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Abstract    1 

Background: Ovarian cancer (OC) is commonly diagnosed among older women who have 2 

comorbidities. This hypothesis-free phenome-wide association study (PheWAS) aimed to identify 3 

comorbidities associated with OC, as well as traits that share a genetic architecture with OC.  4 

Methods: We used data from 181,203 white British female UK Biobank participants and analysed 5 

OC and OC subtype-specific genetic risk scores (OC-GRS) for an association with 889 diseases and 6 

43 other traits. We conducted PheWAS and colocalisation analyses for individual variants to identify 7 

evidence for shared genetic architecture.  8 

Results: The OC-GRS was associated with 10 diseases, and the clear cell OC-GRS was associated 9 

with five diseases at the FDR threshold (p =5.6×10-4). Mendelian randomisaiton analysis (MR) 10 

provided robust evidence for the association of OC with higher risk of “secondary malignant 11 

neoplasm of digestive systems” (OR 1.64, 95% CI 1.33, 2.02), “ascites” (1.48, 95% CI 1.17, 1.86), 12 

“chronic airway obstruction” (1.17, 95% CI 1.07, 1.29), and “abnormal findings on examination of 13 

the lung” (1.51, 95% CI 1.22, 1.87). Analyses of lung spirometry measures provided further support 14 

for compromised respiratory function. PheWAS on individual OC variants identified five genetic 15 

variants associated with other diseases, and seven variants associated with biomarkers (all, p ≤4.5×10-16 

8). Colocalisation analysis identified rs4449583 as the shared causal variant for OC and seborrheic 17 

keratosis. 18 

Conclusions:  OC is associated with digestive and respiratory comorbidities. Several variants 19 

affecting OC risk were associated with other diseases and biomarkers, with this study identifying a 20 

novel genetic locus shared between OC and skin conditions.  21 

 22 
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  24 



 
 

 

3 
 

1. Introduction 25 

Ovarian cancer (OC) is a notorious gynaecological disorder, with only 44% of affected women 26 

surviving 5 years.1 Reducing mortality associated with OC remains a challenge as the poor 27 

understanding of the origin and biology of the disease limits opportunities to prevention, and the 28 

disease is typically detected at an advanced stage when treatment options are limited.2 Approximately 29 

90% of OC are epithelial OC and arise from epithelial cells, predominantly of the fallopian tube and 30 

endometrium.2-4 Epithelial OC can be further classified into serous, endometroid, clear cell, and 31 

mucinous subtypes, based on their histological characteristics3 and indeed, the pathogenesis, disease 32 

progression, and risk factors are known to vary between OC subtypes.3, 5 Given that OC is commonly 33 

diagnosed in women aged 50 years and above,6 many patients present with at least one comorbidity, 34 

which can influence treatment decisions, impact prognosis and affect overall survival.7, 8 Hence, 35 

exploring the associations between OC and comorbidities, along with understanding potential shared 36 

genetic links between OC and other traits, may offer insights into the underlying etiology of the 37 

disease. Such insights could lead to facilitating earlier detection and better management of the disease.  38 

Phenome-wide association study (PheWAS) is a powerful approach for testing the association of 39 

genetic variants or their risk score with a broad range of phenotypes and disease outcomes.9 This 40 

approach offers the advantage of being hypothesis-free, allowing it to explore numerous associations 41 

without constraints of the number of outcomes. Consequently, PheWAS has the potential to unveil 42 

novel genetic associations with diseases.9 In this study we use data on genetic OC risk variants and 43 

889 disease outcomes from 181,203 female UK Biobank participants to identify comorbidities and 44 

clinical characteristics associated with the genetic risk of OC. We test for evidence of a direct 45 

association between OC and possible comorbidities using Mendelian randomisation (MR), an 46 

approach less susceptible to confounding and reverse causation,10 and extend these analyses to focus 47 

on the genetic risk reflecting distinct histological OC subtypes. We also use the PheWAS approach to 48 

explore each OC associated variant individually, which can provide evidence for shared genetic 49 

contributions, and provide insight into the underlying disease mechanisms.  50 
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 51 

2. Methods  52 

2.1. Study population  53 

UK Biobank is a prospective cohort study of half a million participants with rich phenotype and 54 

genotype data collected across 22 centres in England, Scotland, and Wales. The baseline assessment 55 

was conducted between 2006 and 2010 when the participants were aged between 37 to 73 years.11 A 56 

wide range of data was collected, including sociodemographic information, lifestyle factors, physical 57 

measures, blood and urine samples for biomarker and genetic profiling, with continuing updates 58 

through follow-up assessments and linkage with electronic health records and death registrations.11 59 

For the primary analyses in this study, we restricted the sample to 181,203 female participants who 60 

were of white British ancestry and were not genetically related (Figure S1) and included male 61 

participants in sensitivity analyses (n =156,220). The study was conducted under UK Biobank 62 

application number 89630. UK Biobank obtained informed consent from all participants to collect and 63 

use linked data for future research use, and the UK Biobank study has ethical approval from the 64 

National Information Governance Board for Health and Social Care and Northwest Multicenter 65 

Research Ethics Committee (11/NW/0382).  66 

 67 

2.2. Disease outcomes and biomarkers 68 

We used International Classification of Diseases (ICD version 9 and 10) codes from hospital episode 69 

statistics and death registrations to identify disease outcomes (Supplementary methods). We mapped 70 

ICD-9/10 codes to phecodes, which are composite groupings reflecting clinically relevant disease 71 

outcomes.12 We defined individuals with the phecode-of-interest as cases, and those without the 72 

phecode-of-interest, or any other phecodes from the same disease category as controls 73 

(Supplementary methods).12, 13 We included all phecodes with at least 200 cases in our analyses,14 74 

resulting in 889 phecodes from 18 disease categories (Table S1).  75 
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We also included 30 serum and four urine biomarkers, which are commonly used for the diagnosis 76 

and monitoring of chronic diseases, as outcome measures (Supplementary methods). Additional 77 

analyses were conducted against selected physiological characteristics (namely body mass index 78 

(BMI), body fat percentage (BFP), basal metabolic rate (BMR), blood pressures, and measures of 79 

lung function (spirometry) due to their known associations with comorbidity risks. The spirometry 80 

measures included forced expiratory volume in 1-second (FEV1), forced vital capacity (FVC), 81 

FEV1/FVC ratio, and peak expiratory flow (PEF).  82 

2.3. Genetic variants and genetic risk score 83 

We selected 35 genetic variants associated with OC from previous genome-wide association studies 84 

(GWAS), including the 12 novel variants identified in the most recent GWAS 15 and 23 variants 85 

identified in earlier GWASs  (minor allele frequency ≥1.4%, Table S2, Figure S2).16-23 We 86 

constructed the genetic risk score (GRS) using 31 genetic variants after excluding one variant that had 87 

no proxy at r2 ≥ 0.8 (rs555025179), and three variants (rs12131772, rs4691139, and rs12938171) that 88 

were not replicated in the recent GWAS,15 which we extracted from the imputed genotype UK 89 

Biobank data 24 (Table S2). The GRS was constructed for each individual by summing the weighted 90 

number of OC risk-associated variants, with the weight taken from the recent OC GWAS.15 We also 91 

constructed risk scores for each OC subtype (Supplementary methods). 92 

2.4. Statistical analyses  93 

We conducted phenome-wide analyses using R-package PheWAS 25 which allowed us to fit logistic 94 

regression (889 disease outcomes) or linear regression (43 biomarkers/physiological characteristics)  95 

against the OC GRS with all models adjusted for age, assessment centre, type of genotyping array, 96 

birth location, and 40 principal components (Figure S2). We repeated the phenome-wide analyses for 97 

each OC subtype GRS to identify subtype-specific disease associations, and further, conducted the 98 

analyses in male participants to understand whether the OC – disease associations involve non-sex-99 

specific mechanistic pathways.  100 
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The phenome-wide association signals that passed the FDR threshold (p <5.6 × 10-4 for the diseases 101 

and p <0.02 for the biomarkers and physiological measures, Supplementary methods) were taken 102 

forward to MR analysis to examine evidence for direct association with OC. We used two-sample MR 103 

approach where variant – OC association estimates were taken from the recent OC GWAS,15 and the 104 

variant-outcome association estimates were from the UK Biobank. MR analyses were conducted on 105 

signals associated with the overall OC GRS or with any subtype-based GRSs. We used inverse 106 

variance weighted (IVW) MR26 as the primary method and conducted sensitivity analyses using 107 

weighted median,27 weighted mode,28 MR-PRESSO,29 and MR-Egger,30 with each method working on 108 

different pleiotropic assumptions (Supplementary methods). We tested for horizontal pleiotropy using 109 

MR-Egger intercept, MR-PRESSO outlier and distortion tests, leave-one-out and leave-block-out 110 

methods (Table S3, Supplementary methods). MR analyses were repeated excluding the OC cases. To 111 

test the MR assumption that the genetic instrument should not be associated with potential 112 

confounding factors, we explored the association between the OC GRSs and age, education, 113 

Townsend deprivation index, BMI, physical activity, and alcohol consumption (Supplementary 114 

methods, Table S4).  115 

We repeated the phenome-wide analyses for each OC genetic variant individually, again conducting 116 

analyses separately for men. We assessed the novelty of the PheWAS findings by checking the 117 

reported associations in the GWAS Catalog. We considered a locus-trait association as potentially 118 

novel if neither the lead variant nor any variant in linkage disequilibrium (LD) with the lead variant 119 

(with an r2 
≥0.1) had previously been reported to be associated with the same or related traits. For 120 

those potentially novel associations, we conducted a follow-up colocalisation analysis using the 121 

HyPrColoc (Hypothesis Prioritization in multi-trait Colocalisation) tool to assess whether there is 122 

evidence of shared causal genetic variants between pairs of traits.31 We considered a posterior 123 

probability of full colocalisation (PPFC) >0.64 as indicative of shared genetic etiology between these 124 

traits (Supplementary methods).31  125 

Statistical analyses were performed using STATA SE version 17.1, R version 4.2.1 and PLINK2.32  126 
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3. Results 127 

We included up to 181,203 female white British participants in the primary analyses, of whom 1,863 128 

(1.3%) had been diagnosed with OC (Table 1). The prevalence of OC was higher among participants 129 

who were older, obese, never drinkers of alcohol, and those with poor general health status at the 130 

baseline (for all, prevalence ≥1.2%, and p ≤0.03). The OC risk GRS was normally distributed and 131 

associated with OC as expected, with stronger association in the highest compared to the lowest 132 

genetic risk group (F-statistics =23.7, p =4.4 × 10-16, Figure S3). No associations were found between 133 

the risk scores and potential confounders after correction for multiple testing (Table S5).  134 

3.1. Phenome-wide-based Mendelian randomisation  135 

We investigated 889 disease outcomes from 18 disease categories in the phenome-wide analyses. We 136 

observed significant associations between the OC GRS and 10 diseases from four disease categories 137 

(neoplasms, digestive, respiratory and genitourinary diseases) after FDR correction (p ≤5.6 × 10-4). 138 

The top signals were for “cancer of the female genital organs”, “malignant neoplasm of ovary and 139 

other uterine adnexa”, and “malignant neoplasm of the ovary”, which confirms the ‘relevance 140 

assumption’ of the MR approach10 (Supplementary methods) for using the GRS as instrument for OC 141 

(for all, p ≤4.8 × 10-4, Figure 1, Panel A). The GRS was also associated with higher risk of other 142 

cancers and abnormal growths including “secondary malignant neoplasm of digestive systems”, 143 

“lipoma, including lipoma of skin and subcutaneous tissue” (p ≤3.9 × 10-4), and “ovarian cyst” (p =6.0 144 

× 10-5). In addition, we identified associations with respiratory outcomes including “chronic airway 145 

obstruction” and “abnormal findings on examination of the lungs”, and with the digestive system 146 

outcome, “ascites” (p ≤3.2 × 10-4).  147 

In analyses using GRSs for specific OC subtypes (Figure 1 Panel B and C), the clear cell OC GRS 148 

was associated with additional diseases and increased risks such as “benign neoplasm of uterus”, and 149 

“uterine leiomyoma”, “disorders of menstruation”, “gram negative septicemia”, and “postoperative 150 

infection” (for all, p ≤2.3 × 10-4). Overall, in addition to overall OC-related outcomes, 12 other 151 

disease outcomes were associated with at least one form of the OC GRS. Notably, none of these 152 

associations were detected when we repeated the phenome-wide analyses among men (Figure S4). 153 
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Additionally, our phenome-wide analyses on 43 quantitative traits, which included serum and urine 154 

biomarkers and physiological measures, identified an association of OC GRS with 13 traits. 155 

Furthermore, we found an additional 11 traits associated with at least one subtype of OC GRS (Figure 156 

S5).  157 

We conducted two-sample MR analyses on 12 disease outcomes identified in the PheWAS. For each 158 

outcome, evidence of causality was identified for at least one type of OC (Figure 2). We found robust 159 

evidence supporting the association between a higher genetic liability of OC and an increased risk of 160 

“secondary malignant neoplasm of digestive systems” (OR 1.64, 95% CI 1.33, 2.023), “ascites” (1.48, 161 

95% CI 1.17, 1.86), “chronic airway obstruction” (1.17, 95% CI 1.07, 1.29), and “abnormal finding 162 

on the examination of the lungs” (1.51, 95% CI 1.22, 1.87). These associations were further supported 163 

by other MR methods (Figure S6). Additionally, we observed an association between a higher genetic 164 

liability of OC and an increased risk of “ovarian cyst” (1.23, 95% CI 1.04, 1.46), as well as “lipoma 165 

including lipoma of skin and subcutaneous tissues” (1.31, 95% CI 1.06, 1.61). Notably, the weighted 166 

median and weighted mode MR methods specifically supported the association with “lipoma of the 167 

skin and subcutaneous tissues” (Figure S6). There was some evidence supporting the association 168 

between OC and higher risk of “postoperative infection” and “gram-negative septicemia”, identified 169 

in the phenome-wide analyses on clear cell OC. However, these associations were observed only in 170 

the IVW and MR-PRESSO MR methods (Figure S6). In the MR analyses on OC subtypes (Figure 2), 171 

serous, endometrioid and clear cell OC were all associated with “secondary malignant neoplasm of 172 

digestive systems” and “ascites”. Serous and endometrioid subtypes showed evidence of effects on 173 

the respiratory outcomes. While the case numbers were lower for mucinous OC, this histotype was the 174 

only one to show evidence of an association with “lipoma of the skin and subcutaneous tissues” as 175 

evidenced by all MR methods. However, mucinous OC was not associated with any of the other 176 

outcomes (Figure S6). The clear cell subtype was associated with “ovarian cyst”, “benign uterine 177 

neoplasms”, “uterine leiomyoma”, and “disorders of menstruation”. Both serous and clear cell 178 

subtypes increased the risk of postoperative infection traits, with clear cell also increasing risk for 179 

“gram negative septicemia” (Figure 2 & Figure S6). We conducted analyses also excluding all known 180 
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OC cases, and associations with “secondary malignant neoplasm of digestive systems” and “ascites” 181 

were attenuated, while estimates for all other outcomes were generally similar to the main findings 182 

(Figure S7). The MR-Egger intercept did not suggest evidence of pleiotropy for most associations, 183 

except for the association between serous OC and “postoperative infections” (pintercept =0.01), which 184 

therefore should be cautiously interpreted. No evidence of pleiotropy was found using the MR-185 

PRESSO outlier test and leave-one-out analysis (Figure S8). The estimates obtained from leave-186 

block-out analyses were broadly consistent with the overall findings (Figure S9).  187 

 MR analyses on serum biomarkers and physiological measures supported the association of 188 

OC with lower FVC, endometrioid OC with lower oestradiol, clear cell OC with lower total 189 

cholesterol, low density lipoprotein (LDL) cholesterol, and apolipoprotein B (ApoB), and mucinous 190 

OC with higher gamma glutamyltransferase (GGT) and alanine aminotransferase (ALT) and lower 191 

creatinine levels (Figure S10). Analyses excluding all known OC cases, provided generally similar 192 

estimates to the main findings (Figure S11). For these identified associations, we did not find any 193 

evidence of pleiotropy based on the MR-Egger intercept tests (pintercept ≥0.13) and leave-one-out 194 

analyses. MR analyses on men provided evidence for a genetic association between mucinous OC and 195 

ALT (Figure S10).  196 

3.2.  Shared genetic architecture  197 

In the phenome-wide analyses assessing associations with individua OC risk-associated genetic 198 

variant, five variants were associated with at least one of 15 (11 distinct) disease outcomes (all, p ≤4.5 199 

× 10-8, Figure 3, Table S6), and seven variants were associated with at least one of 22 biomarkers and 200 

physiological measures (Figure S12). Some of these associations were also observed in the analyses 201 

among men, with selected OC variants affecting conditions of the male genital organs (Figure 3, 202 

Table S6 and Figure S12, Supplementary Results). To ensure the novelty of our findings, we 203 

extensively checked the GWAS Catalog for any reports of associations with the identified (or related) 204 

diseases involving the lead or proxy variants (r2 
≥0.1). As a result, we uncovered potential novel 205 

associations between the OC risk-increasing allele from the TERT locus (rs10069690-T) and a lower 206 
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risk of “seborrheic keratosis” (0.79, 95% CI 0.72, 0.87), in females, with similar a finding observed in 207 

males. To further validate the associations, we conducted colocalisation analysis at the TERT locus 208 

(LD block of chr5:982252 to chr5:2132442, human genomic build of hg19) and identified rs4449583 209 

as the candidate causal variant explaining around 70% of 0.9239 PPFC for OC-“seborrheic keratosis” 210 

(Figure 4). This variant is also strongly associated with OC in the Phelan OC GWAS15 (p =7.8 ×10-12), 211 

and in LD with the index variant from this GWAS (rs7705526, r2 = 0.784) and with the lead variant in 212 

the primary discovery OC GWAS22 (rs100699690, r2 =0.432, Supplementary Methods). The 213 

association between the GPX6 locus and “disorders of iron metabolism” and “celiac disease” are 214 

potentially novel, although colocalisation analysis did not suggest that OC share the same causal 215 

variants with these two diseases (Figure S13). On the contrary, we identified independent potential 216 

causal genetic variant for each “disorders of iron metabolism” (rs34409925, r2 = 0.207 with 217 

rs6456822) and “celiac disease” (rs3131101, r2 =0.049 with rs6456822) in further conditional analysis 218 

(Figure S13).  219 

  220 
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4. Discussion  221 

In this large-scale phenome-wide study, we aimed to explore comorbidity risks associated with OC, 222 

with additional analyses to identify subtype-specific associations based on genetic variants reflecting 223 

different OC histological types. We found evidence supporting a possible causal association between 224 

OC and 12 disease outcomes, including “secondary malignant neoplasm of the digestive system”, 225 

“ascites”, and respiratory disorders. We also identified some additional subtype-specific associations, 226 

including clear cell OC showing links with “gram-negative septicemia”, “uterine leiomyoma” and 227 

“disorders of menstruation”, and mucinous OC with “lipoma of the skin and subcutaneous tissue”. 228 

Analyses using 43 biomarkers also identified an association with seven biomarkers and these findings, 229 

along with those from disease analyses, may have important implications for improving the clinical 230 

management of patients with OC. Moreover, our exploration of each OC-risk increasing variant in the 231 

PheWAS revealed a set of traits that are genetically shared with OC. This analysis not only confirmed 232 

previous GWAS findings but also shed light on novel associations deserving further investigations.  233 

OC is the leading cause of cancer-related ascites in females.33 Our MR-PheWAS study revealed 234 

genetic evidence linking ascites to OC across all subtypes except mucinous OC, which is consistent 235 

with the fact that over one-third of women with OC develop ascites during their lifetime.33, 34 Ascites 236 

is commonly considered a sign of advanced OC,35 and in line with this, the evidence for an 237 

association in our analyses was removed after excluding known OC cases. In patients with OC, the 238 

presence of ascites commonly indicates metastasis to peritoneal surfaces and reflects the extent of the 239 

disease.36 Our study further established a causal association between OC and “secondary malignant 240 

neoplasms of the digestive system”, indicating intra-abdominal dissemination of the tumour. Again, 241 

this association was sensitive to the inclusion of known OC cases in our analyses, and is likely to 242 

explained by a metastasis of the OC affecting the gastrointestinal tract or, potentially, a new 243 

synchronous gastrointestinal cancer.  244 

OC has also been linked to respiratory complications.37, 38 Our study provides additional supporting 245 

evidence for this association, specifically linking OC to an increased risk of “chronic airway 246 
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obstruction” and “abnormal lung examinations". The findings were further supported by spirometry 247 

measures, which showed a significant association between a higher genetic liability to OC and lower 248 

FVC. While in women with OC lowering of lung function may follow from malignant pleural 249 

effusion and tumour metastasis to the pleura37 or complications related to surgical procedures,38 in our 250 

analysis the association with lung disease remained when OC cases were excluded, and the 251 

spirometric association was seen both in women and in men, which may indicate a more profound 252 

biological link.  253 

OC as reflected by our genetic study arises from the epithelium of the ovaries, endometrium and 254 

fallopian tubes, and while most of the lung also consists of epithelium, a direct link has not been well 255 

established. Interestingly, colocalisation analyses in our study also suggested that disorder of skin 256 

condition (seborrheic keratosis) shared a genetic locus (TERT, encoding the enzyme, telomerase) with 257 

OC, highlighting potential shared pathomechanisms involving the epithelium, and implicating 258 

telomerase function in the opposing risks of OC and the skin disorder.39, 40  259 

Debulking cytoreductive surgery is the standard procedure for advanced OC. It involves the surgical 260 

removal of female reproductive organs such as the ovaries, fallopian tubes, uterus, as well as 261 

omentum and organs of the digestive system, such as the bowel, depending on the stage of OC.41 The 262 

invasive nature of this intervention,41 combined with compromised immune system function resulting 263 

from the disease,42 may explain the observed association between OC and “postoperative infection” 264 

and ”gram-negative septicemia”. It is important to note that these associations were predominantly 265 

observed in clear cell OC, which has also been associated with “benign neoplasms of the uterus”, 266 

“uterine leiomyoma”, and “disorders of menstruation”. The presence of these conditions, which 267 

primarily involve the uterine tissue, could reflect the well-established association between 268 

endometriosis and clear cell OC.43, 44 Our study also identified OC subtype specific associations 269 

between mucinous OC and “lipoma of the skin and subcutaneous tissue”. Regarding the biomarkers, 270 

endometroid OC was associated with lower serum oestradiol level, clear cell OC was associated with 271 

lower serum total cholesterol, LDL cholesterol, and ApoB, while mucinous OC was associated with 272 

higher serum GGT and ALT as well as lower creatinine levels. These findings suggests that 273 
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comorbidities and selected biomarkers may play a role in identifying and characterising different 274 

subtypes of OC.  275 

Beyond the causal link between OC and disease outcomes and biomarkers, genetic variants 276 

contributing to a higher risk of OC may also be associated with other diseases and biomarkers. The 277 

ABO locus is a well-known pleiotropic locus with established associations with cardiovascular and 278 

cerebrovascular traits.45-50 Our study confirmed these existing findings, as we also observed 279 

associations between the ABO variant and conditions such as “pulmonary heart disease”, 280 

“thrombophlebitis”, and “other disorders of circulatory system”. Additionally, we confirmed the 281 

association between ABO with many cardiometabolic biomarkers, including associations with markers 282 

of glucose and liver metabolism, confirming the highly pleiotropic nature of this variant.51  283 

Our study identified a significant association between the GPX6 variant (rs6456822) and a lower risk 284 

of disorders related to iron metabolism, which is a critical component of overall health.52 However, 285 

while the lead variant rs6456822 showed this association, our colocalisation analysis identified an 286 

independent potential causal variant, rs34409925, for “disorders of iron metabolism”. We also found 287 

another potential causal variant at the GPX6 locus, rs3131101, for “celiac disease”. The OC lead 288 

variant rs6456822 was also associated with total protein levels in women, as well as with SHBG 289 

levels in men. Our study also identified a potential novel association between the TERT locus 290 

(rs10069690) and “seborrheic keratosis”. The follow up colocalisation analysis strengthened the 291 

shared genetic structures between this skin condition and OC, further suggesting that rs444583 may 292 

be a causal variant. Importantly, we confirmed previous associations of the TERT variant with uterine 293 

leiomyoma44, 53 and total protein levels in women49, 51, as well as with prostate cancer in men.54 Our 294 

findings highlight the value of using PheWAS for validating previous GWAS findings and identifying 295 

potential novel variants for multiple traits including diseases and biomarkers that never been tested 296 

before.55  297 

Our study has a number of strengths. Firstly, it is the largest (n =181,203) and most comprehensive 298 

study to date that examines the health risks associated with a higher genetic susceptibility to OC. 299 
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Secondly, by including OC subtypes in our analysis, our study can identify subtype-specific 300 

comorbidities, supporting more effective treatment and management. Lastly, our study extended the 301 

phenome-wide analyses to each OC-risk-increasing variant. This approach enables us to confirm 302 

previously identified variant-disease associations and also identify potential novel associations, thus 303 

providing a more comprehensive understanding of the shared genetic links between OC and other 304 

diseases. Further incorporation of colocalisation analysis is another strength of this study. It provided 305 

evidence of a shared genetic locus (TERT) between OC and “seborrheic keratosis”, and identified a 306 

potential novel causal variant, rs4449583, for this skin condition.  307 

Our study also has some limitations. To ensure the validity of MR, the genetic instrument used must 308 

be associated with the risk factor (in our case, OC), not associated with the confounders of the risk 309 

factor-outcome association, and not influence the outcome except through its association with the risk 310 

factor. While we used a genetic instrument that associates with OC and conducted our analysis on a 311 

white-European population while adjusting for confounding factors, we cannot rule out the absence of 312 

horizontal pleiotropic effects, which will affect interpretation and can bias the MR estimates.56 To 313 

address this concern, we repeated our analysis in men to further verify whether the association we 314 

observed is genuinely related to OC or a reflection of genetic variants indicating shared mechanistic 315 

pathways between both men and women. Another potential limitation of our study is that the UK 316 

Biobank participants are relatively healthy compared to the general population,57 introducing to 317 

collider bias due to the "healthy volunteer" selection bias.58 However, the modest collider bias in the 318 

context of MR is less likely to affect MR results significantly when the selection into the study was 319 

not strongly influenced by the risk factor.58 Furthermore, the presence of biologically plausible causal 320 

associations in our study provides support for the validity of our results despite this limitation. It could 321 

be noted as a limitation of our study that our investigation into comorbidities associated with OC was 322 

primarily conducted in a population predominantly not diagnosed with OC. However, sensitivity 323 

analyses excluding all known OC cases confirmed that the associations with OC complications 324 

relating to ascites and gastrointestinal metastases are related to the disease per se, while the other 325 
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observed disease and trait associations may reflect earlier stages of OC development or other 326 

underlying biological differences.  327 

In conclusion, our study identified robust associations between OC and comorbidities related to the 328 

digestive and respiratory systems. Furthermore, we observed specific robust associations for different 329 

subtypes of OC, such as “gram-negative septicemia”, ‘uterine leiomyoma” and “disorders of 330 

menstruation” for clear cell OC, and lipoma for mucinous OC. Interestingly, our study points to a 331 

shared genetic architecture between OC and a skin condition, leading to a discovery of a novel variant 332 

which merits further investigation.  333 

  334 
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Figure legends  549 

Figure 1. Manhattan plot showing the phenome-wide association of genetic risk scores of overall 550 

(Panel A) and subtypes (Panel B) of ovarian cancer with wide ranges of diseases. Panel C summaries 551 

the association of the top 15 signals identified at FDR threshold (p =0.0005) in Panel A or Panel B 552 

across the different genetic risk scores. The association for the first three diseases (in blue) is a 553 

validation of the genetic risk scores. Green highlights indicate association that passed the FDR 554 

threshold.  555 

Figure 2. Mendelian randomisation causal estimates between ovarian cancer subtypes and selected 556 

diseases outcomes. Estimates were from Inverse variance weighted methods. #SNPs are number of 557 

genetic variants included in the analyses.  558 

Figure 3. Phenome-wide association findings of ovarian cancer risk-increasing variants, with the 559 

Manhattan plot showing selected variants associations across all the diseases outcomes (with the y-560 

axis showing the level of significance in -log10 scale), and the forest plot showing the selected variant 561 

– disease associations estimate among women and men.  562 

Figure 4. Colocalisation analysis of ovarian cancer with dermatological condition at the TERT locus. 563 

Panel A. Stacked regional association plots of ovarian cancer and seborrheic keratosis. Panel B. 564 

Portions of the Posterior probability for full colocalisation (PPFC) explained by each genetic variant 565 

at the TERT locus. The r2 colour legends reflect the r2 of each variant with respect to the lead variant.  566 
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Tables 568 

Table 1. Prevalence of ovarian cancer by population characteristics 569 

 
  All, n (%) Ovarian cancer, 

n(%) p 
All   181,203 1,863 (1.3)   
          
Age (in years)  39–49 40,116 (22.2) 231 (0.6) 1.1 x 10-51 
   50–59 62,041 (34.2) 556 (0.9)   
   60–73 79,046 (43.6) 1,076 (1.4)   
          
Education None 31,059 (17.1) 421 (1.4) 0.06 
  NVQ/CSE/A-levels 83,890 (46.3) 819 (1.0)   
  Degree/professional 64,785 (35.8) 607 (0.9)   
  Missing 1,469 (0.8) 16 (1.1)   
          
BMI (kg/m2)  < 18.5 1,324 (0.7) 10 (0.8) 0.005 
   18.5 - <25 70,988 (39.2) 643 (0.9)   
   25 - <30 66,596 (36.8) 713 (1.1)   
   ≥ 30 41,746 (23.0) 489 (1.2)   
  Missing 549 (0.3) 9 (1.5)   
          
Alcohol 
consumption Never 7,808 (4.3) 109 (1.4) 

0.03 
  Previous  6,526 (3.6) 64 (1.0)   
  Current  166,747 (92.0) 1,690 (1.0)   
  Missing 122 (0.1) 0 (0.0)   
          
General health Excellent 31,630 (17.5) 286 (0.9) 1.0 × 10-16 
  Good 109,012 (60.2) 1,041 (1.0)   
  Fair 33,519 (18.5) 405 (1.2)   
  Poor 6,431 (3.5) 112 (1.7)   
  Missing 611 (0.3) 19 (3.1)   

p is p-value generated from likelihood ratio test in logistic models adjusted for age, birth 570 
location and assessment centers. BMI: body mass index. 571 
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1.20 (0.98, 1.47)
1.34 (0.84, 2.16)
1.16 (1.00, 1.34)
1.31 (1.06, 1.61)

1.14 (1.02, 1.27)
1.16 (0.90, 1.49)
1.39 (0.89, 2.16)
1.13 (0.98, 1.30)
1.24 (1.02, 1.52)

0.99 (0.83, 1.18)
1.39 (1.08, 1.79)
1.11 (0.79, 1.55)
1.11 (0.99, 1.25)
1.23 (1.04, 1.46)

0.98 (0.84, 1.13)
1.29 (0.95, 1.74)
1.43 (0.85, 2.43)
1.28 (1.09, 1.51)
1.51 (1.22, 1.87)

1.01 (0.94, 1.08)
1.12 (0.97, 1.29)
1.29 (1.04, 1.59)
1.10 (1.03, 1.17)
1.17 (1.07, 1.29)

1.04 (0.85, 1.26)
1.40 (1.01, 1.94)
1.99 (1.06, 3.74)
1.24 (1.07, 1.45)
1.48 (1.17, 1.86)

1.02 (0.82, 1.27)
1.55 (1.16, 2.06)
1.82 (1.18, 2.81)
1.34 (1.17, 1.55)
1.64 (1.33, 2.02)

OR (95% CI)

.4 1 2 4

#SNPs
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Malignant neoplasm of testis [187.2]

Malignant neoplasm of unspecified* [187.1]

Cancer of other male genital organs [187]

Cancer of prostate [185]

Hyperplasia of prostate [600]

Phlebitis and thrombophlebitis [451]

Phlebitis and thrombophlebitis of lower extremities [451.2]

Circulatory disease NEC [459.9]

Pulmonary heart disease [415]

Other disorders of circulatory system [459]

Benign neoplasm of skin [216]

Benign neoplasm of unspecified sites [229]

Celiac disease [557.1]

Disorders of iron metabolism [275.1]

Disorders of mineral metabolism [275]

Seborrheic keratosis [702.2]

Erythematosquamous dermatosis [690]

Cancer of prostate [185]

Uterine leiomyoma [218.1]

Benign neoplasm of uterus [218]

Female genital prolapse [618]
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Cases,n
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115919

Controls,n

0.82 (0.78, 0.87)

0.82 (0.78, 0.86)

0.83 (0.78, 0.87)

0.84 (0.80, 0.87)

1.15 (1.10, 1.21)

1.55 (1.45, 1.67)

1.44 (1.32, 1.56)

1.52 (1.41, 1.63)

1.42 (1.31, 1.54)

1.16 (1.11, 1.20)

1.21 (1.16, 1.26)

1.35 (1.27, 1.45)

1.30 (1.21, 1.40)

1.15 (1.11, 1.20)

1.20 (1.16, 1.25)

0.90 (0.85, 0.95)

0.88 (0.84, 0.91)

0.83 (0.74, 0.92)

0.79 (0.73, 0.85)

1.10 (0.97, 1.24)

1.30 (1.18, 1.42)
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0.74 (0.69, 0.80)
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0.78 (0.72, 0.85)
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0.78 (0.72, 0.85)

0.88 (0.85, 0.92)

1.14 (1.11, 1.18)

1.14 (1.10, 1.18)

0.86 (0.83, 0.90)

OR (95% CI)
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181,203 
female participants 

889 
diseases 
43 
biomarkers and 
physiological measures

35 
ovarian cancer (OC) genetic variants 

Genetic risk score (GRS)  
for OC and the subtypes (serous, clear 
cell, endometrioid, and mucinous OC) 

PheWAS validated the association between OC GRS and 
OC.
GRSs for OC or its subtypes were also associated with 
12 other diseases, as well as 24 biomarkers and 
physiological measures  

MR provided robust evidence of 
association between OC and the 
following diseases:
(a) Respiratory system
● Chronic airway obstruction 
● Abnormal findings examination 

of the lungs 
● Lower forced vital capacity (FVC)

(b) Digestive system
● Ascites 
● Secondary malignant neoplasm 

of the digestive systems

OC 

(b)

(a)

PheWAS and Colocalisation 
analysis identified  shared locus 
(TERT, rs4449583 potential 
causal variant) between OC and 
dermatological condition.

 Phenome-wide association study of ovarian cancer identifies common comorbidities and 
reveals shared genetics with complex diseases and biomarkers 


