1 Design, conduct, analysis, and reporting of therapeutic efficacy studies in

2 Visceral Leishmaniasis: A systematic review of published reports, 2000-2021

- 3 Prabin Dahal^{1,2*}, Sauman Singh-Phulgenda^{1,2}, Caitlin Naylor^{1,2}, Matthew Brack^{1,2}, Mitali
- 4 Chatterjee³, Fabiana Alves⁴, Philippe J Guerin^{1,2}, Kasia Stepniewska^{1,2}
- 5

6	¹ Infectious	Diseases	Data Observ	atory (IDI	DO), Oxford, UK
---	-------------------------	----------	-------------	------------	-----------------

- ⁷²Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine,
- 8 University of Oxford, Oxford, UK
- 9 ³Institute of Postgraduate Medical Education & Research (IPGMER), Kolkata, India
- ⁴Drugs for Neglected Diseases initiative, Geneva, Switzerland
- 11
- 12 **Running head:** Methodological review of Visceral leishmaniasis therapeutic trials
- 13
- 14 **Keywords:** Visceral leishmaniasis, neglected tropical diseases, design, review, methodology
- 15
- 16
- 17 ***Correspondence to:**
- 18 Dr. Prabin Dahal
- 19 New Richards Building, Centre for Tropical Medicine and Global Health, Nuffield Department
- 20 of Clinical Medicine, University of Oxford, Oxford, UK.
- 21 Email: prabin.dahal@iddo.org
- 22 Tel: +44 01856 612 900

23 Abstract

24	A systematic review (SR) of published efficacy studies in visceral leishmaniasis (VL)
25	was carried out to describe methodological aspect of design, analysis, conduct and
26	reporting. Studies published during 2000-2021 and indexed in the Infectious Diseases Data
27	Observatory (IDDO) VL library of clinical studies were eligible for inclusion (n=89 studies).
28	The IDDO VL library is a living SR of prospective therapeutic studies (PROSPERO:
29	CRD42021284622) and is updated bi-annually. A total of 40 (44.9%) studies were
30	randomised, 33 (37.1%) were single-armed, 14 (15.7%) were non-randomised multi-armed
31	studies, and randomisation was unclear in 2 (2.2%). After initial screening, patients were
32	enrolled into the study upon confirmation of VL using parasitological method in 26 (29.2%),
33	and serological and parasitological method in 63 (70.8%). Post-treatment follow-up duration
34	was <6months in 3 (3.3%) studies, 6-months in 75 (84.3%), and >6months in 11 (12.4%)
35	studies. Relapse was defined solely based on clinical suspicion in 4 (4.5%) studies,
36	parasitological demonstration in 64 (71.9%), using molecular/serological/parasitological in 6
37	(6.7%), and was unclear in 15 (16.9%). Quality control of laboratory measures adopted was
38	unclear in 66 (74.2%) studies, sample size calculation was reported in only 34 (38.2%)
39	studies, and cured proportion was presented only as a point estimate in 39 (43.8%) studies.
40	This review highlights substantial variations in definitions adopted for patient screening,
41	disease diagnosis and therapeutic outcomes suggesting an urgent need for harmonisation of
42	VL clinical trials protocol.

43 Introduction

44	The first randomised trial for comparing efficacy of treatment regimens in visceral
45	leishmaniasis (VL) was conducted in 1983 $^{ m 1}$. Since then several randomised and non-
46	randomised studies have evaluated the therapeutic efficacy of antileishmanial drugs ² .
47	Previous reviews have characterised the spectrum of patient characteristics, treatment
48	regimens adopted, and completeness of reporting of clinical and safety outcomes in VL
49	therapeutic studies ^{2,3} . A thorough review on methodological aspects of design, conduct,
50	analysis, and reporting of VL clinical therapeutic efficacy studies is currently lacking. Such
51	review has been carried out in the context of cutaneous leishmaniasis $^{4-7}$, leading to
52	preparation of a guidance document on optimal approaches for design, conduct, analysis
53	and reporting of CL studies ⁷ .
54	This review was conducted with an overall aim to characterise different aspects of
55	study design, conduct, analysis and reporting of clinical therapeutic efficacy studies in VL
56	published since 2000.
57	
58	Material and methods
59	Information sources and search strategy
60	This review synthesises data from studies indexed in the Infectious Diseases Data
61	Observatory (IDDO) VL library of clinical studies ⁸ . The IDDO library indexes any prospective
62	clinical studies describing efficacy of any antileishmanial therapies published since 1980;
63	details on the search strategy adopted for each of the databases is described elsewhere 2 .
64	Briefly, the IDDO VL library is a living systematic (VL LSR) updated bi-annually and searches
65	the following databases: Ovid Embase, Scopus, Web of Science Core Collection, Cochrane

66	Central Register	of Controlled Trials,	clinicaltrials.gov,	WHO ICTRP,	as well as IMEMR,

- 67 IMSEAR, and LILACS from the WHO Global Index Medicus. All the studies indexed in the
- 68 IDDO living systematic review was eligible for inclusion in this review.
- 69

70 Study selection and data extraction

- 71 For the purpose of this review, studies published on or after 2000 was considered.
- 72 Data on the following aspects of design and conduct of studies captured by the IDDO LSR
- 73 were extracted: inclusion & exclusion criteria, case definition used, sample source used for
- parasitological confirmation of the disease, randomisation, blinding, follow-up duration, the
- number of participants enrolled, endpoints adopted and their definitions, and details of the
- 76 laboratory procedures adopted.

77 Data summary

78 Descriptive summaries were presented for the characteristics of the studies included

- in the review. No patient related outcome data were analysed in this review and hence risk
- 80 of bias assessment in studies included was not carried out.

81 **Results**

82	The IDDO living systematic review has indexed 89 studies published from
83	01/01/2000 through to $17/11/2021$ 8 . There were 61 (68.5%) studies from the Indian
84	subcontinent, 16 (18.0%) from East Africa, 4 (4.5%) from the Mediterranean region, 4 (4.5%)
85	from South America, 3 (3.4%) from Central Asia (the Middle East), and 1 (1.1%) multi-
86	regional study. Of the 89 studies, 28(31.5%) studies were published during 2000-2004, 20
87	(22.5%) during 2005-2009, 23(25.8%) during 2010-2014, and 18 (20.2%) were published on
88	or after 2015. Overall, there were 27,070 patients enrolled in 187 drug arms with a median
89	sample size of 51 (range: 1–3,126) patients per arm. Further description of the studies
90	included is presented in supplemental file (S1).
91	Study design and conduct
92	A total of 40 (44.9%) studies were randomised, 33 (37.1%) were single-armed
93	studies, 14 (15.7%) were non-randomised multi-armed studies, and randomisation status
94	was unclear in 2 (2.2%). Of the 89 trials, 59 (66.3%) were open-label studies, 2 (2.2%) were
95	blinded, and the blinding status was not stated in the remaining 28 (31.5%) studies. The
96	median sample size per study for RCTs was 152 [Interquartile range (IQR): 84-400; range:
97	25-1,485] and non-randomised studies were 120 [IQR: 60-309; 12-3,126].
98	
99	Randomised studies (n=40)
100	Block randomisation was used in 12 studies (of which 3 used permuted block
101	randomisation); block sizes ranged from 4-28 (Figure 1). Randomisation was carried out by
102	balancing the treatment regimens on at least one prognostic factor in 3 studies; while the
103	randomisation details were unclear in 25 studies (Figure 1 and supplemental file (S1)).

104	Sequence generation was carried out using a computerised system in 22 (55.0%), using a
105	random number table in 2 (5.0%), and the methodology was unclear in 16 (40.0%) (Figure
106	1). Treatment allocation was concealed using a sealed, opaque envelope/box in 22 (55.0%)
107	studies and allocation concealment was unclear in 18 (45.0%) studies (Figure 1). Of the 40
108	randomised studies, 2 were blinded, 33 were open labelled, and blinding status was unclear
109	in 5 studies.
110	
111	Inclusion and exclusion criteria adopted
112	A complete list of inclusion and exclusion criteria adopted for patient enrolment is
113	presented in supplemental file (S2) .
114	
115	Informed consent
116	Of the 89 studies, requirement of informed consent (or assent for children) was
117	stated as a part of inclusion/exclusion criteria in 21 (23.6%) studies, wasn't explicitly stated
118	as a part of the inclusion/exclusion criteria but was collected before patient enrolment in 57
119	(64.0%) studies and there was no statement regarding this in the remaining 11 (12.4%)
120	studies (Table 2).
121	Eligible age-range and included age-range
122	Eligible age-range for inclusion was children less than 15 years in 12 (13.5%) studies,
123	adults (≥18 years) in 6 (6.7%), patient of all ages in 53 (59.6%) and age-range was not
124	defined as a part of inclusion/exclusion criteria in the remaining 18 (20.2%) studies (Table
125	1).

126	The age-range of included patients were: children less than 15 years in 13 (14.6%),
127	adults in 7 (7.9%), and patients of all ages in 69 (77.5%) studies. Infants were included in 5
128	(5.6%) studies, excluded in 72 (80.9%) and their inclusion was unclear in the remaining 12
129	(13.5%) studies. The maximum eligible/included age was 65 years in 16 (18.0%) studies, the
130	upper range of was 66-80 years in 10 (11.2%) studies and the age-range was unclear in 18
131	(20.2%) studies (supplemental file S2).

132 Enrolment of female, pregnant women, and women susceptible to becoming pregnant

- 133 Females were excluded in 1 (1.1%) study, included in 86 (96.6%) studies and their
- inclusion/exclusion was not clear in the remaining 2 (2.2%) studies. Pregnant and lactating
- 135 women were excluded in 54 (60.7%) studies, included in 6 (6.7%) and their
- inclusion/exclusion couldn't be discerned in the remaining 29 (32.6%) studies (Table 1 and
- 137 Supplemental file S2).

Women of child bearing age (or those who had reached menarche) were excluded in 3 (3.4%) studies, their inclusion was conditional on negative pregnancy test or willingness to undertake contraception in 15 (16.9%) studies, they were included in 26 (29.2%) studies

141 without description of pregnancy test/contraception usage requirements, their inclusion

142 was not clear in the remaining 45 (50.6%) studies.

143 **Co-morbidities**

Patients with HIV, tuberculosis, hepatic, renal and cardiac disorders were the most common co-morbidities as a part of the exclusion criteria adopted (**Figure 2**). Patients with at least one co-morbidity were clearly excluded in 58 (65.2%) studies, included in 7 (7.9%) studies and this couldn't be discerned in the remaining 24 (27.0%) studies. In particular, patients with HIV co-infections were excluded in 64 (71.9%), included in 11 (12.4%) studies

149	and unclear in the rest 14 (15.7%) studies). Those with hepatic disorders were excluded in
150	31 (34.8%) and included in 2 (2.2%) studies (unclear in the remaining 56 studies), patients
151	with TB co-infections were excluded in 34 (38.2%) studies and included in 5 (5.6%) (unclear
152	in the remaining 50 studies), patients with renal disorders were excluded in 27 (30.3%)
153	studies, and those with cardiac disorders were excluded in 21 (23.6%) studies. Co-
154	morbidities reported included: malnutrition, helminth co-infections, malaria, endocrine
155	disorders such as diabetes and pancreatitis, hypertension, PKDL, hearing disorders and
156	bleeding disorders (Figure 2).
157	Malnutrition
157 158	Malnutrition Malnourished patients were included in 12 (13.5%) studies, excluded in 12 (13.5%)
158	Malnourished patients were included in 12 (13.5%) studies, excluded in 12 (13.5%)
158 159	Malnourished patients were included in 12 (13.5%) studies, excluded in 12 (13.5%) and the information was not clear in 65 (73.0%) studies. Of the 24 studies that clearly
158 159 160	Malnourished patients were included in 12 (13.5%) studies, excluded in 12 (13.5%) and the information was not clear in 65 (73.0%) studies. Of the 24 studies that clearly indicated inclusion/exclusion of malnourished patients, 14 studies used anthropometric
158 159 160 161	Malnourished patients were included in 12 (13.5%) studies, excluded in 12 (13.5%) and the information was not clear in 65 (73.0%) studies. Of the 24 studies that clearly indicated inclusion/exclusion of malnourished patients, 14 studies used anthropometric indicators (BMI/WHZ/WAZ /MUAC/Wasting or some other standards), 2 used clinical
158 159 160 161 162	Malnourished patients were included in 12 (13.5%) studies, excluded in 12 (13.5%) and the information was not clear in 65 (73.0%) studies. Of the 24 studies that clearly indicated inclusion/exclusion of malnourished patients, 14 studies used anthropometric indicators (BMI/WHZ/WAZ /MUAC/Wasting or some other standards), 2 used clinical definition (kwashiorkor/marasmus/Protein energy malnutrition/Gomez criteria) and the

165 **Treatment history**

166 Patients with a history of treatment with any antileishmanial treatment within a pre-

defined period (time ranged from 10 days to 12 months) were excluded in 46 (51.7%),

included in 21 (23.6%) studies and it was unclear in 22 (24.7% studies). Those with a history

169 of hypersensitivity/allergy to the study drug or other antileishmanial therapies were

170 excluded in 34 (38.2%) studies (**Table 1**).

171 Parasite related criteria

172	Patients with freshly diagnosed VL (primary infection) were recruited in 49 (55.1%)
173	studies, patients with secondary cases (including resistant, previously unresponsive or
174	relapsing cases) were recruited in 7 (7.9%) studies, a mixture of primary and secondary
175	infections were included in 15 (16.9%) and this was unclear in 18 (20.2%) studies (Table 1).
176	Disease severity
177	Patients who were described as severe or critical visceral leishmaniasis were
178	excluded in 11 (12.4%), included in 1 (1.1%), and this was unclear in the remaining 77
179	(86.5%) studies (Table 1). Of the 12 studies that clearly stated inclusion/exclusion of
180	severe/critical VL, the definition of severe or critical VL was based on clinical signs (such as
181	generalised oedema, jaundice, bleeding) in 2 studies, based on biochemistry ranges in 5
182	studies, and the definition was not presented in the remaining 5 studies (Supplemental file
183	S1).
184	Haematological measures
185	Haemoglobin: Minimum haemoglobin concentration required for inclusion in the study was
186	3 g/dL in 1 (1.1%) studies, between >3-5 g/dL in 29 (32.6%) studies, >5-7 g/dL in 12 (13.5%)
187	studies and it was unclear in the remaining 47 (52.8%) studies (Table 1, Figure 2).
188	<u>Platelets</u> : The exclusion threshold for platelet counts was <40,000/µL in 22 (24.7%) studies,
189	<50,000/µL in 14 (15.7%), range of other thresholds were used in 3 (3.3%) studies and the
190	eligible platelets range was not reported in the remaining 50 (56.2%) studies (Table 2,
191	Figure 2).
192	<u>White blood cells (WBC):</u> Exclusion threshold of granulocytes <1,000/µl was adopted in 13
193	(14.6%) studies, WBC counts <750/μL was adopted in 1 (1.1%) study, WBC counts <1,000/μL

194	in 18 (20.2%	5) studies	, WBC <2	,000/	μL in 4 (4.5%) studies	, and V	VBC three	shold	was ne	ot
-----	--------------	------------	----------	-------	-----------	------	-----------	---------	-----------	-------	--------	----

specified in eligibility criteria in 53 (59.6%) studies (**Supplemental file S1**).

196 Liver enzymes and Liver function

- 197 <u>Albumin:</u> Serum albumin concentration < 2.0 g/dL was an exclusion criterion in 2 (2.2%)
- studies, >3 times the upper limit of normal (ULN) were excluded in 3 (3.4%), significant
- 199 proteinuria in 1 (1.1%), and it was not part of the eligibility criteria in the remaining 83
- 200 (93.3%) studies (**Supplemental file S2**).
- 201 <u>Bilirubin:</u> Exclusion range of bilirubin concentration was: >3 times the upper limit of normal
- 202 (ULN) in 9 (10.1%) studies, >2 ULN in 7 (7.9%), >1.5 ULN in 2 (2.2%), >ULN in 1 (1.1%) , >2
- 203 normal range in 3 (3.4%), >5 normal range in 1 (1.1%) study, bilirubin concentration higher
- than 34.2μmol/L to 221 μmol/L were used in 6 (6.7%) studies, and bilirubin was not part of
- the eligibility criteria in the remaining 60 (67.4%) studies (**Supplemental file S2**).
- 206 <u>Aminotransferases:</u> Exclusion range of aminotransferase (ASAT/ALAT) measurements were:
- 207 >2.5 ULN in 3 (3.4%) studies, >3 ULN in 23 (25.8%) studies, >4 ULN in 2 (2.2%) studies, > 5
- 208 ULN in 3 (3.4%), > 10 ULN in 1 (1.1%), >3 times the normal range in 3 (3.4%) studies, >5
- times the normal range in 1 (1.1%), >200 IU in 1 (1.1%) and aminotransferase levels were
- not part of eligibility criteria in 52 (58.4%) studies included in this review (Supplemental file
- 211 **S2**).

```
<u>Prothrombin time (PT):</u> PT was clearly reported as a part of exclusion criteria in 20 (22.5%)
studies: PT >4 seconds above the control was required in 3 studies, >5 seconds was required
in 13 studies, PT >15 seconds in 2 studies, INR ratio >2 was required in 2 studies, and further
breakdown in presented in Table 1.
```

216 Renal function

217 S	erum creatinine:	Exclusion range	ge adopted for	creatinine o	concentration were:	>1.5 mg/dL in
-------	------------------	-----------------	----------------	--------------	---------------------	----------------

- 1 (1.1%) study, >2.0 mg/dl in 7 (7.9%), outside or above the normal range (without further
- 219 details) in 10 (11.2%) studies, >1.5 ULN/Normal range in 14 (15.7%) studies, > 2 ULN in 3
- 220 (3.4%), >3 ULN in 1 (1.1%), and >1.5 normal limit in 3 (3.4%), and creatinine wasn't part of
- the eligibility criteria in the remaining 50 (56.2%) studies (**Supplemental file S2**).
- 222 <u>Blood urea nitrogen (BUN)</u>: Exclusion range adopted for BUN were: >1.5 ULN/Normal range
- in 11 (12.4%) studies and BUN measurements were not part of eligibility criteria in the
- 224 remaining 78 (87.6%) studies.
- 225 <u>Urine urea concentration</u>: Patients with urine urea concentration > 2 × ULN were excluded
- in 2 (2.2%) studies and this was not mentioned in the remaining 87 (97.8%) studies.

227 Other characteristics

Ability to comply with the scheduled follow-up or proximity to the study centre was

stated as an essential criterion for inclusion in 19 (21.3%) studies. Other occasionally

- adopted exclusion criteria were: the use of prohibited/contraindicated drugs (n=7 studies),
- alcohol/drug abuse (n=5 studies), life expectancy of <6 months (n=2 studies), undergoing
- 232 major surgical procedure (n=2 studies), contraindication for splenic/bone marrow aspirate
- 233 (n=3 studies), and abnormal potassium concentration (n=1 study) (Supplemental file S2).

234 Patient screening

235 Case definition for patient screening

236	Case definition adopted for patient screening was presented in 77 (86.5%) studies
237	with no information in the remaining 12 (13.5%) studies. Overall, 17 different signs and
238	symptoms were part of the case definition adopted in various combinations (Table 2). Case
239	definition adopted constituted a combination of fever and splenomegaly/hepatomegaly in
240	24 (27.0%) studies, a combination of fever and hepatosplenomegaly and weight loss/loss of
241	appetite in 14 (15.7%) studies, a combination of fever, splenomegaly and a haematological
242	measure (cytopenia/anaemia/thrombocytopaenia) in 6 (6.7%) studies, the definition was
243	unclear in 30 (33.7%) studies and the combination of clinical factors used in the remaining
244	15 (16.9%) studies is presented in Table 2 .

245 Disease confirmation method

246 Patients who satisfied the case definition of VL were enrolled into the study upon

247 confirmation of the disease using parasitological confirmation (demonstration of parasite in

a tissue aspirate) in 26 (29.2%) studies, using a combination of serological and/or

249 parasitological in the remaining 63 (70.8%) studies.

250 Reasons for patient exclusion

- 251 Of the 89 studies included in this review, 46 (51.7%) studies clearly presented
- 252 patient flow diagram (or CONSORT checklist) (See supplemental file S2). Overall, 22,056
- 253 patients were screened in these 46 studies of whom 13,878 (62.9%) patients were enrolled.
- Of the 8,178 who were excluded, 2723 (33.3%) had negative parasitaemia upon
- 255 parasitological/serological examination, 687 (8.4%) had biochemistry/biological
- 256 measurements outside of permissible range, 515 (6.3%) of the patients were outside the

- inclusion age range, 350 (4.3%) patients refused to participate or give consent, and further
- 258 breakdown of reasons for exclusion is presented in **Figure 2**.
- 259

260 **Details of the laboratory procedures adopted for patient enrolment**

- 261 Parasite speciation and Leishmania zymodeme (isoenzyme) characterisation
- 262 L. donovani (LD) was the stated as the causative parasites of VL in 23 (25.8%) studies,
- L. infantum / L. chagasi in 3 (3.4%) studies, and the parasites species (genus Leishmania)
- was not stated in the remaining 63 (70.8%) (VL is caused by LD in East Africa and Indian sub-
- 265 continent, and *L. infantum* in the Mediterranean region and South America ⁹)
- 266 (Supplemental file S2). Isoenzyme characterisation to study the parasite strains were
- 267 explicitly carried out in 2 studies; one study was from the Mediterranean region ¹⁰ and the
- 268 other in HIV negative patients in Eastern Africa ¹¹)(**Table 3**).

269 **Parasite staging (smear and culture)**

- 270 Parasitological demonstration was based on the identification of amastigotes form of
- the parasites from tissue smears in 15 (16.9%) studies, and this was not explicitly stated in
- the remaining 74 (83.1%) studies. In addition, culture (using biphasic medium: Novy-
- 273 McNeal Nicolle medium) demonstrating the promastigotes form of the parasites were
- 274 carried out in 11 (12.4%) (**Table 3**).

275 **Tissue aspiration**

- 276 Overall, 83 studies used parasitological method (either alone or in combination of
- 277 other methods such as serological, culture or molecular) for confirming the presence of
- 278 parasites and 6 studies used only serological method. Of the 83 studies that used

parasitological method, Giemsa stain was used in 23, Giemsa or Leishman stain or Diff-Quik
stain was used in 2 studies, and the staining method was not stated in 58 studies. Splenic
tissue aspiration was used in 27 (30.3%) studies, a combination of bone marrow and/or
spleen or lymph node aspirate in 53 (59.6%), blood sample was used in 4 (4.5%), and the
sample used was unclear in 5 (5.6%) (Supplemental file S2).

284 Parasite enumeration

285 Parasitaemia was graded in 49 (55.1%) studies, gradation was not done in 3 (3.4%) 286 studies, and information regarding gradation was not reported in 37 (41.6%) studies (Table 287 3). Parasite enumeration was based on gradation of parasitaemia from tissue aspirates 288 under microscopic fields in 38 (42.7%) studies (using a semi-quantitative scale), and using 289 PCR in 2 (2.2%) studies, parasite gradation was not done in 3 (3.4%), and the information was unclear in 46 (51.7%). Of the 2 studies that adopted PCR method, one study quantified 290 parasitaemia only using peripheral blood ¹², and the other used both semi-guantitative 291 292 microscopy counts on tissue aspirate and parasite load in peripheral blood using PCR¹¹ 293 (Supplemental file S2).

294 Details of serological method

A total of 32 studies used serological methods for confirmation the presence of the parasites (alone or in combination with other methods). Of these 32 studies, recombinant K39 antigen (rk39) based rapid diagnostic test was used in 19, direct agglutination test (DAT) was used in 5, Immunofluorescence assay (IFA or IFAT or ELISA) in 4 and a combination of rk39 with DAT or IFA in the remaining 4 studies (**Table 3**).

300 Quality control of lab procedures

301	In 21 (23.6%) studies, the laboratory procedures were blinded to the treatment
302	regimen, 2 (2.2%) studies did not blind the laboratory procedures and this information
303	couldn't be gathered for the remaining 66 (74.2%) studies. Details regarding any quality
304	control aspect of the laboratory procedures adopted were not clear in 78 (87.6%) studies
305	with only 11 (12.4%) studies reported carrying out quality control of laboratory procedures
306	adopted. Of these 11studies, the slides were read by two readers/independent microscopist
307	in 4 studies, all or a random sample of the slides were re-read by an external or the same
308	microscopist in the 3 studies, two slides were read per sample in 1 study, only read by a
309	single reader in 1 study, and slides were read by trained/experienced technician in 2 studies
310	(Table 3).

311 **Patient outcome assessments**

312 Initial assessment of test of cure (TOC) and tissue aspiration

313	Initial assessment upon completion of treatment regimen was carried out solely
314	based on clinical assessment in 13 (14.6%) studies, parasitological assessment (with or
315	without clinical assessment) was carried out in 71 (79.8%) studies and the details were not
316	reported in 5 (5.6%) studies. TOC evaluation (either clinical cure, parasitological cure, or
317	clinical and parasitological cure) was carried out within 14 days of treatment initiation in 3
318	(3.4%) studies, between 15 to 30 days in 68 (76.4%) studies, between 31 to 70 days in 7
319	(7.9%) studies, mixture of different time-points in 2 (2.2%) studies, and the time of
320	assessment was unclear in 9 (10.1%) (Table 4) .
321	Tissue aspiration at TOC was done using spleen in 27 (30.3%), bone marrow in 5
322	(5.6%), lymph node in 2 (2.2%), a combination of bone marrow/spleen/lymph was used in
323	25 (28.1%), aspirate was carried out but the sample used was unclear in 16 (18.0%) studies,

324 information regarding aspiration was not reported in 12 (13.5%), and aspiration was not

325 done in 1 (1.1%) study (**Figure 3**).

326 Duration of post treatment follow-up

- 327 Post-treatment follow-up duration was < 6 months in 3 (3.3%) trials, 6 months in 75
- 328 (84.3%), 7 months in 1 (1.1%), 9 months in 1 (1.1%), 12 months in 8 (9.0%) trials, and 2.8
- 329 years in 1 (1.1%) (**Table 4**).
- Ability to complete the study follow-up was a criterion for inclusion in 21 (23.6%)
- 331 studies, financial reimbursement of travel costs including food and logistics was provided in
- 6 (6.7%), active tracing of the patients either by visiting their home or by sending reminder
- by post/messenger was implemented in 11 (12.4%) studies, and there were no further
- details presented in the remaining 51 (57.3%) studies (**Supplemental file S2**).

335 Assessment of relapse and tissue aspiration

- Relapse was defined solely based on clinical suspicion in 4 (4.5%) trials,
- parasitological demonstration upon clinical suspicion in 64 (71.9%) trials, based on
- 338 molecular method (alone or in combination with parasitological method) in 3 (3.4%) studies,
- using clinical and/or parasitological assessments in 2 (2.2%), using parasitological or
- serological assessment in 1 (1.1%) study, and the definition of relapse was unclear in 15
- 341 (16.9%) studies.
- 342 Tissue aspiration used for confirmation of relapse included: splenic aspiration in 28
- 343 (31.5%) studies, bone marrow in 7 (7.9%) studies, bone marrow and/or spleen/lymph in 14
- 344 (15.7%) studies, peripheral blood in 1 (1.1%) study, tissue aspiration was done but the
- sample used was unclear in 30 (33.7%) studies, aspiration was not done in 3 (3.4%) studies
- and aspiration status was unclear in 6 (6.7%) studies (Figure 3).

347 Statistical considerations

348 Sample size calculation

349	Sample size calculation was carried out 34 (38.2%) studies, not carried out in 10
350	(11.2%) and there was no information in the remaining 45 (50.6%) studies (Table 5).
351	Of the 34 studies that reported sample size estimation, 2 studies reported sample
352	size estimation based on safety endpoint, 1 based on pharmacokinetics endpoint, 1 based
353	on a combination of safety and efficacy endpoint, 29 based on efficacy (or cure rate)
354	endpoint, the endpoint was unclear in 1 study. In studies that presented the sample size
355	estimation, 13 studies aimed to detect a mean difference in cured proportion (effect size:
356	8% to 40%), 10 studies aimed to demonstrate non-inferiority (margin adopted: 5% to 20%)
357	and further details are presented in Table 5 . Sample size adjustment for potential lost-to-
358	follow up was carried out in 11 studies (adjustment range: 5% to 20%) and no adjustment
359	was carried out in 3 studies (Table 5).
360	Analysis approach: ITT or PP

Intention-to-treat analysis was undertaken in 41 studies and this was not clear in the remaining 48 studies. Per-protocol analysis was undertaken in 29 studies and this was not clear in the remaining 60 studies. Both ITT and PP analysis was undertaken in 27 studies. In

46 studies, there were no explicit description of the ITT or PP analysis (Table 5).

365 Estimation of drug efficacy

366	Cured proportion at the end of the study follow-up was presented in all 89 studies
367	included. The point estimate of cured proportion was presented along with an interval
368	estimates (95% confidence interval for the cured proportion or for the mean difference in
369	proportion between two groups) in 50 (56.2%) studies and only point estimates were
370	presented in the remaining 39 studies. Survival analysis was used in 5 (5.6%); 3 studies used
371	Kaplan-Meier approach for estimating incidence of relapse while 2 studies used for

372 estimating fever clearance (Table 5).

373 Discussion

374	Our review has characterised the variations in design, conduct, analysis, and
375	reporting of prospective therapeutic efficacy studies conducted in VL for the last 20 years.
376	The patient flow diagram was presented in only 46 of the 89 studies included in this review;
377	a third of those who were screened for eligibility were excluded in studies that clearly
378	presented the details. The most commonly reported reason for exclusion was negative
379	parasitaemia upon further parasitological/serological examination among third of the
380	excluded patients suggesting a need for a more sensitive case definition for identification of
381	VL patients. For patient enrolment, those who met the case definitions underwent tissue
382	examination with splenic aspirates as the most commonly used tissue sample;
383	approximately a third of the studies used splenic aspirates for patient enrolment and further
384	two-thirds used splenic aspiration in combination with bone marrow. In patients with low-
385	grade parasitaemia, non-palpable spleen can lead to difficulty in splenic aspiration and thus
386	studies generally rely on bone marrow aspirates that have lower sensitivity. A reliable
387	confirmatory diagnosis of VL can be challenging and this urgently necessitates the
388	development of a highly sensitive non-invasive sampling approach such as the adoption of
389	molecular tools ¹² . A recent evaluation found that recombinase polymerase amplification
390	had a high concordance with polymerase chain reaction based on peripheral blood sample
391	¹³ ; such tool can serve as an alternative approach for disease confirmation and monitoring
392	parasite load.
393	There was a notable variability in the inclusion and exclusion criteria adopted
394	including the ranges of haemoglobin, platelets and other liver enzymes tests, and co-
395	infection with major comorbidities such as HIV, TB, hepatic, cardiac and renal complications.
396	Overall, these criteria will generally exclude the patients with critical ill patients or those

397 with severe form of VL. Similarly, pregnant and lactating women were excluded in 60% of 398 the studies. Overall, this suggests the need for innovative trial designs to provide further 399 information regarding the drug effectiveness in population the patient population excluded 400 from the standard therapeutic efficacy studies. For example, responsible inclusion of these patients in a pragmatic trial ¹⁴ or the use of registries or observational databases might 401 402 facilitate further assessment of drug effectiveness among these excluded population. 403 There were several elements of the studies that were poorly reported. For example, 404 40% of the randomised studies did not report the approaches used for sequence generation 405 and 45% did not report on the allocation concealment. Age-range of the patients included 406 was not reported in a fifth of the studies included in this review, and there was no 407 statement regarding requirement of informed consent in 11 of the 89 studies. Information 408 regarding the quality control of laboratory procedures adopted in the studies were not 409 reported in the majority of the studies, and the primary endpoint of the study was not 410 explicitly stated in 44% of the included studies. And when stated and reported, several 411 different terminologies were used for referring to the same treatment endpoints. For 412 example, initial cure was most commonly defined as a composite of initial parasitological 413 and clinical cure at the end of the therapy period in majority of the studies; alternative 414 terminology adopted included initial apparent cure, apparent response or cure 415 (supplemental file 2). Definitive cure assessed at the end of the study follow-up required 416 demonstration of clinical and parasitological cure with absence of relapse after achieving

417 initial cure; alternative terminologies used included ultimate cure, definite cure, final cure,

418 and full cure (**supplemental file 2**). Similarly, in 46 (43.8%) studies, only point estimates of

the cured proportion were presented without presenting the associated uncertainty

420 estimates. Only a third of the studies clearly reported the efficacy estimates from both ITT

421	and PP analysis while there was no specific distinction between these two approaches in
422	over half of the studies (Table 5). These findings are consistent with a previous review that
423	identified that VL relapses were not adequately defined $^{ m 15}$ and suggests an urgent need for a
424	harmonisation of terminologies and reporting practices.
425	There were also variations in the time-point when the drug efficacy was monitored.
426	Majority of the studies assessed the test of cure within 30 days of treatment completion and
427	assessed definitive cure at 6-months. In particular, the assessment of definitive cure
428	requires a careful evaluation as this requires absence of relapse. Field observations have
429	reported that a substantial proportion of patients develop relapse after 6-months 16,17
430	suggesting that a 6-months follow-up duration may be overestimating efficacy ¹⁸ .
431	Asymptomatic relapse as observed in a trial from India ¹⁹ , can pose further challenges as the
432	current algorithm for detection of relapse is conditional upon a patient showing clinical
433	signs and symptoms. Asymptomatic relapses or those with low grade parasite load with
434	non-palpable spleen can easily misclassified as definitive cure instead of relapse. This can
435	have important ramifications for providing an infective parasite pool for fuelling further
436	transmission of the disease. It is thus important to develop an accurate diagnostic algorithm
437	for identifying relapses; such algorithm can be a complementary tool to aid-in the diagnosis
438	in settings where it might be difficult to carry out aspiration or if following-up patients might
439	not be possible.
440	Development of a clear definition of suspected VL, differentiating severe VL from
441	uncomplicated/moderate disease, defining relapse and suspected case of relapse, and a
442	standardised protocol on design and conduct of VL studies would help in harmonisation of
443	clinical practices, as has been proposed for cutaneous leishmaniasis ^{5,6} . Although country
444	specific treatment guidelines exist for treatment of patients under field conditions, to date,

445	there is a clear lack of such protocol for VL. For example, recently a checklist has been
446	developed for reporting of malaria therapeutic efficacy studies in collaboration between
447	researchers and academic editors of the journals ²⁰ . Lessons learnt from such initiative can
448	be applied in the context of VL will help in reducing the reporting heterogeneity in VL
449	studies. The recent development of CIDISC standards for capturing data in clinical studies
450	through the IDDO-DND <i>i</i> collaboration and the development of standardised case report
451	forms are an important steps towards harmonisation of standards ²¹ . Such harmonisation is
452	important to maximising the information from limited trials as conducting therapeutic
453	studies for novel drugs remains increasingly challenging in the Indian sub-continent due to
454	the falling burden of the disease 22 and in East Africa due to political instability 23 .
455	Some of the challenges identified in this review and potential solutions are
456	summarised in Box 1. A reporting checklist has been developed based on the completeness
457	of reporting of different aspects of trial design, conduct, analysis and reporting identified in
458	this review and is presented in Box 2 .

459 **Conclusions**

460 This review highlights substantial methodological variations in definitions adopted 461 for patient screening, disease diagnosis and therapeutic outcomes suggesting a need for a 462 harmonised protocol for design and conduct of VL clinical studies.

463 **Declarations**

464 Authors' contributions

465	Conceptualization	: PD, SSP, PJG, KS
466	Data Curation	: PD, SSP
467	Formal Analysis	: PD, SSP, MC, PJG, KS
468	Funding Acquisition	: PJG
469	Investigation	: PD, SSP, PJG, KS
470	Methodology	: PD, SSP, PJG, KS
471	Project Administration	: MB, CN, SSP, PJG
472	Resources	: PJG
473	Software	: PD
474	Supervision	: PJG, KS
475	Validation	: PD, SSP, PJG, KS
476	Visualization	: PD
477	Writing – Original Draft Preparation	: PD, SSP, FA, PJG, and KS
478	Writing – Review & Editing	: All

479 Availability of data and material

480 The database(s) supporting the conclusions of this article are available within the tables and

figures presented within the manuscript along with the supplemental files (S1 and S2).

482

483

484 Ethics approval and consent to participate

485 Not applicable

486 **Consent for publication**

487 Not applicable

488

489 Financial Disclosure Statement

- 490 The review was funded by a biomedical resource grant from Wellcome to the Infectious
- 491 Diseases Data Observatory (Recipient: PJG; ref: 208378/Z/17/Z). The funders had no role in
- the design and analysis of the research or the decision to publish the work.

493

494 **Competing interests**

495 None

496

497

498 Author details and affiliations

- 499 Dr. Prabin Dahal
- 500 Infectious Diseases Data Observatory (IDDO), Oxford, UK &
- 501 Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine,
- 502 University of Oxford, Oxford, UK
- 503 Email: prabin.dahal@iddo.org
- 504
- 505 Dr. Sauman Singh-Phulgenda
- 506 Infectious Diseases Data Observatory (IDDO), Oxford, UK &
- 507 Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine,
- 508 University of Oxford, Oxford, UK
- 509 Email: <u>sauman.singh@iddo.org</u>
- 510
- 511 Dr. Caitlin Naylor
- 512 Infectious Diseases Data Observatory (IDDO), Oxford, UK &
- 513 Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine,
- 514 University of Oxford, Oxford, UK
- 515 Email: caitlin.naylor@iddo.org
- 516
- 517 Mr. Matthew Brack
- 518 Infectious Diseases Data Observatory (IDDO), Oxford, UK &
- 519 Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine,
- 520 University of Oxford, Oxford, UK
- 521 Email: <u>matthew.brack@iddo.org</u>
- 522
- 523 Prof. Mitali Chatterjee
- 524 Institute of Postgraduate Medical Education & Research (IPGMER),
- 525 Kolkata, India
- 526 Email: <u>ilatimc@gmail.com</u>
- 527
- 528 Dr. Fabiana Alves
- 529 Drugs for Neglected Diseases initiative, Geneva, Switzerland

- 530 Email: <u>falves@dndi.org</u>
- 531
- 532 Prof. Philippe J Guerin
- 533 Infectious Diseases Data Observatory (IDDO), Oxford, UK &
- 534 Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine,
- 535 University of Oxford, Oxford, UK
- 536 Email: philippe.guerin@iddo.org
- 537
- 538 Dr. Kasia Stepniewska
- 539 Infectious Diseases Data Observatory (IDDO), Oxford, UK &
- 540 Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine,
- 541 University of Oxford, Oxford, UK
- 542 Email: kasia.stepniewska@iddo.org
- 543

544 **References**

545	1.	Anabwani GM, Dimiti G, Ngira JA, Bryceson ADM. Comparison of Two Dosage
546		Schedules of Sodium Stibogluconate in the Treatment of Visceral Leishmaniasis in
547		Kenya. <i>Lancet</i> . 1983;321(8318):210-212. doi:10.1016/S0140-6736(83)92588-6
548	2.	Bush JT, Wasunna M, Alves F, et al. Systematic review of clinical trials assessing the
549		therapeutic efficacy of visceral leishmaniasis treatments: A first step to assess the
550		feasibility of establishing an individual patient data sharing platform. PLoS Negl Trop
551		<i>Dis</i> . 2017;11(9):1-16. doi:10.1371/journal.pntd.0005781
552	3.	Singh-Phulgenda S, Dahal P, Ngu R, et al. Serious adverse events following treatment
553		of visceral leishmaniasis: A systematic review and meta-analysis. <i>PLoS Negl Trop Dis</i> .
554		2021;15(3):e0009302. doi:10.1371/journal.pntd.0009302
555	4.	González U, Pinart M, Reveiz L, et al. Designing and reporting clinical trials on
556		treatments for cutaneous leishmaniasis. <i>Clin Infect Dis</i> . 2010;51(4):409-419.
557		doi:10.1086/655134
558	5.	Olliaro P, Vaillant M, Arana B, et al. Methodology of Clinical Trials Aimed at Assessing
559		Interventions for Cutaneous Leishmaniasis. <i>PLoS Negl Trop Dis</i> . 2013;7(3).
560		doi:10.1371/journal.pntd.0002130
561	6.	Olliaro P, Grogl M, Boni M, et al. Harmonized clinical trial methodologies for localized
562		cutaneous leishmaniasis and potential for extensive network with capacities for
563		clinical evaluation. <i>PLoS Negl Trop Dis</i> . 2018;12(1):1-12.
564		doi:10.1371/journal.pntd.0006141

565 7. López-Carvajal L, Vélez I, Arbeláez MP, Olliaro P. Eligibility criteria and outcome

566	measures adopted	in clinical trials of	f treatments of cutaneous	leishmaniasis:

- systematic literature review covering the period 1991–2015. *Trop Med Int Heal*.
- 568 2018;23(5):448-475. doi:10.1111/tmi.13048
- 569 8. IDDO. Infectious Diseases Data Observatory: VL Surveyor. Published 2022. Accessed
- January 16, 2022. https://www.iddo.org/tool/vl-surveyor
- 571 9. Boelaert M, Sundar S. 47. Leishmaniasis. In: Jeremy Farrar, Peter Hotez, Thomas
- 572 Junghanss, Gagandeep Kang, David Lalloo and NJW, ed. *Manson's Tropical Diseases*.
- 573 Elsevier Health Sciences; 2014:631-651.
- 574 10. Villanueva JL, Alarcon A, Bernabeu-Wittel M, et al. Prospective evaluation and follow-
- 575 up of European patients with visceral leishmaniasis and HIV-1 coinfection in the era of
- 576 highly active antiretroviral therapy. *Eur J Clin Microbiol Infect Dis*. 2000;19(10):798-
- 577 801.
- 578 11. Khalil EAG, Weldegebreal T, Younis BM, et al. Safety and Efficacy of Single Dose versus
- 579 Multiple Doses of AmBisome[®] for Treatment of Visceral Leishmaniasis in Eastern

580 Africa: A Randomised Trial. *PLoS Negl Trop Dis*. 2014;8(1):e2613.

- 581 doi:10.1371/journal.pntd.0002613
- 582 12. Sudarshan M, Weirather JL, Wilson ME, Sundar S. Study of parasite kinetics with
- 583 antileishmanial drugs using real-time quantitative PCR in Indian visceral leishmaniasis.
- 584 *J Antimicrob Chemother*. 2011;66(8):1751-1755. doi:10.1093/jac/dkr185
- 585 13. Roy M, Ceruti A, Kobialka RM, et al. Evaluation of Recombinase Polymerase
- 586 Amplification assay for monitoring parasite load in patients with kala-azar and post
- 587 kala-azar dermal leishmaniasis. *PLoS Negl Trop Dis*. 2023;17(4):e0011231.

588 doi:10.1371/journal.pntd.0011231

589	14.	Oude Rengerink K	, Kalkman S,	Collier S	, et al. Series:	Pragmatic trials	and real	world
-----	-----	------------------	--------------	-----------	------------------	------------------	----------	-------

- 590 evidence: Paper 3. Patient selection challenges and consequences. *J Clin Epidemiol*.
- 591 2017;89:173-180. doi:10.1016/j.jclinepi.2016.12.021
- 592 15. Hirve S, Boelaert M, Matlashewski G, et al. Transmission Dynamics of Visceral
- 593 Leishmaniasis in the Indian Subcontinent A Systematic Literature Review. *PLoS Negl*
- 594 *Trop Dis*. 2016;10(8):1-28. doi:10.1371/journal.pntd.0004896
- 595 16. Burza S, Sinha PK, Mahajan R, et al. Risk Factors for Visceral Leishmaniasis Relapse in
- 596 Immunocompetent Patients following Treatment with 20 mg/kg Liposomal
- 597 Amphotericin B (Ambisome) in Bihar, India. *PLoS Negl Trop Dis*. 2014;8(1):44.
- 598 doi:10.1371/journal.pntd.0002536
- 599 17. Alves F, Bilbe G, Blesson S, et al. Recent Development of Visceral Leishmaniasis
- Treatments: Successes, Pitfalls, and Perspectives. *Clin Microbiol Rev*. 2018;31(4):1-30.
- 601 doi:10.1128/CMR.00048-18
- 602 18. Chhajed R, Dahal P, Singh-Phulgenda S, et al. Estimating the proportion of relapse
- 603 following treatment of Visceral Leishmaniasis: Meta-analysis using Infectious Diseases

604 Data Observatory (IDDO) living systematic review. Available at SSRN:

- https://ssrn.com/abstract=4464863.doi:http://dx.doi.org/10.2139/ssrn.4464863
- 606 19. Sundar S, Agrawal G, Rai M, et al. Treatment of Indian visceral leishmaniasis with
- single or daily infusions of low dose liposomal amphotericin B: randomised trial. *BMJ*.

608 2001;323(7310):419-422. doi:10.1136/bmj.323.7310.419

609 20. Plucinski MM, Ashley EA, Bassat Q, Venkatesan M, Rosenthal PJ, Halsey ES. STARTER

610	checklist for antimalarial therapeutic efficacy reporting. <i>Malar J.</i> 2022;21(1):4-6.
-----	--

- 611 doi:10.1186/s12936-022-04182-x
- 612 21. IDDO. Visceral leishmaniasis case report form. Published 2022. Accessed January 16,
- 613 2022. https://www.iddo.org/vl/research/visceral-leishmaniasis-case-report-form
- 614 22. Rijal S, Sundar S, Mondal D, Das P, Alvar J, Boelaert M. Eliminating visceral
- leishmaniasis in South Asia: The road ahead. *BMJ*. 2019;364:k5224.
- 616 23. Boodman C, van Griensven J, Gupta N, Diro E, Ritmeijer K. Anticipating visceral
- 617 leishmaniasis epidemics due to the conflict in Northern Ethiopia. *PLoS Negl Trop Dis*.
- 618 2023;17(3):e0011188. doi:10.1371/journal.pntd.0011188
- 619 24. Das VNR, Siddiqui NA, Bhunia GS, et al. Improved kala-azar case management through
- 620 implementation of health facility- based sentinel sites surveillance system in. *PLoS*

621 *Negl Trop Dis.* 2021;15(8):e0009598. doi:10.1371/journal.pntd.0009598

- 622 25. IDDO VL Data Platform: Accessing data. Accessed March 17, 2021.
- 623 https://www.iddo.org/vl/data-sharing/accessing-data
- 624 26. Stepniewska K, White NJ. Some considerations in the design and interpretation of
- antimalarial drug trials in uncomplicated falciparum malar. *Malar J*. 2006;Dec
- 626 22(5):127. doi:10.1186/1475-2875-5-127

627

628 List of figures

- **Figure 1:** Details of randomisation method and allocation concealment included in the randomised studies included in the review
- **Figure 2:** Co-morbidities as exclusion criteria and reasons for patient exclusion in the studies included in the review
- 631 Legend: Panel A: Endocrine disorders included patients with diabetes and pancreatitis; Hepatic disorders including jaundice, hepatitis or hepatic encephalopathy; any
- 632 pulmonary condition included pneumonia, TB or any respiratory illness; bleeding diathesis including coagulation disorders, G6PD deficiency or any haematological
- 633 disorders. Panel B: This presents data from 46 studies that clearly reported the patient flow. Panel B presents the sample size by study design on logarithm (base10) scale.
- 634
- 635 Figure 3: Tissue aspiration used for confirmation of diseases and for outcome assessments
- 636 Legend: See Supplemental file 2 for details for each of the studies included separately
- 637

638 List of tables

- 639 **Table 1:** Demographic, disease and biological range adopted for defining inclusion/exclusion of patients
- 640 **Table 2:** Case definition used for patient screening and confirmation of disease status
- 641 **Table 3:** Details of the laboratory procedures adopted
- 642 Table 4: Assessment at end of the treatment and at the end of the study follow-up
- 643 Table 5: Statistical considerations
- 644
- 645 List of boxes
- 646 **Box 1:** Key methodological challenges and potential solutions
- 647 Box 2: Suggested reporting checklist for therapeutic efficacy studies in visceral leishmaniasis
- 648
- 649 List of supplemental files
- 650 Supplemental file S1: Study details
- 651 Supplemental file S2: Further details of design, conduct, analysis and reporting

	Number of studies	
	(n=89 studies)	%
Patient demographics		
Eligible age range		
Less than 15y	12	13.5%
Adults	6	6.7%
All ages	53	59.6%
Unclear	18	20.2%
Female patients		
Included	86	96.6%
Excluded	1	1.1%
Unclear	2	2.2%
Pregnancy and lactation		
Excluded	54	60.7%
Included	6	6.7%
Unclear	29	32.6%
Inclusion of women susceptible to becoming pregnant		
Included	26	29.2%
Inclusion conditional on pregnancy test and/or contraception		
usage	15	16.9%
Excluded	3	3.4%
Unclear	45	50.6%
Disease and treatment history		
Type of infection		
Primary	49	55.1%
Secondary	7	7.9%
Mixture	15	16.9%
Unclear	18	20.2%
Patients with severe/critical VL		
Excluded	11	12.4%

Table 1: Demographic, disease and biological range adopted for defining inclusion/exclusion of patients

Included	1	1.1%
Unclear	77	86.5%
Previously treated patients		
Excluded	46	51.7%
Included	21	23.6%
Unclear	22	24.7%
Time from last exposure to VL drugs		
<2 months (10-60 days) (or 5 half-lives)	11	12.4%
2-6 months	12	13.5%
>6-12 months	3	3.4%
Unclear	63	70.8%
History of allergy/hypersensitivity to antileishmanial drugs		
Excluded	34	38.2%
Unclear	55	61.8%
Biological range adopted		
At least one biochemistry range was part of study exclusion		
Yes	49	55.1%
Unclear	40	44.9%
Minimum haemoglobin concentration		
3 g/dL	1	1.1%
>3 to 5 g/dL	29	32.6%
>5 to 7 g/dL	12	13.5%
Unclear	47	52.8%
Prothrombin time (above control values)		
>4 seconds	3	3.4%
>5 seconds	13	14.6%
>15 seconds	2	2.2%
Prothrombin activity <40%	1	1.1%
INR >2	1	1.1%
Unclear	69	77.5%
Minimum platelets concentration		
>40,000/µL	22	24.7%

>50,000/µL	14	15.7%
Combination of ranges	3	3.3%
Unclear	50	56.2%
Other characteristics		
Informed consent/assent		
Required	21	23.6%
Not a part of I/E criteria but collected before enrolment	57	64.0%
Unclear (not mentioned)	11	12.4%
Inability to follow study protocol ^a		
Excluded	19	21.3%
Unclear	70	78.7%

653 INR= International normalisation ratio

^a This include: inability to come for return visit or attend scheduled visits /living far away from the study site or in ability to comply with medication

655 Table 2: Case definition used for patient screening and confirmation of disease status

c	E	c
0	Э	0

	Number of studies	
Case definition for patient screening	(n=89 studies)	%
Compatible clinical diagnosis ^a		
(fever, splenomegaly etc.)	77	86.5%
Not specified		
(no defined criteria stated)	12	13.5%
Definition of compatible clinical diagnosis		
Fever or splenomegaly or cytopenia	3	3.4%
Fever + splenomegaly	18	20.2%
Fever + hepatomegaly/splenomegaly	3	3.40%
Fever + splenomegaly/wasting + weight loss/loss of appetite	19	21.3%
fever + splenomegaly + haematological measurement	6	6.6%
Fever + splenomegaly + chills + rigor	3	3.4%
Fever + splenomegaly/wasting + weight loss/loss of appetite +		
haematological measurement	7	7.7%
Not specified	30	33.7%
Length of fever used in case definition for patient screening		
>1 week	1	1.1%
≥ 2 weeks	19	21.3%
Not specified	69	77.6%
Case confirmation method		
Parasitological	26	29.2%
Serological and/or parasitological	56	62.9%
Serological + parasitological	7	7.9%

657 ^a The following were part of the definition of suspected cases of Visceral leishmaniasis: fever, splenomegaly, hepatomegaly, hepatosplenomegaly, chills, rigor, weight loss,

658 loss of appetite, wasting, epistaxis, anaemia, weakness, asthenia, cytopenia, leukopenia, thrombocytopenia, or lymphadenopathy

659

660

Page **35** of **46**

661 Table 3: Details of the laboratory procedures adopted

~	~	1
6	6	2

	Number of studies	%
Staining method used in studies using parasitology	(n=89 studies)	70
Giemsa	23	
Giemsa and/or Leishman stain or Diff-Quik stain	2	
Unclear	58	
Tissue aspirate not used	6	
Details of serological tests used	Ŭ	
rk39	19	
DAT	5	
IFA/IFAT/ELISA	4	
Combination of rk39 with DAT/IFA	4	
Serology not used	57	
Blinding of laboratory procedures for parasitology		
Yes	21	23.6%
Not blinded	2	2.2%
Unclear	66	74.2%
Quality control of laboratory procedures for parasitology		
Slides read by two readers or Independent microscopist	4	
Slides read by a single microscopist/single lab	1	
Slides read by trained/experienced technician	2	
All/sample of the slides were re-read by an external or the same		
microscopist	3	
Two slides per sample read	1	
Not specified	78	87.6%
Was parasite gradation carried out?		
Graded	49	55.1%
Not graded	3	3.4%
No information	37	41.6%
Was promastigotes culture carried out?		

Yes	11
No information	
Was parasite strain diversity (zymodeme) characterised?	
Yes	2
No	87

663 rk39 = recombinant K39 antigen (rk39) based rapid diagnostic test, DAT = direct agglutination test, IFA= Immunofluorescence assay (IFA); QC = quality control

Page **37** of **46**

medRxiv preprint doi: https://doi.org/10.1101/2023.09.06.23295148; this version posted September 8, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

664 Table 4: Assessment at end of the treatment and at the end of the study follow-up

665

	Number of studies	
	(n=89 studies)	%
Primary endpoint adopted		
Initial cure or negative parasitaemia at the end of therapy	12	13.5%
Ultimate cure/ definitive cure/final cure at end of 6-months or		
longer	27	30.3%
Pharmacokinetics measurements at day 21	1	1.1%
Safety outcomes	5	5.6%
Not explicitly stated	44	49.4%
Assessment at end of the treatment (Test of cure assessment) ^a		
Clinical	13	14.6%
Clinical + parasitological	69	77.5%
Clinical and/or parasitological	2	2.2%
No information	5	5.6%
Time point of test of cure assessment		
<15 days	3	3.4%
15 to 30 days	68	76.4%
31 to 70 days	7	7.9%
Mixture of one or more of the above	2	2.2%
Not stated	9	10.1%
Assessment at end of the study follow-up (for final outcome) ^b		
Clinical assessment	14	15.7%
Clinical and parasitological ^b	65	73.0%
Clinical and/or parasitological b	2	2.2%
Clinical and parasitological and molecular	1	1.1%
Clinical and parasitological/serological	1	1.1%
Not stated	6	6.7%
Time point of end of the study assessment	-	2
< 6 months	3	3.4%
(o months		0.175

6 months	75	84.3%
>6 to <12 months	2	2.2%
12 months	8	9.0%
>12 months	1	1.1%
Definition of relapse		
Based on clinical suspicion	4	4.5%
Clinical suspicion and/or parasitological demonstration	2	2.2%
Parasitological demonstration upon clinical suspicion	64	71.9%
Parasitological or serological	1	1.1%
Molecular and/or Parasitological	3	3.4%
Unclear	15	16.9%

666 ^a Achievement of clinical and parasitological resolution at the end of the treatment was usually defined as "initial cure". Equivalent terminology adopted were: apparent

667 cure, clinical and parasitological cure, apparent response or cure.

668 ^b Achievement of clinical and parasitological cure at the end of the study follow-up was usually defined as "definitive cure". Equivalent terminology adopted were: full cure,

669 final cure, definite cure, ultimate cure, complete cure or cure.

670 Table 5: Statistical considerations

	Number of studies	
Sample size estimation	(n=89 studies)	%
Objective of sample size estimation		
To detect difference in cure rate		
(Difference: 8%-40%)	13	14.6%
Demonstration of non-inferiority		
(5%-20% non-inferiority margin)	10	11.2%
To estimate cure rate with precision		4 5 6 (
(or 95% CI)	4	4.5%
To detect desired efficacy/safety	4	4.5%
To detect pharmacokinetics exposure	1	1.1%
Unclear objective	2	2.2%
Sample size calculation not carried out	10	11.2%
No information presented regarding sample size estimation	45	50.6%
Adjustment of lost-to-follow up (LFU)		
in sample size calculation		
Sample-size adjusted for possible LFU		
(Adjustment: 5%-20%)	11	12.4%
Not adjusted		
(assumed no LFU)	3	3.4%
Sample size calculation carried out but no information on LFU	2.2	a a - a
adjustment	20	22.5%
Sample size calculation not carried out	10	11.2%
No information on sample size estimation	45	50.6%
Analysis approach		
Only PP explicitly reported	2	2.2%
Only ITT explicitly reported	14	15.7%

Page **40** of **46**

27	30.3%
46	51.7%
50	56.2%
39	43.8%
3	3.4%
2	2.2%
84	94.4%
	46 50 39 3 2

671 ITT= Intention to treat; PP = Per protocol analysis; LFU = lost to follow-up

672

673

674

675	Box 1: Key methodological challenges and potential solutions
-----	--

Key methodological challenges	Potential solutions
Standardisation of terminologies	A harmonised reporting checklist (see Box 2) can be useful.
Lack of evidence regarding treatment efficacy among severe cases and those with complicated disease profile such as co-morbidity	Use of observational/programmatic epidemiological data (e.g: KAMIS ²⁴) to understand the outcomes among the patient groups who are currently excluded in the trial settings.
	This can inform if future trials can broaden the inclusion range.
Optimal duration of post-treatment follow-up	Longitudinal studies with long term follow-up required to assess the timing of relapse (e.g: KAMIS ²⁴)
	IDDO VL database can be explored to characterise the temporal trend of relapse during the follow-up ²⁵ ; Synthesis of aggregate data can provide further complementary insights
Impact of lost-to-follow-up (LFU) and those who withdraw/leave against medical advice (LAMA)	Usually excluded in per protocol analysis leading to substantial loss in statistical power; Cured proportion currently used in studies but information from those who are LFU or those who are LAMA can be incorporated using survival analysis ²⁶ . Only 2/89 studies adopted survival analysis as an approach for estimated drug efficacy.
Challenges in detecting asymptomatic relapses ¹⁹	Identification of relapse is conditional on clinical suspicion. Therefore, detection of asymptomatic relapses can be missed, and these can serve as a reservoir and provide an infecting pool for onwards transmission of the disease. Therefore, prompt identification and treatment of asymptomatic relapses remains crucial. Developing of molecular/serological based tests

	-
	can help in identification of such cases. In the absence of such tests, understanding the determinants of asymptomatic relapses can be useful- this can be explored using the IDDO database of clinical studies ²⁵ .
Defining relapse: Re-infection or "true relapse"	PCR genotyping approach can potentially be used but limited availability in remote areas.
	Development of a diagnostic model for identification of key patient characteristics who are likely to relapse can provide complementary information for clinical decision making. Such efforts can be facilitated by the IDDO data platform and is currently being undertaken ²⁵ .
Parasite quantitation:	Molecular methodology can be adopted;
Current parasite gradation is based on semi-quantitative range	Roy et al (2023) evaluated recombinase polymerase amplification which had
	a high concordance with polymerase chain reaction based on peripheral
	blood sample ¹³ ; such tool can serve as alternative approach for disease
	confirmation and monitoring parasite load in clinical studies

676

677

Manuscript section	ltem	sub-item	Description
Fitle	1	а	Identify the study design in the title (e.g.: RCT, Cohort)
Methodology			
Site description	2	а	Provide site details (country and city)
		b	Provide details of VL endemicity at study site
Study design	3	а	State the Phase of the study
		b	Specify the aim of the trial: equivalence, non-inferiority (with margin), superiority
Sample size calculation	4	а	Provide sample size calculation and desired statistical power
		b	State anticipated proportion of patients who are lost to follow-up
		с	Specify the margin for non-inferiority trials
		d	Details of the software used for estimation of sample size
Study procedures	5	а	Details on informed consent/assent
		а	State if the study is randomised
		b	Describe details of sequence generation of randomised list (computer generated, block size etc)
		с	Describe details of blinding with details of who are blinded to allocation (investigators, patients, lab technicians)
Treatment details	6	а	Describe the total target dose and mode of administration (IM, IV, PO)
		b	Specify drug manufacturer and batch number
		С	Specify the duration of infusion for IM or IV drugs
		d	Specify if the administration of oral tablets were supervised
Inclusion and exclusion			
criteria	7	а	State case definition for patient screening
		b	Give eligible age range

678 Box 2: Suggested reporting checklist for therapeutic efficacy studies in visceral leishmaniasis

			Give any co-morbidity that was excluded: malnutrition, HIV, TB, malaria, STH, hepatic conditions, cardiac conditions,
		с	retinal disease, endocrine disorders (including pancreatitis and diabetes), PKDL, para-kala-azar
		d	State the inclusion of females and WOSUP, requirements of contraception usage including the length of usage
		е	State if the following are I/E: patients with history of VL, prior treatment, previously unresponsive cases
		f	Specify biological ranges: haemoglobin, WBC, Platelets, albumin, BUN, bilirubin, aminotransferase,
Diagnostics for patient			=
enrolment	8	а	State the causative parasite species (<i>L. infantum, L. Donovani</i>)
			Method used for confirmation of VL (microscopy for detection of amastigotes, serology, or molecular method for
		b	parasite DNA detection)
		С	Sample source used for VL confirmation (blood, tissue aspirate: spleen, bone marrow, lymph node)
		d	Staining used for microscopy (Giemsa, Field, Leishman)
		е	State if promastigotes culture was used (including the details of the medium used)
		f	State if parasite quantitation was done including the methodology used (Eg; Chulay-Bryceson scale)
		g	Details on Quality control of the lab procedures used (external validation, double reading of slides etc)
		h	State if lab procedures were blinded
		i	 State the causative parasite species (L. Infantum, L. Donovani) Method used for confirmation of VL (microscopy for detection of amastigotes, serology, or molecular method for parasite DNA detection) Sample source used for VL confirmation (blood, tissue aspirate: spleen, bone marrow, lymph node) State in promastigotes culture was used (including the details of the medium used) State if parasite quantitation was done including the methodology used (Eg; Chulay-Bryceson scale) Details on Quality control of the lab procedures used (external validation, double reading of slides etc) State if lab procedures were blinded Details regarding distinction between relapse and re-infection were made (if done) State and define the primary and secondary endpoints adopted State the definition of initial cure and definitive cure
Outcome definition	9	а	State and define the primary and secondary endpoints adopted
		b	State the definition of initial cure and definitive cure
		с	State the definition of relapse
		d	Describe the method used for confirmation of parasitological cure at Test of cure, and at end of the study follow-up
Patient follow-up	10	а	Details of the patient follow-up schedule including any pre-specified visits
			State the time-point of assessment for Test of Cure and time-point for assessment of final outcome
		b	(e.g.: clarity regarding if 6-months means 6-months since randomisation or 6-months post-discharge from hospital)
esults		5	
			Clearly present the patient screening logs including the number screened and reasons for exclusion (CONSORT Flow
Analysis and reporting	11	а	diagram)
		b	Clearly present the number of patients who are lost to follow-up, withdrawn, requiring rescue therapy

с	Report all patient outcomes (relapse, failure, rescue therapy) and the time of their occurrence
d	Report any AE or SAEs and the time-point of their occurrence
e f	Present the effect size estimate including the denominators used for calculation for proportions Clearly present how patient attrition are handled when calculating cured proportion (or if they were censored in survival analysis)
g	Present all the estimates with 95% confidence intervals Give details on the rescue therapy used for treating relapses or unresponsive cases and the outcomes of the re-
h	treatment