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ABSTRACT 

Background: The lack of automated tools for measuring care quality has limited the 

implementation of a national program to assess and improve guideline-directed care in 

heart failure with reduced ejection fraction (HFrEF). A key challenge for constructing 

such a tool has been an accurate, accessible approach for identifying patients with 

HFrEF at hospital discharge, an opportunity to evaluate and improve the quality of care. 

Methods: We developed a novel deep learning-based language model for identifying 

patients with HFrEF from discharge summaries using a semi-supervised learning 

framework. For this purpose, hospitalizations with heart failure at Yale New Haven 

Hospital (YNHH) between 2015 to 2019 were labeled as HFrEF if the left ventricular 

ejection fraction was under 40% on antecedent echocardiography. The model was 

internally validated with model-based net reclassification improvement (NRI) assessed 

against chart-based diagnosis codes. We externally validated the model on discharge 

summaries from hospitalizations with heart failure at Northwestern Medicine, community 

hospitals of Yale New Haven Health in Connecticut and Rhode Island, and the publicly 

accessible MIMIC-III database, confirmed with chart abstraction.  

Results: A total of 13,251 notes from 5,392 unique individuals (mean age 73 ± 14 

years, 48% female), including 2,487 patients with HFrEF (46.1%), were used for model 

development (train/held-out test: 70/30%). The deep learning model achieved an area 

under receiving operating characteristic (AUROC) of 0.97 and an area under precision-

recall curve (AUPRC) of 0.97 in detecting HFrEF on the held-out set. In external 

validation, the model had high performance in identifying HFrEF from discharge 

summaries with AUROC 0.94 and AUPRC 0.91 on 19,242 notes from Northwestern 
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Medicine, AUROC 0.95 and AUPRC 0.96 on 139 manually abstracted notes from Yale 

community hospitals, and AUROC 0.91 and AUPRC 0.92 on 146 manually reviewed 

notes at MIMIC-III. Model-based prediction of HFrEF corresponded to an overall NRI of 

60.2 ± 1.9% compared with the chart diagnosis codes (p-value < 0.001) and an increase 

in AUROC from 0.61 [95% CI: 060-0.63] to 0.91 [95% CI 0.90-0.92]. 

Conclusions: We developed and externally validated a deep learning language model 

that automatically identifies HFrEF from clinical notes with high precision and accuracy, 

representing a key element in automating quality assessment and improvement for 

individuals with HFrEF. 
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BACKGROUND 

Heart failure with reduced ejection fraction (HFrEF) accounts for nearly half of the 

hospitalizations for heart failure, with a nearly 50% mortality in 5 years after diagnosis 

(1). Several evidence-based therapies can improve survival and lower the risk of 

hospitalization in patients with HFrEF (2). However, only 1 in 5 eligible individuals 

receive all the first-line treatments for HFrEF in the United States (3,4). This gap 

highlights the urgent need for new strategies to implement guideline-directed therapies 

in clinical practice. 

Clinical notes from electronic health records (EHR) are rich real-world data 

sources that can support systematic approaches to identify patient groups, including 

those with HFrEF, a linchpin for the assessment and improvement of care. Natural 

language processing (NLP) of clinical notes can automate the  identification of 

individuals with HFrEF from the EHR (5,6), and has been recognized by the 2022 

AHA/ACC/HFSA guideline for the management of heart failure as a novel 

implementation technique to assess the quality of care in patients with heart failure (7). 

NLP-based algorithms address the limitations of structured data, such as poorly 

recorded diagnosis codes and single-source echocardiography measurements. 

However, previous NLP-based models have been limited to semantic algorithms that 

search for pre-specified terms with unclear performance in identifying HFrEF (8,9). 

Misspelling of disease diagnosis, frequent use of abbreviations in clinical 

documentation, and variations in textual descriptions of clinical entities such as heart 

failure with recovered ejection fraction, are barriers to properly identifying the 

heterogeneous population of patients with HFrEF (10).  
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In this study, we developed and externally validated a state-of-the-art deep-

learning language model that identifies HFrEF through contextual analysis of clinical 

notes. Our model can effectively process long notes without being limited to pre-

defined terms. Our approach suggests a computable phenotype of HFrEF from 

unstructured EHR documents, which is an essential step to automate quality-of-care 

measurement and improvement strategies in heart failure. 

 

METHODS 

The study was reviewed by the Yale Institutional Review Board, which approved the 

study protocol and waived the need for informed consent, as the study represents a 

secondary analysis of existing data. 

 

Data Source for Model Development 

The model was developed using the EHR data of the Yale New Haven Hospital (YNHH) 

from 2015 through 2019. YNHH is a large academic hospital that serves a diverse 

population with a significant proportion of underrepresented minorities. The EHR vendor 

at YNHH is Epic®, and we obtained and curated an extract spanning structured and 

unstructured data fields for the study population. The structured fields included patient 

demographics, diagnosis and procedure codes, medications, and healthcare 

encounters. The unstructured data included notes, such as history and physical exam 

(H&P), progress reports, procedure reports, and discharge summaries. In addition, the 

information was merged with the data on echocardiography parameters, which were 
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available from our structured echocardiography reporting system (Lumedx®, Oakland, 

CA).  

 

Study Population 

The study population included all individuals hospitalized with a principal or secondary 

diagnosis of heart failure with at least one echocardiogram during or before the index 

hospitalization between 2015 and 2019. Heart failure hospitalizations were defined 

using international classification of diseases (ICD) diagnosis codes (Table S1). To 

maximize learning with the broadest set of available data, hospitalizations as opposed 

to patients were chosen as the unit of analysis.  

Discharge summaries from hospitalizations with heart failure were obtained and 

used for model development and validation. These notes encapsulate the summary of 

patient’s hospitalization, including the presenting symptoms, hospital course, diagnostic 

studies, and therapeutic interventions, and contain rich evidence to support a clinical 

diagnosis. 

 

Study Outcomes and Covariates 

Diagnosis of HFrEF was the primary outcome of the study. This diagnosis was 

ascertained based on left ventricular ejection fraction (LVEF) < 40% on antecedent 

echocardiography before or during the index hospitalization. 

 The proportional use of guideline-directed medical therapies among model-based 

reclassified patients with HFrEF was the secondary outcome of the study. These 

therapies included beta blockers, angiotensin receptor-neprilysin inhibitor (ARNI), 
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angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), 

sodium-glucose cotransporter-2 inhibitors (SGLT2i), and mineralocorticoid receptor 

blockers (MRA) based on recommendations from the 2022 AHA/ACC/HFSA Guideline 

for the Management of Heart Failure (7). Table S2 represents the medications in each 

drug class and the adjudication strategy to determine their use during hospitalization or 

prescription at the time of discharge. The proportional use of each drug class was 

calculated among individuals who were correctly reclassified as HFrEF based on model 

predictions compared with chart diagnosis codes with LVEF on antecedent 

echocardiography as the gold standard for the diagnosis of HFrEF. Demographic 

characteristics of the study population, including age, sex, and race were collected from 

the database. Categories of race included non-Hispanic White, non-Hispanic Black, 

Hispanic, and individuals of other races. 

 

Data Processing and Model Development 

We developed a deep learning-based language model built upon a pretrained clinical 

longformer to identify individuals with HFrEF (11). This model takes advantage of an 

attention mechanism known as sliding window attention, which enables the algorithm to 

process text sequences by using multiple stacked layers of small window attentions 

surrounding each token (12). The longformer provides contextual insights through 

processing long-term dependencies in the entire clinical note, and has previously 

achieved state-of-the art results on a range of clinical tasks, including named-entity 

recognition, question answering, natural language inference, and document 

classification tasks. Such attention-based models enable understanding of the context 
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in which each term is used in the text, including the presence or absence of a condition 

(negation detection), historical feature, or the reference to the presence of a condition in 

some other individual (such as family, instead of the patient).    

 We randomly split notes into train (70%) and test (30%) sets after stratification at 

the patient level to avoid sharing data from the same patient between two sets. 

Punctuations, special characters, and stop words were removed from the corpus of 

each note and the remaining string input were tokenized and converted to tensors. A 

maximum input sequence length of 4,096 words was set based on the maximum input 

length allowed for the base model (11), and a truncation function was applied to tensors 

longer than this limit (Figure 1). 

The model weights were initialized with pre-trained values and fine-tuned on 

input embeddings using a backpropagation gradient descent algorithm with a cross 

entropy loss function. A single linear layer perceptron was applied to the output of the 

longformer for binary classification. This layer receives the last hidden state of the 

longformer and predicts the probability of HFrEF using a Softmax activation function. 

Adam optimizer was used for stochastic optimization without any drop-out. The model 

was trained with a learning rate of 1e-7 for 30 epochs, with early stopping rules set 

based on lack of improvement of validation loss for 3 consecutive epochs, upon which 

the preceding epoch was chosen as the final study model. 

 

Validation 

The model’s performance in detecting individuals with HFrEF was internally assessed 

on the held-out test set. The diagnosis of HFrEF was ascertained based on LVEF < 
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40% on antecedent echocardiography, as described above. We also evaluated the 

association of model-predicted probabilities of HFrEF with echocardiography-based 

measurements of LVEF to assess the plausibility of model predictions. In sensitivity 

analyses, the model was validated on clinical subgroups of cardiovascular 

comorbidities, including ischemic heart disease, atrial fibrillation/flutter, and right heart 

failure, which were defined based on corresponding disease diagnosis codes (Table 

S1). We also assessed the performance of the model on discharge summaries of 

variable lengths, as determined by the quintiles of word counts of these notes. 

Furthermore, we evaluated the model’s performance after blanking out 

echocardiography report sections from discharge summaries. This was designed to 

evaluate the broader generalizability of our model to practice locations where 

automated inclusion of echocardiographic reports is not the norm. For this analysis, we 

utilized a custom dictionary to identify structured section headers within the body of the 

notes. Leveraging an entity recognition module in MedSpaCy library, we set up a rule-

based pipeline to identify echocardiography section header terms (13). To enhance the 

performance of this approach, we fine-tuned a BioClinicalBERT algorithm, a publicly 

available language model specialized for biomedical text analysis (14), by training the 

original model on a labeled dataset where echocardiography sections were tagged in 

the discharge summaries. The rule-based entity recognition module served as a 

preliminary filter, after which fine-tuned BioClinicalBERT model assessed the likelihood 

of a flagged section containing echocardiography data. 

In addition to the echocardiogram-based label, a sample of 130 discharge 

summaries was randomly selected from the held-out test set and manually reviewed by 
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a cardiologist for a diagnosis of HFrEF. The phenotype of heart failure was adjudicated 

in a blind fashion to model predictions based on patient’s signs and symptoms, lab 

values, and LV systolic function in the body of discharge summaries. A diagnosis of 

HFrEF was ultimately made in 58 notes (45%) based on clinical judgement of the 

adjudicating cardiologist.  

 

Data Source: External Validation 

To assess the generalizability of the model, we validated our algorithm in three external 

sets, including: 1) Northwestern Medicine health system; 2) community hospitals of Yale 

New Haven health system in the states of Connecticut and Rhode Island; and 3) 

hospitalizations requiring intensive care from Medical Information Mart for Intensive 

Care III (MIMIC-III) database. 

Hospitalizations with heart failure at Northwestern Medicine, a large integrated 

health system in Illinois, USA, were identified based on a principal diagnosis of heart 

failure between January 2010 to December 2022. All individuals with a preceding 

echocardiography within 6 months of the discharge were included in this analysis. LVEF 

< 40% on the most recent echocardiography was used to define the HFrEF label. This 

sample included 19,242 notes from 11,513 unique individuals, including 8,277 (43%) 

notes from patients with LVEF < 40%. These analyses were performed in a fully 

federated fashion by the collaborators, without access to the data by the model 

development team at Yale. 

In addition, we identified hospitalizations with heart failure at satellite community 

hospitals of the Yale New Haven health system between January to December 2021. 
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These hospitals include Bridgeport Hospital, Lawrence & Memorial Hospital, and 

Greenwich Hospital in Connecticut, and Westerly Hospital in Rhode Island. 

Hospitalizations with a principal or secondary diagnosis of heart failure were identified 

from diagnosis codes, consistent with the prior analysis (Table S1). This sample 

included 139 discharge summaries manually reviewed by a cardiologist and a diagnosis 

of HFrEF was adjudicated in 70 (50.3%) notes. The manual review was blind to model 

predictions and patient-level data beyond the note. 

Finally, we validated the model on discharge summaries from MIMIC-III, a 

database of de-identified medical records from admissions that required critical care 

during their hospitalization at Beth Israel Deaconess Medical Center between 2001 to 

2012 (15). MIMIC-III database houses unstructured notes and structured data fields, 

such as patient demographics, laboratory tests, in-hospital procedures, and prescription 

medications. A random sample of 146 discharge summaries was selected from the 

original dataset based on a principal discharge diagnosis of heart failure, and manually 

reviewed by a cardiologist, which identified a diagnosis of HFrEF in 74 (50.6%) of notes. 

 

Comparison with Chart Diagnosis 

We assessed the model’s performance in reclassifying HFrEF phenotype from 

discharge summaries compared with the chart diagnosis codes. An LVEF < 40% on 

antecedent echocardiography was considered the true label for HFrEF. Chart diagnosis 

codes corresponding with systolic heart failure were used in this analysis and are 

presented in Table S1. The proportional use of guideline-directed therapies among 
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reclassified individuals was assessed as a secondary outcome, as described in section 

“study outcomes and covariates” above. 

 

Explainability Analyses 

We performed an explainability analysis using Local Interpretable Model-agnostic 

Explanations (LIME) to identify predictive keywords for HFrEF from discharge 

summaries. This analysis estimates the contribution of local regions of the input text by 

perturbating input instances while observing the corresponding changes in model 

predictions (16). LIME-generated estimates capture local dependencies and provide 

insights into the feature importance for model predictions. We applied LIME analysis to 

the top 100 most confident model predictions of HFrEF and extracted the top 20 most 

predictive keywords for HFrEF based on their corresponding weights. We also 

demonstrate representative examples of this analysis on real-world discharge 

summaries that represents the relative importance of each token in the final model 

prediction. 

 

Statistical Analysis 

Categorical variables are presented in frequency and percentage. Continuous variables 

are presented in mean and standard deviation or median and interquartile range, as 

appropriate. Area under receiver operating characteristic (AUROC) was used to assess 

model discrimination. Sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), and area under precision-recall curve (AUPRC) were calculated 
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to assess the model performance. The cut-off probability for binary prediction of HFrEF 

was set at 0.5 and was consistent across all internal and external validations. 

To compare the performance of the model with chart diagnosis classification of 

HFrEF, the AUROCs of the two methods were compared. The AUROC and 

corresponding 95% confidence intervals for this analysis were obtained from a logistic 

regression model with the binary prediction of HFrEF as the outcome. A univariate 

linear regression was used to assess the association between LVEF values as outcome 

and model-predicted probabilities of HFrEF as predictor. Model-predicted probabilities 

of HFrEF were transformed on a natural logarithmic scale for this analysis.  

Net reclassification improvement (NRI) was used to assess model-based 

reclassification of HFrEF compared with the chart diagnosis codes. NRI is a statistical 

method to assess the improvement in disease classification by risk prediction models 

and quantifies correct reclassification of individuals into more appropriate risk or disease 

categories. Proportional use of guideline-directed therapies was aggregated for 

medications in the same drug class among patients who were correctly reclassified to 

HFrEF after applying model predictions to chart diagnosis codes. 

All statistical tests were 2-sided with a level of significance of 0.05. 

Computational and statistical analyses were performed in Python 3.8. Data processing 

was performed using Pandas (1.5.3), Numpy (1.23.5), SciPy (1.10.1), and Scikit-learn 

(1.2.2). Model development was performed using Pytorch (1.4.0). The pretrained clinical 

longformer model was imported from the Hugging Face transformers library. LIME 

library (0.2.0) was used for explainability analysis. SpaCy (3.5) and MedSpaCy (0.2.0) 
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were used for fine-tuning the BioClinicalBERT model for identification of 

echocardiography sections in discharge summaries. (Table S3). 

 

RESULTS 

Study Population 

There were 13,251 hospitalizations for heart failure from 5,392 unique patients at YNHH 

between 2015 to 2019. Discharge summaries of these hospitalizations represented 

training (n=9,275, 70% of notes) and held-out test sets (n=3,976, 30% of notes). The 

mean age of the study population was 73 ± 14 years, and 48% were female. Overall, 

3,721 individuals were non-Hispanic White (69.0%), 1,118 were non-Hispanic Black 

(20.7%), 386 were Hispanic (7.1%), and 167 self-identified as other races (3.0%). A 

total of 2,487 patients (46.1%) had LVEF of less than 40%, 736 (13.6%) had LVEF 

between 40% to 50%, and 2,169 (40.2%) had LVEF of 50% or greater. Overall, 78.3% 

were treated with a beta-blocker, 9.4% with sacubitril-valsartan, 28.9% with an ACEI, 

19.3% with an ARB, 2.6% with an SGLT-2i, and 26.3% with an MRA. The demographic 

and clinical characteristics of the study population are presented in Table 1. 

 

Detection of HFrEF from Clinical Notes 

The model demonstrated an AUROC of 0.97 and AUPRC of 0.97 in detecting 

individuals with HFrEF on the held-out test set based on a preceding echocardiogram 

with LVEF < 40% (Figure 2). The sensitivity and specificity of the model were 0.89 and 

0.94, with PPV and NPV of 0.93 and 0.90, respectively. Model performance was 

consistent across demographic subgroups of age, sex, and race (Table 2). 
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In the confirmatory analysis of 130 expert-adjudicated notes from the held-out test set, 

the model had an AUROC of 0.99 and AUPRC of 0.99 in detecting HFrEF, with 

sensitivity and specificity of 0.91 and 0.97, and PPV and NPV of 0.96 and 0.93, 

respectively. 

 

External Validation 

There were 19,242 notes from 11,513 unique individuals in the validation set from 

Northwestern Medicine, including 5,386 (46.7%) women. Overall, 7,460 individuals 

were non-Hispanic White (64.7%), 2,466 were non-Hispanic Black (21.4%), 663 were 

Hispanic (5.7%), and 954 self-identified as other races (8.2%). In this sample, 8,277 

(43%) notes were for patients with an LVEF < 40% on an antecedent 

echocardiography. In this validation set, the model demonstrated an AUROC of 0.94 

and AUPRC of 0.91 in detecting HFrEF, with sensitivity and specificity of 0.83 and 

0.89, and PPV and NPV of 0.86 and 0.87, respectively (Figure 3). 

We further validated the model on manually reviewed discharge summaries from 

community hospitals of Yale New Haven Health System (n=139) and MIMIC-III 

database (n=146). Individuals in both datasets were predominantly male (61.9% and 

65.7%), non-Hispanic White (77.6% and 71.2%), and older than 65 years of age (79.2% 

and 74.6%, respectively). A diagnosis of HFrEF was adjudicated in half of the notes 

from each validation set (50%). The model demonstrated an AUROC of 0.95 and 

AUPRC of 0.96 in detecting HFrEF from clinical notes of Yale community hospitals. The 

sensitivity and specificity of the model in identifying HFrEF were 0.77 and 0.98, with 

PPV and NPV of 0.98 and 0.80, respectively. On the MIMIC-III dataset, the model had 
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an AUROC of 0.91 and AUPRC of 0.92 in detecting HFrEF, with sensitivity and 

specificity of 0.77 and 0.90, and PPV and NPV of 0.88 and 0.80, respectively. These 

PPV and NPV were at the a priori probability threshold of 0.5. Baseline characteristics 

of individuals in each dataset and model performance on notes from three validation 

sets are presented in Table S4 and Figure 4. 

 

Model Performance across Cardiovascular Comorbidities, Notes of Varying 

Lengths, and Discharge Summaries Without Echocardiography Reports 

In sensitivity analyses, the performance of the model in detecting HFrEF from discharge 

summaries in the held-out test set remained consistent among patients with or without 

ischemic heart disease (AUROC 0.96 vs 0.97, AUPRC 0.98 vs 0.97, respectively), atrial 

fibrillation/flutter (AUROC 0.97 and AUPRC 0.98 in both subgroups), and right heart 

failure (AUROC 0.99 vs 0.97, AUPRC 0.97 vs 0.97, respectively). Receiver operating 

characteristics and precision-recall curves for these analyses are presented in Figures 

S3-S5. 

In further sensitivity analyses, we evaluated the model’s performance on clinical 

notes of varying lengths. The median word count of discharge summaries in the held-

out test set was 3,192 [IQR 1,604-4,922], and 58% of notes had 4,096 words or fewer, 

the truncation threshold for longer notes in our data processing pipeline. Among notes 

shorter than this limit, 995 (43%) belonged to individuals with HFrEF, compared with 

925 (55.4%) notes longer than this cut point. The performance of the model in detecting 

HFrEF was consistent across the quintiles of word count, with AUROC ranging between 

0.96-0.98 and AUPRC between 0.94-0.99 (Table S5). 
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 After blanking out echocardiography report sections from the discharge 

summaries, the model had similar performance in identifying HFrEF with an AUROC of 

0.94 and AUPRC of 0.94, sensitivity of 0.86, specificity of 0.89, PPV of 0.88, and NPV 

of 0.87. 

 

Disease Reclassification and Use of Guideline-directed Therapies 

The model correctly identified individuals with low LVEF in 43% and normal LVEF in 

49% of notes in the held-out test set, compared with 18% and 44% with corresponding 

chart diagnosis codes, respectively (Figure 5A and Table S6). Model-based predictions 

of HFrEF corresponded to an overall NRI of 60.2 ± 1.9% compared with the chart 

diagnosis codes (p-value < 0.001), and an increase in AUROC from 0.61 [95% CI: 0.60-

0.63] to 0.91 [95% CI 0.90-0.92] with binary predictions (Table S7).  

 The proportional use of guideline-directed therapies among individuals who were 

correctly reclassified to HFrEF after applying the model is presented in Figure 5B. In 

this group of individuals, 88% were treated with a beta-blocker, 63% with ARNI, ACEI, 

or ARB, 8% with an SGLT2i, and 33% with an MRA. 

 

Explainability Analysis 

In an analysis of textual terms associated with HFrEF, we identified the top 20 keywords 

within a clinical note predictive of a HFrEF phenotype. The top 3 predictive words for the 

presence of HFrEF were “severe”, “globally”, and “dobutamine”. This exploratory 

analysis identified clinically relevant terms, such as “HFrEF”, “ventricular assist device 

(VAD)”, “entresto”, and “inotropic” from the clinical note that predict a HFrEF phenotype 
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(Figure 6). A representative example of this analysis on a discharge summary from an 

individual with HFrEF is shown in Figure 6B.  

 

DISCUSSION 

We developed and externally validated a deep learning-based natural language 

processing model that automatically detects HFrEF from clinical notes in the EHR. The 

algorithm demonstrated high discrimination in identifying HFrEF across demographic 

subgroups of age, sex, race, cardiovascular comorbidities, and discharge summaries of 

varying lengths. It also showed a robust performance across multiple regionally and 

temporally distinct academic and community clinical settings. This strategy improved the 

classification of patients with HFrEF compared with the chart diagnosis codes and 

identified discernible gaps in guideline-directed therapies in practice. Moreover, our 

language-based approach is explainable, as it detects clinically relevant terms through 

contextual analysis of clinical notes. In combination with diagnosis codes and 

echocardiography, this algorithm can systematically identify patients with HFrEF who 

would benefit from guideline-directed treatments. 

Accurate Identification of heart failure subtypes is essential to effectively 

implement guideline-recommended therapies in practice, as evidence-based treatments 

can significantly vary across phenotypes of heart failure (17). The current workflow to 

assess the quality of care in heart failure registries relies on abstractors to manually 

collect information on patients with heart failure at participating hospitals, a resource-

intensive strategy with challenges in scaling at the national level and improving the 

quality of care in real-time (18). Prior population-based studies have relied on 

administrative claims data and diagnosis codes to identify individuals with heart failure 
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but only achieved limited accuracy with sensitivity ranging between 68-72% and 

specificity between 63-68% in identifying heart failure subgroups such as HFrEF (19). 

These approaches do not use unstructured EHR data to discern heart failure 

phenotypes, as leveraging this resource has been difficult to implement in practice (20). 

Our model, however, is a powerful tool to exploit the previously underused data in 

clinical notes to improve the quality of care in this population. 

Previous applications of NLP in heart failure were limited to rule-based models to 

extract LVEF from echocardiography reports (21), search for pre-specified terms in 

notes (22), or annotate medical conditions from clinical notes with partitioned format 

(23). The real-world applications of these methods remain limited due to variations of 

EHR format across institutions. In addition, the dynamic changes of echocardiography 

parameters such as LVEF over time pose a temporal challenge to ascertaining heart 

failure subtypes from cross-sectional measurements. Our method overcomes these 

challenges through contextual analysis of the entire note without restriction to pre-

specified keywords. The model learned to detect the lexical predictors of HFrEF, which 

were consistent with the clinical characteristics of this condition, suggesting the 

explainability of the model predictions. Moreover, our approach does not require 

partitioning or segmentation of the input text and is hence applicable independent of the 

EHR format.  

The fully automated nature of our approach is not its only advantage over the 

current methods of quality assessments. In identifying individuals with HFrEF, our 

model outperformed the diagnosis codes by a large margin. It demonstrates consistent 

performance across geographically distant settings with no requirement for reformatting 
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the model before implementation. Our approach could not only be an adjunct to the 

structured methods of identifying individuals with HFrEF but also applicable to settings 

where echocardiography-based measurements of LVEF are not systematically 

collected. On a broader scale, our findings suggest the immense potential of artificial 

intelligence in understanding human language and its applications in health care to 

promote the quality of care in clinical practice. 

Our study has some limitations that merit consideration. First, the performance of 

our model in detecting HFrEF depends on the quality of chart documentation. Poorly 

documented hospital courses or patient conditions would predictably lead to imperfect 

model performances. This limitation is not exclusive to our approach, as manual chart 

abstractions encounter similar challenges in identifying patient subgroups. Second, our 

model is not prospectively validated to monitor the quality of care. However, the 

generalizability of our approach is supported by validation in multiple sites, and the gaps 

in the use of guideline-directed therapies provide an actionable target to improve the 

quality of care compared with the chart diagnosis codes. Third, the proportional use of 

guideline-directed therapies as the secondary outcome of the study does not consider 

eligibility for treatment, as renal dysfunction, electrolyte abnormalities, or hypotension 

could potentially impact the treatment decisions for the corresponding medications. The 

explainability analysis of our model predictions also suggest clinical features of 

individuals who may not be candidate for these therapies, as this analysis was limited to 

100 individuals with the most confident model predictions of HFrEF with 

overrepresentation of patients with advanced heart failure. However, the observed gaps 

in the use of guideline-directed therapies in our study population was consistent with 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2023. ; https://doi.org/10.1101/2023.09.10.23295315doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.10.23295315
http://creativecommons.org/licenses/by-nc/4.0/


 21 

previous reports of similar national trends (3,4). Further analysis of treatment eligibilities 

might be necessary to distinguish individuals with advanced heart failure from those 

who would benefit from the initiation of guideline-directed therapies. 

  

CONCLUSION 

We developed an automated algorithm that identifies patients with HFrEF through an 

explainable, deep learning-based natural language processing of clinical notes in the 

EHR. Our approach improved the appropriate classification of patients with heart failure 

compared with the chart diagnosis codes and suggested a novel computable phenotype 

of HFrEF from EHR that could be used for quality assessment and improvement. 
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Table 1. Characteristics of the Study Population. Values are presented as number 

(percentage). Medications include guideline-directed medical therapies during or at the 

time of discharge from the index hospitalization at Yale New Haven Hospital. Patients 

receiving sacubitril-valsartan were included in both ARNI and ARB groups. 

Abbreviation: LVEF, left ventricular ejection fraction; ARNI, angiotensin receptor-

neprilysin inhibitor; ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin 

receptor blocker; SGLT2i, sodium glucose cotransporter 2 inhibitor; MRA, 

mineralocorticoid receptor antagonist.  

 LVEF < 40% LVEF >= 40% All 

All 2,487 (46.1) 2,905 (53.9) 5,392 (100) 

Female 889 (34.2) 1,704 (65.7) 2,593 (48.1) 

Male 1,598 (57.0) 1,201 (42.9) 2,799 (51.9) 

Age < 65 years 834 (58.8) 583 (41.1) 1,417 (26.3) 

Age >= 65 years 1,653 (41.5) 2,322 (58.4) 3,975 (73.7) 

Race    

   White 1,604 (43.1) 2,117 (56.9) 3,721 (69.0) 

   Black 595 (53.2) 523 (46.8) 1,118 (20.7) 

   Hispanic 206 (53.3) 180 (46.6) 386 (7.1) 

   Others 82 (49.1) 85 (50.9) 167 (3.0) 

Medication    

   Beta Blockers 2175 (87.4) 2047 (70.4) 4223 (78.3) 

   ARNI 479 (19.2) 31 (1.0) 510 (9.4) 

   ACEI 891 (35.8) 670 (23) 1561 (28.9) 

   ARB 542 (21.7) 500 (17.2) 1042 (19.3) 

   SGLT2i 108 (4.3) 35 (1.2) 143 (2.6) 

   MRA 887 (35.6) 533 (18.3) 1420 (26.3) 
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Table 2. Model Performance Across Demographic Subgroups. Data represent 

performance metrics for detecting HFrEF across subgroups of age, sex, and race on the 

held-out test set at Yale New Haven Hospital. Abbreviations: AUROC, area under 

receiver operating characteristic curve; AUPRC, area under precision recall curve; PPV, 

positive predictive value; NPV, negative predictive value. 

 AUROC AUPRC Sensitivity Specificity PPV NPV 

All 0.971 0.973 0.896 0.941 0.934 0.906 

Female 0.972 0.956 0.877 0.962 0.920 0.940 

Male 0.970 0.980 0.910 0.908 0.935 0.874 

Age < 65 0.979 0.986 0.946 0.900 0.937 0.914 

Age >= 65 0.970 0.967 0.880 0.948 0.927 0.912 

White 0.968 0.966 0.883 0.943 0.925 0.910 

Black 0.987 0.990 0.945 0.930 0.939 0.936 

Hispanic  0.973 0.978 0.928 0.934 0.859 0.914 

Others 0.984 0.984 0.909 0.963 0.821 0.913 
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Figure 1. Model Development. Hospitalizations for heart failure at Yale New Haven 

Hospital with an antecedent echocardiography were included for model development. 

The schematic represents data processing, model development, and evaluation of 

model performance on validation sets, including Northwestern Medicine, community 

hospitals of Yale New Haven health system, and MIMIC-III database. Abbreviations: 

YNHH, Yale New Haven Hospital; HFrEF, heart failure with reduced ejection fraction; 

MIMIC, Medical Information Mart for Intensive Care. 
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Figure 2. Model Performance. The graphs represent receiver operating characteristic 

(left) and precision-recall (right) curves in identifying HFrEF on clinical notes from the 

held-out test set at Yale New Haven Hospital. Abbreviations: ROC, receiver operating 

characteristic curve; PRC, precision recall curve; AUC, area under curve.  
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Figure 3. External Validation. Performance of the model in identifying HFrEF was 

evaluated on discharge summaries from three external sets, including 1) Northwestern 

Medicine, 2) Community hospital of Yale New Haven health system, and 3) MIMIC-III. 

The figure represents receiver operating characteristic (left) and precision-recall (right) 

curves for these analyses. Abbreviations: YNH, Yale New Haven; MIMIC, Medical 

Information Mart for Intensive Care III; AUC, area under curve. 
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Figure 4. External Validation. The bar graph represents model performance in 

detecting HFrEF from discharge summaries of hospitalizations with heart failure at 

Northwestern Medicine (blue), community hospitals of Yale New Haven health (pink) 

and MIMIC-III (yellow). Abbreviations: AUROC, area under receiving operating 

characteristics; AUPRC, area under precision recall curve; PPV, positive predictive 

value; NPV, negative predictive value; MIMIC, Medical Information Mart for Intensive 

Care III. 
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Figure 5. Disease Classification and Use of Guideline Directed Therapies. (A) 

Nested pie chart demonstrates disease classification based on echocardiography 

measurements of LVEF (true label, outer circle), model predictions of disease 

phenotype (middle circle), and chart-documented diagnosis codes (inner circle). Blue 

represents a diagnosis of HFrEF and red represents other phenotypes of heart failure; 

(B) Use of guideline-directed therapies among individuals with LVEF < 40% who were 

correctly reclassified from a chart-diagnosis of non-HFrEF to a model-based diagnosis 

of HFrEF. Abbreviations: ARNI, angiotensin receptor-neprilysin inhibitor; ARB, 

angiotensin receptor blocker; ACEI, angiotensin converting enzyme inhibitor; SGLT2i, 

sodium glucose cotransporter 2 inhibitor; MRA, mineralocorticoid receptor antagonist. 
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Figure 6. Predictive Keywords for Heart failure Phenotypes. Figure represents 

Local Interpretable Model-agnostic Explanations (LIME) for model predictions of HFrEF 

from discharge summaries. (A) The most predictive keywords for HFrEF with 

corresponding coefficients based on the LIME analysis of the top 100 notes with the 

most confident model predictions. (B) A real-world example of LIME analysis on a 

discharge summary representing local dependencies. The color intensity of each 

highlighted keyword represents its contributions to the model-predicted probability of a 

HFrEF (orange) vs a non-HFrEF phenotype (blue). The deidentified discharge summary 

describes the hospitalization of an individual after initial presentation with heart failure 

and left ventricular ejection fraction of 30% on echocardiography. The model predicted a 

99% probability for a HFrEF from this discharge summary. Abbreviations: MRI, 

magnetic resonance imaging; ICM, ischemic cardiomyopathy; VAD, ventricular assist 

device; NICM, non-ischemic cardiomyopathy; PAD, peripheral arterial disease; HFrEF, 

heart failure with reduced ejection fraction; PMH, past medical history; USH, usual state 

of health; ED, emergency department; HDS, hemodynamically stable; CXR, chest x-ray; 

ECHO, echocardiography; EF, ejection fraction; BNP, B-natriuretic peptide. 
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