 757677

SARS-CoV-2 (COVID-19) N gene [Presence] in Specimen by Nucleic acid
amplification using CDC primer-probe set N2 706154

SARS-CoV-2 (COVID-19) RNA panel - Respiratory specimen by NAA with probe
detection 706158

SARS-CoV-2 (COVID-19) N gene [Presence] in Respiratory specimen by NAA
with probe detection 706161

SARS-CoV-2 (COVID-19) RdRp gene [Cycle Threshold #] in Specimen by NAA
with probe detection 723470

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Lower respiratory specimen
by NAA with probe detection 36031652

SARS-CoV-2 (COVID-19) N gene [Presence] in Saliva (oral fluid) by NAA with
probe detection 36661378
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SARS-related coronavirus+MERS coronavirus RNA [Presence] in Respiratory
specimen by NAA with probe detection 706159

SARS-related coronavirus E gene [Presence] in Specimen by NAA with probe
detection 706174

SARS-CoV-2 (COVID-19) N gene [Presence] in Specimen by Nucleic acid
amplification using CDC primer-probe set N1 706156

SARS-CoV-2 (COVID-19) RNA [Cycle Threshold #] in Respiratory specimen by
NAA with probe detection 586528

Measurement of Severe acute respiratory syndrome coronavirus 2 antigen 37310257

SARS-related coronavirus E gene [Cycle Threshold #] in Specimen by NAA with
probe detection 706166

SARS-CoV-2 (COVID-19) Ag [Presence] in Upper respiratory specimen by
Immunoassay 36032419

SARS-CoV-2 (COVID-19) RNA panel - Specimen by NAA with probe detection 706169

SARS-CoV-2 (COVID-19) RNA [Presence] in Respiratory specimen by NAA with
non-probe detection 36031238

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Respiratory specimen by NAA
with probe detection 706160

SARS-CoV-2 (COVID-19) N gene [Presence] in Nasopharynx by NAA with probe
detection 715272

SARS-CoV-2 (COVID-19) N gene [Presence] in Nose by NAA with probe detection 757678

SARS-CoV-2 (COVID-19) RNA [Presence] in Saliva (oral fluid) by Sequencing 715261

SARS-CoV-2 (COVID-19) RNA [Presence] in Specimen by NAA with probe
detection 706170

SARS-CoV-2 (COVID-19) N gene [Cycle Threshold #] in Specimen by Nucleic acid
amplification using CDC primer-probe set N1 706157

SARS-CoV-2 (COVID-19) ORF1ab region [Presence] in Respiratory specimen by
NAA with probe detection 723478

SARS-related coronavirus N gene [Presence] in Specimen by Nucleic acid
amplification using CDC primer-probe set N3 706171

SARS-CoV+SARS-CoV-2 (COVID-19) Ag [Presence] in Respiratory specimen by
Rapid immunoassay 757685

SARS-CoV-2 (COVID-19) RNA [Presence] in Respiratory specimen by
Sequencing 36661377

SARS-CoV-2 (COVID-19) N gene [Log #/volume] (viral load) in Respiratory
specimen by NAA with probe detection 36661371
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SARS-CoV-2 (COVID-19) RdRp gene [Cycle Threshold #] in Respiratory
specimen by NAA with probe detection 723471

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Upper respiratory specimen
by NAA with probe detection 36031453

SARS-CoV-2 (COVID-19) RdRp gene [Presence] in Specimen by NAA with probe
detection 706173

SARS-CoV-2 (COVID-19) N gene [Presence] in Specimen by NAA with probe
detection 706175

SARS-CoV-2 (COVID-19) ORF1ab region [Cycle Threshold #] in Specimen by
NAA with probe detection 706168

SARS-CoV-2 (COVID-19) N gene [Presence] in Respiratory specimen by Nucleic
acid amplification using CDC primer-probe set N1 586524

SARS-CoV-2 (COVID-19) ORF1ab region [Presence] in Specimen by NAA with
probe detection 723464

SARS-related coronavirus RNA [Presence] in Respiratory specimen by NAA with
probe detection 706165

SARS-CoV-2 (COVID-19) RNA panel - Saliva (oral fluid) by NAA with probe
detection 36032061

SARS-CoV-2 (COVID-19) RNA [Presence] in Respiratory specimen by NAA with
probe detection 706163

SARS-CoV-2 (COVID-19) specific TCRB gene rearrangements [Presence] in
Blood by Sequencing 36031944

SARS-CoV-2 (COVID-19) RNA [Presence] in Serum or Plasma by NAA with probe
detection 723463

41

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.11.23295259doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.11.23295259
http://creativecommons.org/licenses/by-nd/4.0/


Suppl. Table 2
All indicators of COVID-19 infection (except for PCR and Antigen tests, Suppl. Table 3).

Concept Name Concept Id

SARS-CoV-2 (COVID-19) IgG Ab [Presence] in Serum, Plasma or Blood by Rapid
immunoassay 706181

SARS-CoV-2 (COVID-19) IgA Ab [Units/volume] in Serum or Plasma by
Immunoassay 723459

SARS-CoV-2 (COVID-19) IgM Ab [Presence] in Serum, Plasma or Blood by Rapid
immunoassay 706180

SARS-CoV-2 (COVID-19) IgM Ab [Presence] in DBS by Immunoassay 36659631

SARS-CoV-2 (COVID-19) IgM Ab [Titer] in Serum or Plasma by
Immunofluorescence 36661373

SARS-CoV-2 (COVID-19) neutralizing antibody [Presence] in Serum by pVNT 757680

SARS-CoV-2 (COVID-19) IgG+IgM Ab [Presence] in Serum or Plasma by
Immunoassay 723479

SARS-CoV-2 (COVID-19) Ab panel - Serum, Plasma or Blood by Rapid
immunoassay 706176

SARS-CoV-2 (COVID-19) IgG Ab [Titer] in Serum or Plasma by
Immunofluorescence 36661374

SARS-CoV-2 (COVID-19) IgM Ab [Units/volume] in Serum or Plasma by
Immunoassay 706178

SARS-CoV-2 (COVID-19) IgA Ab [Presence] in Serum or Plasma by Immunoassay 723473

SARS-CoV-2 (COVID-19) neutralizing antibody [Titer] in Serum by pVNT 757679

SARS-CoV-2 (COVID-19) Ab [Presence] in Serum or Plasma by Immunoassay 586515

SARS-CoV-2 (COVID-19) IgG Ab [Units/volume] in Serum or Plasma by
Immunoassay 706177

SARS-CoV-2 (COVID-19) S protein RBD neutralizing antibody [Presence] in Serum
or Plasma by sVNT 36031734

SARS-CoV-2 (COVID-19) IgA Ab [Titer] in Serum or Plasma by
Immunofluorescence 36661372

SARS-CoV-2 (COVID-19) Ab [Units/volume] in Serum or Plasma by Immunoassay 586522

SARS-CoV-2 (COVID-19) IgA+IgM [Presence] in Serum or Plasma by Immunoassay757686

Measurement of Severe acute respiratory syndrome coronavirus 2 antibody 37310258
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SARS-CoV-2 (COVID-19) IgG Ab [Presence] in Serum or Plasma by Immunoassay 723474

SARS-CoV-2 (COVID-19) Ab panel - Serum or Plasma by Immunoassay 706179

SARS-CoV-2 stimulated gamma interferon [Presence] in Blood 36031969

SARS-CoV-2 stimulated gamma interferon release by T-cells [Units/volume] in Blood 36032309

SARS-CoV-2 (COVID-19) IgA Ab [Presence] in Serum, Plasma or Blood by Rapid
immunoassay 586521

SARS-CoV-2 (COVID-19) Ab [Presence] in DBS by Immunoassay 36031197

SARS-CoV-2 (COVID-19) Ab [Presence] in Serum, Plasma or Blood by Rapid
immunoassay 36661369

SARS-CoV-2 (COVID-19) IgM Ab [Presence] in Serum or Plasma by Immunoassay 723475

SARS-CoV-2 (COVID-19) Ab [Interpretation] in Serum or Plasma 723480

SARS-CoV-2 (COVID-19) IgG Ab [Presence] in DBS by Immunoassay 586527

SARS-CoV-2 stimulated gamma interferon release by T-cells [Units/volume]
corrected for background in Blood 36031956
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Suppl. Table 3

All significant single-condition tests. Listed estimates are odds ratios for the given cohort
pre-to-post compared to Controls, and p-values are adjusted across all condition tests for both
cohorts (Bonferroni, prior to filtering to significance). Available at
https://doi.org/10.5281/zenodo.7960028

Suppl. Table 4

All topic-level logistic model tests. Estimates are odds ratios for the given cohort and
demographic compared to Controls for the same demographic. Ratios where the demographic
is listed as NA are for demographic contrasts independent of phase or cohort (model
effectiveness checks, see main Methods). P-values are adjusted across all contrast tests
(Holm). Available at https://doi.org/10.5281/zenodo.7960028
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Suppl. Table 5

Summary statistics for pediatric and adolescent patients in the assessment set. Young PASC
patients are labeled with many more post-infection conditions than similar COVID and Control
patients, while being similar prior to infection. These patients also represent a diversity of sites.
Note that the pre-infection phase covers 1 year of patient history, while the post-infection phase
covers 6 months post-acute.

Cohort Life Stage Phase Mean #
Conditions

SD #
Conditions # Patients # Sites

Control adolescent post 8.10 7.78 10789 32

Control adolescent pre 10.84 10.45 10789 32

Control pediatric post 7.045 6.66 16029 32

Control pediatric pre 10.88 10.98 16029 32

COVID adolescent post 8.19 8.95 3703 31

COVID adolescent pre 11.05 11.33 3703 31

COVID pediatric post 7.66 8.02 3724 29

COVID pediatric pre 11.35 11.39 3724 29

PASC adolescent post 17.75 16.33 66 20

PASC adolescent pre 12.87 12.65 66 20

PASC pediatric post 15.85 10.61 49 18

PASC pediatric pre 14.36 9.744 49 18
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Suppl. Table 6

OMOP Concepts excluded from model training, evaluation, and testing.

Concept Name OMOP Concept Id

No matching concept 0

Clinical finding 441840

COVID-19 37311061

Viral disease 440029

Disease due to coronaviridae 4100065

Sexually abstinent 764423

Single current sexual partner 4043045

New sexual partner 44813701

Sexually active with men 43021202

Single historical sexual partner 43021216

Number of current sexual partners - finding 4276728

Bigamy 4336540

Sexual activity - two to three times per month 4012347

Sexual activity - two to three times per week 4012202

Finding of number of historical sexual partners 43021214

No longer sexually active 4043041

Multiple current sexual partners 4038723

Sexually active with transgender person 43021204

Number of sexual partners - finding 4269990

Satisfactory sexual experience 44811373

Sexual activity - daily 4012377

Currently not sexually active 4012376

Never been sexually active 4145811

Fornication 4031991

Sexual activity - monthly 4012348

Sexual activity - weekly 4012203
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Sexual contact with high risk partner 44789379

Finding of frequency of sexual activity 4188013

Engages in sexual activity outside marriage 43021163

Sexually active with women 43021203

Purposely unmarried and sexually abstinent 43021238

Sex within a relationship only 4021660

Sexually active in last month 37017764

Sexually active 4043042

Finding relating to sexual activity 4114865

Sexually active in last year 37017763

Engages in sexual activity before marriage 43021162

Sexually active in last six months 37017762

Multiple historical sexual partners 43021215
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Suppl. Table 7
Source ICD code prefixes used to generate Quan-based comorbidity scores.

ICD Prefixes Charleson Group Quan
Score

'I21','I22','I252' 1: Acute or historical MI 0

'I43','I50','I099','I110','I130','I132','I255','I420','I425','I4
26','I427','I428','I429','P290'

2: CHF 2

'I70','I71','I731','I738','I739','I771','I790','I792','K551','K
558','K559','Z958','Z959'

3: Peripheral vascular
disease

0

'G45','G46','I60','I61','I62','I63','I64','I65','I66','I67','I68','
I69','H340'

4: Cerebrovascular disease 0

'F00','F01','F02','F03','G30','F051','G311' 5: Dementia 2

'J40','J41','J42','J43','J44','J45','J46','J47','J60','J61','J
62','J63','J64','J65','J66','J67','I278','I279','J684','J701'
,'J703'

6: COPD 1

'M32','M33','M34','M06','M05','M315','M351','M353','M
360'

7: Rheumatic disease 1

'K25','K26','K27','K28' 8: Peptic ulcer 0

'B18','K73','K74','K700','K701','K702','K703','K709','K7
17','K713','K714','K715','K760','K762','K763','K764','K
768','K769','Z944'

9: Mild liver disease 2

'E100','E101','E106','E108','E109','E110','E111','E116',
'E118','E119','E120','E121','E126','E128','E129','E130'
,'E131','E136','E138','E139','E140','E141','E146','E14
8','E149'

10: Diabetes 0

'E102','E103','E104','E105','E107','E112','E113','E114',
'E115','E117','E122','E123','E124','E125','E127','E132'
,'E133','E134','E135','E137','E142','E143','E144','E14
5','E147'

11: Diabetes with chronic
complications

1

'G81','G82','G041','G114','G801','G802','G830','G831',
'G832','G833','G834','G839'

12: Paralysis 2

'N18','N19','N052','N053','N054','N055','N056','N057','
N250','I120','I131','N032','N033','N034','N035','N036','
N037','Z490','Z491','Z492','Z940','Z992'

13: Renal disease 1
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'C00','C01','C02','C03','C04','C05','C06','C07','C08','C
09','C10','C11',

'C12','C13','C14','C15','C16','C17','C18','C19','C20','C
21','C22','C23',

'C24','C25','C26','C30','C31','C32','C33','C34','C37','C
38','C39','C40',

'C41','C43','C45','C46','C47','C48','C49','C50','C51','C
52','C53','C54',

'C55','C56','C57','C58','C60','C61','C62','C63','C64','C
65','C66','C67',

'C68','C69','C70','C71','C72','C73','C74','C75','C76','C
81','C82','C83',

'C84','C85','C88','C90','C91','C92','C93','C94','C95','C
96','C97'

14: Localized
cancer/leukemia/lymphoma

2

'K704','K711','K721','K729','K765','K766','K767','I850','
I859','I864','I982'

15: Moderate/severe liver
disease

4

'C77','C78','C79','C80' 16: Metastatic cancer 6

'B20','B21','B22','B24' 17: HIV/AIDS 4
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