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Abstract 24 

Cholera is a significant health risk for low- and middle-income countries (LMIC), and the threat of 25 

outbreaks is likely to increase due to climate change. To keep up to date with the link between water 26 

quality and cholera, we conducted a systematic review and meta-analysis to update a previous review. 27 

We searched Embase, Web of Science and PubMed for literature published between 2016 and 2022. 28 

Search terms were consistent with the previous review. Study quality was assessed using Risk Of Bias 29 

In Non-randomized Studies - of Exposures (ROBINS-E). Exposures of water were categorized 30 

according to the WHO/UNICEF Joint Monitoring Program for Water Supply, Sanitation and Hygiene 31 

(JMP) and further divided by the service ladder. Odds ratios were extracted and pooled by performing 32 

random-effects meta-analysis. We identified 22 new eligible studies and analysed them together with 33 

the 45 studies included in the previous review. Analyses revealed higher odds of cholera when 34 

consuming sachet water (OR=1.69, 95% CI: 1.13 to 2.52), unimproved water (OR=2.91, 95% CI: 1.21 35 

to 7.02), surface water (OR=3.40, 95% CI: 2.52 to 4.58), and untreated water (OR=2.51, 95% CI: 2.03 36 

to 3.10). Meanwhile, treating water (OR=0.42, 95% CI: 0.27 to 0.65), by boiling (OR=0.38, 95% CI: 37 

0.17 to 0.84) or chlorination (OR=0.37, 95% CI: 0.17 to 0.83), and drinking basic water (OR=0.44, 38 

95% CI: 0.27 to 0.69) showed protection. Pooled estimates changed with updated evidence while 39 

qualitative insights on the protective or risk factors remain valid. Relatively low-cost methods like 40 

boiling or chlorinating water provide good protection comparable to providing basic water to the 41 

public. 42 

 43 

Systematic review registration: PROSPERO 2021 CRD42021271881 44 
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Introduction 46 

Cholera is an acute diarrhoeal disease caused by the bacterium Vibrio cholerae. The disease is mainly 47 

transmitted through the faecal-oral route by consuming contaminated water or food, or through 48 

person-to-person contact [1].  49 

Although cholera is not a newly emerging disease, it remains a significant global public health threat, 50 

especially for low- and middle-income countries (LMICs) with poor sanitation infrastructure and 51 

limited access to clean water [2]. In 2022, more than 29 countries have reported new outbreaks to the 52 

World Health Organization (WHO), with Lebanon and Syria not being considered cholera non-53 

endemic countries [2]. Major outbreaks often occur in areas of humanitarian crisis, political instability, 54 

and water insecurity [2]. This is illustrated by the 2016 outbreak in Yemen, one of the largest cholera 55 

epidemics in recent times as a result of ongoing armed conflict [3].  56 

Accurately estimating the global burden of cholera is difficult. While the World Health Organization 57 

(WHO) reported 323,320 cholera cases and 857 deaths in 2020, these figures are likely to be 58 

considerably underestimated [4]. Factors such as inadequate surveillance systems, fears of negative 59 

economic impacts on trade and tourism, lack of diagnostic tools, and the recent COVID-19 pandemic 60 

may have contributed to the underreporting of cholera cases [5]. A modelling study estimated the 61 

cholera burden to be between 1.3 and 4.0 million cases annually in cholera-endemic countries [6]. The 62 

burden may increase with climate change putting even high-income countries at risk in future [7, 8]. 63 

With extreme weather events such as changing rainfall patterns, recurrent flooding, and rising 64 

temperatures, the risk of faecal-oral pathogens contaminating the environment is increasing. This 65 

threatens water quality and increases the transmission of waterborne diseases [7, 8]. Larger and more 66 

deadly cholera outbreaks have already been observed as a consequence [2].  67 

Main risk factors for cholera outbreaks are inadequate water quality, poor sanitation and hygiene, and 68 

overcrowding [1]. These risks can be counteracted by implementing water, sanitation, and hygiene 69 

(WASH) interventions. WASH interventions are one of the most important factors in limiting and 70 

preventing outbreaks [9, 10]. The importance of WASH is being emphasized by the establishment of 71 

the WHO/UNICEF Joint Monitoring Program (JMP) for Water, Sanitation and Hygiene in 1990. The 72 
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JMP monitors the global progress on WASH towards achieving the Sustainable Development Goals 73 

[11]. It regularly collects national and regional-level WASH estimates for more than 190 countries. 74 

Data are being reported for four different WASH categories of water, sanitation, hygiene, and 75 

menstrual health. The former three comprise five subcategories and cover different settings, such as 76 

households, schools, and health facilities [12, 13]. Thus, understanding the WASH association with 77 

cholera standardized by JMP categories can provide a way to explore the risk associated with cholera 78 

in areas where JMP estimates are available.  79 

Although many have already investigated the association between WASH and cholera [14-17], it is 80 

important to regularly update knowledge based on new evidence. A better understanding is crucial to 81 

guide decision-making and can lead to more cost-effective adaption of intervention programs and thus 82 

strengthen the impact of future cholera prevention programs. To our knowledge, there is currently only 83 

one systematic review and meta-analysis that explored the association between WASH exposures and 84 

cholera in case-control studies. Wolfe et al. published their study in 2018, evaluating studies published 85 

between 1990 and 2016 [17]. The authors included water, sanitation, and hygiene and classified 86 

WASH exposures according to the JMP standards [17]. However, the JMP-specific service ladders 87 

developed for further grading and specification of WASH categories were not used.  88 

While Wolfe et al. examined all three categories of WASH which include water, sanitation, as well as 89 

hygiene [17], no systematic review has yet focused exclusively on water quality exposures related to 90 

cholera. Out of WASH, focusing on the association between water and cholera is compelling as water 91 

is a basic human need and cholera spreads mainly via unsafe water [1]. Case-control studies are 92 

particularly interesting to focus on when studying this association as our preliminary search revealed 93 

that major evidence was generated in this particular study design as well as its consistency being an 94 

advantage for meta-analyses. 95 

The aim of this study is to update the existing systematic review and meta-analysis while focusing on 96 

the association between water and cholera. This review will incorporate recent evidence and provide 97 

updated insights on the association between water quality and cholera in LMICs while implementing a 98 

more rigorous assessment of the study quality.  99 
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Methods 100 

Search Strategy and Eligibility Criteria  101 

The development of the systematic review and meta-analysis adhered to the Preferred Reporting Items 102 

for Systematic Reviews and Meta-Analyses (PRISMA) [18]. To systematically identify relevant peer-103 

reviewed articles PubMed, Web of Science, and Embase were chosen as databases. The search terms 104 

were kept consistent with the previous search terms utilized in Wolfe et al.: (“case control” OR “case-105 

control” AND “cholera”) [17]. 106 

Results were restricted to articles published in English between 01 July 2016 and 02 September 2022 107 

since articles published before 01 July 2016 were already included in the Wolfe et al. review [17]. All 108 

search records were imported to the software Sciwheel, deduplicated, and further screened according 109 

to the following predefined inclusion and exclusion criteria: Case-control studies focusing populations 110 

in LMICs were eligible to be included, whereas studies located in high-income countries were 111 

excluded. Cases were defined as people infected with cholera, while controls were defined as people 112 

not infected with cholera. No restrictions were put on age, gender, and socioeconomic status of the 113 

population. Furthermore, studies had to analyse associations between WASH and cholera using odds 114 

ratios (OR) to be eligible. Detailed information on the Population, Intervention, Comparison, 115 

Outcomes and Study Design (PICOS) criteria [19] applied can be found in the study protocol [20]. 116 

 117 

WASH Exposure Categories with Focus on Water 118 

The JMP WASH categories were used in order to classify the exposures more precisely by 119 

additionally using the JMP service ladder to further differentiate these categories into finer levels [21]. 120 

However, as this study focuses on water quality, only the category of water was included for further 121 

analysis. In addition to the JMP category water source, water treatment and water management were 122 

included to describe water and its handling in more detail and to be consistent with Wolfe et al. [17] 123 

(Table 1). Exposures deemed eligible were compared to the JMP service ladder for water source. They 124 

were subsequently allocated to one of the five subcategories (safely managed, basic, limited, 125 
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unimproved, surface water) according to its definition given by the JMP [22]. Water treatment and 126 

water management were further divided into treated water and untreated water as well as safe water 127 

storage and unsafe water storage, respectively.  128 

Additionally, a more differentiated classification was introduced for similar exposures of the same 129 

category. An example would be the differentiation of boiled water and chlorinated water, rather than 130 

analysing them jointly as treated water or having to exclude one exposure.  Other additional inclusion 131 

criteria were developed if this differentiation was not sufficient to avoid unit-of-analysis error and to 132 

ensure that certain populations were not overrepresented in the meta-analyses. 133 

 134 

[Insert Table 1 here] 135 

 136 

Data Extraction  137 

In addition to the articles selected based on the previous review [17], title and abstract of the newly 138 

identified articles were screened and checked for relevance by two independent researchers (CK and 139 

TN) and eligibility was determined in accordance with the PICOS framework. After this initial 140 

screening, full texts of included studies were further independently examined for eligibility by the 141 

same researchers. Discrepancies in both steps were discussed afterwards with a third researcher (J-142 

HK) to reach consensus. 143 

Relevant data were extracted and compiled using Google Sheets. For each article, following 144 

information was extracted: the country where the study was conducted, the WASH exposures 145 

analysed, the OR and corresponding confidence interval (CI), the general adjustment factors used, and 146 

the adjustment for other WASH exposures. 147 

 148 

Risk of Bias Assessment  149 

The quality appraisal of the eligible studies was conducted using the Risk Of Bias In Non-randomized 150 

Studies - of Exposures (ROBINS-E) [23]. The tool assesses the risk of bias in seven different domains: 151 

1) confounding, 2) measurement of exposure, 3) selection of participants, 4) post-exposure 152 
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interventions, 5) missing data, 6) measurement of outcome, and 7) selective reporting of results. Each 153 

domain was graded on a scale of “low risk of bias”, “some concerns”, “high risk of bias”, and “very 154 

high risk of bias” which was subsequently summarized in an overall risk of bias.  Studies scoring “low 155 

risk” in more than one domain were categorized as overall “some concerns”; studies scoring “some 156 

concerns” in more than five domains were considered “high risk”; and those scoring “high risk” in 157 

more than one domain were categorized as “very high risk”.  158 

The assessment of quality was performed by two reviewers independently (CK and TN) and then 159 

discussed in conjunction with the third researcher (J-HK).  160 

 161 

Statistical Analysis  162 

Studies labelled as “very high risk” during the quality assessment were excluded from the analysis. 163 

Exposures that were identified by the included articles as contaminated and potentially even the origin 164 

of an outbreak were excluded. This was due to the high likelihood of bias in the meta-analysis as a 165 

result of misclassification of an exposure that was originally confirmed to be contaminated. In 166 

addition, only one exposure per study population was included in each analysis to avoid unit-of-167 

analysis error and to ensure that no study population was given more weight in the analysis. Exposures 168 

with narrower confidence intervals and thus more precise estimates were chosen over similar 169 

exposures with wider intervals. Preference was also given to exposures that were more comparable to 170 

other exposures in the same subcategory or subgroup. For example, if an article examined the 171 

exposure of "drinking river water" and "drinking swamp water" in the same population, "drinking river 172 

water" was included in the analysis and "drinking swamp water" was excluded. Reason being that 173 

"drinking river water" was more comparable to the exposures included in other articles in that 174 

particular subgroup. Also, confidence intervals had to be reported in the study to be included in the 175 

statistical analysis. Exposures with p-values only were excluded. 176 

The statistical programming language R (version 4.2.2) [24] with the metafor package (version 3.8.1) 177 

[25] was utilized to conduct the meta-analysis. Meta-analysis was performed for categories with at 178 

least two studies with the potential of meaningful pooling [26]. Adjusted ORs were preferred over 179 

crude ORs; if not given, matched ORs were utilized. If neither the adjusted OR nor the matched OR 180 
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were reported, the crude OR was used for meta-analysis. Random effects models were chosen to fit the 181 

data over the fixed effects model since real differences in the effect sizes, instead of sampling error, 182 

were suspected because of the variability in the setting and the population studied. The heterogeneity 183 

between studies was estimated by restricted maximum likelihood [27] and calculated using τ2, 184 

Cochran’s Q-statistic for subgroup interactions [28], and I2-statistic [29]. An overall summary estimate 185 

with confidence interval was calculated for each JMP subcategory and two additional categories: 186 

“safely managed water” and “treated water”. 187 

Publication bias was primarily inspected by examining symmetry of the funnel plots and calculating 188 

Egger’s regression [30]. 189 

 190 

Results 191 

Study Selection  192 

The search yielded a total number of 206 articles consisting of 86 articles from PubMed, 55 from Web 193 

Of Science, and 65 from Embase published between 01 July 2016 and 02 September 2022 (Fig 1). 194 

After deduplication, 120 unique articles were left for title and abstract review. This subsequently 195 

resulted in 36 articles that were deemed eligible for full text screening. During the full text screening, 196 

14 articles were further excluded (Fig 1). 197 

Wolfe et al. identified 46 studies in their review, which we also included [17]. During the evaluation 198 

of these articles, we noticed that one study focused on food exposures rather than WASH exposures. 199 

This article was therefore excluded. 200 

Ultimately, 22 new studies in addition to 45 articles from the previous review of Wolfe et al. were 201 

included in this review. The total of 67 studies were then further assessed for quality. 202 

 203 

[Insert Fig 1 here] 204 

 205 
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Characteristics of Included Studies 206 

The newly identified studies were primarily conducted in Kenya, Uganda, and Ethiopia as well as in 207 

Yemen, Nigeria, Zambia, Vietnam, India, Ghana, and the Democratic Republic of the Congo [31-52]. 208 

The majority was conducted in Uganda with a total of six studies [37, 38, 43, 47, 48, 50], whereas the 209 

studies from the previous review were from 21 different countries with the majority of them conducted 210 

in Ethiopia, Haiti, India, Kenya, Malawi and Peru [53-97]. The combination of new and previously 211 

identified studies resulted in a wider geographical representation compared to the previous review. 212 

The diagnostic methods used to fully identify cholera cases were by culturing stool samples (39.7%), 213 

culturing rectal swabs (14.7%), collecting rectal swabs as well as stool cultures (14.7%), rapid test 214 

(7.4%), and rapid test as well as stool culture (2.9%). Only one study additionally collected blood 215 

samples and tested for antibody titres for cases as well as controls [97]. Two studies only collected 216 

blood samples for controls [84, 93] and one study only for a subset of controls [54]. Detailed 217 

descriptions of the characteristics of each study included can be found in S1 Table. 218 

 219 

Risk of Bias Assessment 220 

Overall, the quality assessment with ROBINS-E resulted in 14 studies (20.9%) being classified as 221 

“some concerns”, 27 studies (40.3%) as “high risk”, and 26 studies (38.8%) as “very high risk” (Figs 222 

S1-2). The studies classified as “very high risk” were omitted from meta-analysis. Therefore, a total of 223 

41 studies were included in the meta-analysis (Fig 1). Of the 45 previously included studies, 20 studies 224 

were excluded after our risk of bias assessment while the remaining 25 studies were included in the 225 

meta-analysis. Detailed description of the summarized results of the risk of assessment can be found in 226 

S1 Fig. 227 

No publication bias was detected by inspecting the funnel plots (S4–S10 Figs) and Egger's test (S2 228 

Table). 229 

 230 

Results of Synthesis  231 

A summary of the results of the meta-analysis can be found in Table 2.  232 
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 233 

[Insert Table 2 here] 234 

 235 

Water Source 236 

A total of 21 exposures met the definition of safely managed water and were therefore further 237 

subdivided: sachet water, bottled water, and tap water. Sachet water consumption (n = 3) was 238 

associated with a 1.69 times higher risk in cholera (OR = 1.69, 95% CI: 1.13 to 2.52) (Fig 2). Bottled 239 

water (n = 5) was protective against cholera, but not statistically significant (OR = 0.52, 95% CI: 0.19 240 

to 1.36). Similarly, tap water (n = 11) showed no significant protection against cholera (OR = 0.92, 241 

95% CI: 0.41 to 2.08) (Fig 2). 242 

 243 

[Insert Fig 2 here] 244 

 245 

For basic drinking water sources (n=5), a statistically significant protective effect against cholera was 246 

observed (OR=0.44, 95% CI: .27 to 0.69) (Fig 3). 247 

 248 

[Insert Fig 3 here] 249 

 250 

Limited water consumption did not show a significant association with cholera protection (n = 4, 251 

OR = 0.84, 95% CI: 0.14 to 4.89) (Fig S11). 252 

 253 

However, the consumption of unimproved water, such as water from unprotected wells and surface 254 

water was associated with higher odds of cholera. Consuming unimproved drinking water (n = 9) 255 

resulted in increased odds of 2.91 (95% CI: 1.21 to 7.02) (Fig 4). Similarly, consuming surface water 256 

(n = 10) was significantly associated with cholera risk, with an OR of 3.40 (95% CI: 2.52 to 4.58), the 257 

highest odds for cholera compared to the other subgroups (Fig 4). 258 

 259 

[Insert Fig 4 here] 260 
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 261 

Water Treatment 262 

Unspecified water treatment (n = 9) significantly decreased the odds of cholera by 58% (OR = 0.42, 263 

95% CI: 0.27 to 0.65) (Fig S12). In contrast, untreated water (n = 15) significantly increased odds of 264 

cholera (OR = 2.51, 95% CI: 2.03 to 3.10) (Fig S12). 265 

Similar results were obtained for the subgroups of treated water after synthesis. Boiling (n = 7) and 266 

chlorination of water (n = 6) significantly reduced odds for cholera with OR of 0.38 (95% CI: 0.17 to 267 

0.84) and 0.37 (95% CI: 0.17 to 0.83), respectively (Fig 5). No significant protection was detected for 268 

having materials for water treatment observed (n = 4) (OR = 0.41, 95% CI: 0.15 to 1.14) (Fig 5). 269 

 270 

[Insert Fig 5 here] 271 

 272 

Water Management  273 

Safe water storage (n = 6) showed a non-significant reduction in OR of 0.19 (95% CI: 0.03 to 1.36) 274 

(Fig S13). Similarly, unsafe water storage (n = 5) had a non-significant increase in OR of 1.32 (95% 275 

CI: 0.57 to 3.03) (Fig S13).  276 

 277 

Heterogeneity 278 

Substantial heterogeneity was observed for nearly all subgroups of water source other than consuming 279 

sachet water (I2 = 0.00%), basic water (I2 = 2.49%), and surface water (I2 = 0.00%) (Table 2). 280 

Similarly, only untreated water was found to have low heterogeneity in the water treatment category 281 

(I2 = 0.00%). Studies included on safe water storage as well as unsafe water storage revealed to be 282 

substantially heterogenous with I2 = 87.19% and I2 = 77.76%, respectively. Out of 14 conducted meta-283 

analyses, heterogeneity was over I2 = 80% in 6 subgroups. 284 

 285 
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Discussion 286 

We conducted a systematic review and meta-analysis to examine the association between water 287 

quality and cholera. In particular, we updated the previous review by Wolfe et al. [17] by including 288 

data from case-control studies published from 2016 to 2022. Compared to the former review, a more 289 

rigorous risk of bias assessment was utilized as well as the formulation of more stringent inclusion 290 

criteria for meta-analysis. Our analyses revealed that most of the expected risk factors, such as the 291 

consumption of unimproved water and surface water, as well as the lack of water treatment, were 292 

associated with higher odds of cholera. Some of pooled estimates were substantially different from 293 

those in Wolfe et al. while qualitative insights were still the similar [17]. The exception was unsafe 294 

water storage, which failed to show statistical significance after being pooled. A similar lack of 295 

statistical significance, but for this case for a protective effect, was observed for safe storage of water. 296 

Water treatment and its subgroups showed significant protection against cholera, again in accordance 297 

with previous findings of Wolfe et al. [17]. However, the mere presence of materials for water 298 

treatment was not found to be statistically significant for protection. Contrary to expectations, the only 299 

subcategory of improved water that displayed significant protective associations against cholera was 300 

basic water. All other subcategories of improved water were not statistically significant. Although 301 

Wolfe et al. found a significant protective effect of drinking bottled water, our results could not 302 

replicate this observation [17]. Moreover, most striking was that the consumption of sachet water was 303 

unexpectedly associated with higher odds for cholera. Furthermore, large discrepancies in between-304 

study heterogeneity was reported, as well as a wide ranges of observed ORs depending on the 305 

subcategory and subgroup.  306 

 307 

Our findings confirm those of Wolfe et al. regarding the inconsistency of different subcategories of 308 

improved water [17]. It can be suggested that some supposedly safe water sources may not be 309 

protective but may in fact pose a higher risk than water sources that are lower on the JMP ladder, e.g., 310 

basic water or limited water, and may facilitate cholera outbreaks. We observed a number of studies in 311 

which municipal tap water was associated with higher odds of cholera [34, 53, 66, 96] as well as 312 
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studies in which tap water was most likely contaminated [41, 57, 85, 91]. The reasons for this were 313 

often failures in the piping and sewage systems, which resulted in the tap water being contaminated 314 

by, for example, residues from open defecation [41, 52, 57]. In addition, water sold by vendors also 315 

appears to be at high risk of contamination. Contamination of packaged water sold on the street does 316 

also not appear uncommon, as evidenced by recent findings [41, 44]. Several studies have found 317 

significantly high levels of bacterial indicators in sachet water [98-100]. It appears that the level of 318 

contamination increases along the supply chain of the sachets [101]. There is evidence to suggests that 319 

the water sources used were not the underlying concern, but rather the packaging and handling of the 320 

sachets appeared to be strong indicators of contamination [102]. Given that some case-control studies 321 

failed to report protective effects of bottled water  [36, 61, 72] or even showed increased odds [46], 322 

similar assumptions can presumably be made for bottled water. Packaged water in LMICs appear to 323 

often be of questionable quality, as modelling suggests [103]. However, the JMP categorization does 324 

not reflect this actual risk and the possibility of contamination (in its service ladder). This is especially 325 

concerning given the growing trend of consuming packaged water in LMICs as a result of water 326 

shortages and as an alternative to unimproved water sources [104, 105].  327 

In contrast, the risk factors associated with cholera seem to be consistent and drive outbreaks. The 328 

consumption of surface as well as unimproved water tend to confer a constant risk of cholera. A 329 

similar pattern can be found in several other studies not exclusively focused on case-control studies 330 

[10, 106]. The homogeneity of exposures categorized as surface water consumption may support this. 331 

Consumption of surface water appears to be a risk factor regardless of setting and context of a study. 332 

Evidence of surface water being unsafe for drinking and increasing the risk for cholera and outbreaks 333 

can be found in past literature [107-109]. 334 

Furthermore, our results indicated that treating water with any method implies protection for cholera. 335 

Water treatment has the potential to prevent and slow down outbreaks across different LMICs, while 336 

eliminating the increased risk of cholera from consuming untreated water. This is in good agreement 337 

with Cohen and Colford who found a significant protection of boiling water against cholera and 338 

several other infectious diseases in similar setting [110]. The mere presence of equipment to treat 339 

water did not seem sufficient to provide significant protection. Appropriate training for correct and 340 
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regular usage may be needed, as Lantagne and Yates previously described in their review, to fully take 341 

advantage of its protective effect [111]. 342 

The lack of a significant effect and the wide observed confidence interval for the either safe or unsafe 343 

storage of water could possibly stem from confounding factors such as where the water was collected 344 

from as suggested by Birmingham et al. in their case-control study [56]. Other important influencing 345 

factors can be whether the water was treated or the container itself was cleaned [14]. We observed that 346 

none of the exposures included for water management sufficiently controlled for these factors. Other 347 

reviews have in fact shown significance of an increased risk of unsafe water management and a 348 

lowered risk of safe water management [10, 106]. However, it seems that interventions focusing on the 349 

impact of safe water management have not been well-described yet and need further research [14].  350 

There were several limitations to our review and meta-analysis that need be considered when 351 

interpreting our results. We only included studies that were peer-reviewed and published in English, 352 

excluding grey literature. Despite our efforts to reduce publication bias through statistical means, there 353 

may still be residual risk of publication bias.  354 

In addition, a considerable degree of heterogeneity among the studies was observed in certain 355 

exposure subcategories and subgroups. Large differences in adjustment for confounders, measurement 356 

of exposure, methods of assessment of cases and controls, and contextual factors such as cultural 357 

differences, location, and time among the identified studies were most likely influential. It is unlikely 358 

that all these differences were adjusted for in the model selection of the meta-analysis. We often 359 

observed a lack of adjustment for confounders. Most studies did not sufficiently control for 360 

influencing effects of other WASH factors as well as other sources of drinking water. Also, the 361 

importance of a well-defined baseline risk of each exposure to assess ORs cannot be neglected in a 362 

study design since they vary across contexts and settings. However, a precise description was often 363 

missing [36, 46, 61, 72]. 364 

Furthermore, the decision to focus only on case-control studies as major evidence on the association 365 

between cholera and water can be found in case-control studies, it inherently results in a certain risk of 366 

recall bias due to its retrospective design. 367 
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Additionally, we observed that most studies either only culturally confirmed a subset of patients or 368 

identified cases solely by definition rather than testing. Therefore, when interpreting these results, a 369 

certain risk of misclassification must be considered given that many cholera cases are asymptomatic 370 

[112-114]. There is a possibility that the risk of bias assessment itself influenced the reported results. 371 

None of the included studies had a low risk of bias rating. 372 

Another factor to consider when interpreting the results is that this review did not differentiate 373 

between endemic and epidemic cholera, which may influence the associations. 374 

The quality assessment was more stringent in comparison to the previous review by Wolfe et al. due to 375 

the use of ROBINS-E, which was specifically designed for non-randomized studies with a particular 376 

focus on exposures [17, 23]. This allowed a more precise identification of studies that appeared to be 377 

of very high risk of bias. In addition, the quality of studies conducted since the previous review [17] 378 

did not noticeably improve. This resulted in the number of studies and exposures included in each 379 

subgroup and subcategory of the meta-analysis to be considerably smaller, which inevitably affects the 380 

power of this study.  381 

In order to have enough studies to conduct the analysis, we used a modified definition of studies that 382 

were overall categorized as some concerns: Instead of just two domains, at least five domains had to 383 

be rated as some concern to be regarded as a high-risk study. Nevertheless, the number of studies that 384 

were classified as having some concerns and the corresponding exposures were not sufficient to allow 385 

a reasonable meta-analysis to be performed. This resulted in the inclusion of studies classified as high 386 

risk, which may has consequently biased our findings. 387 

While these are important considerations to keep in mind when interpreting our results, we believe that 388 

our review provides a more profound understanding of the association between water quality and 389 

cholera. It lays the groundwork for future interventions as well as future research as cholera remains a 390 

major public health threat in LMICs. Simple and relatively inexpensive interventions such as water 391 

treatment have the potential to considerably reduce the burden of cholera infection. Regular water 392 

treatment can play a crucial role in prevention future outbreaks and should be considered as an early 393 

on containment measurement. This is particularly beneficial where water quality is compromised, and 394 

rapid intervention is needed. A holistic approach is essential for future interventions in LMICs: Safe 395 
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water supply infrastructure must be expanded. It must be made accessible to people in LMICs who are 396 

most vulnerable to cholera, in order to avoid recourse to water sources with a high risk of infection. 397 

Moreover, it may not be sufficient to eliminate risk factors and rely on protective factors as 398 

containment measures for outbreaks. Water that is supposedly safely managed may be contaminated 399 

and, rather than being protective, may be a driver of outbreaks. Vended water is gaining importance in 400 

the face of water shortages [104] making it even more crucial to establish clear regulations to prevent 401 

contamination. 402 

 403 

Conclusion 404 

It is critical to continue efforts to prevent and control cholera by improving the access to the safe water 405 

in addition to improving sanitation and hygiene. In addition, it would be necessary to make sure the 406 

so-called improved water sources such as sachet water or bottled water is safe in in LMICs. Relatively 407 

simple and inexpensive early protection measures such as boiling or chlorination      must be 408 

considered to best prevent and contain future cholera outbreaks in LMICs.  409 
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Tables 735 

Table 1. Water related exposures from studies included in the analysis and corresponding JMP 736 

service ladder. 737 

Water 
Category 

JMP Service Ladder Definition 
Examples from Included 

Studies 

Water Source* 

Improved 

Safely 

Managed 

Improved drinking water that is free 

from contamination while being 

accessible on site [23] 

Drinking bottled water, 

municipal tap water, 

sachet water, piped water 

Basic 
Improved water that is collected in 

less than 30 minutes [23] 

Drinking borehole water, 

rainwater, tube well water 

Limited 
Improved water that is collected in 

more than 30 minutes [23] 

Drinking tanker water, 

bladder water, common-

source municipal tap 

water 

Unimproved 
Unimproved water from unprotected 

water sources [23] 

Drinking unprotected 

spring water, unprotected 

well water 

Surface Water 

Unimproved water directly from 

open-sourced water bodies above the 

ground [23] 

Drinking lake water, river 

water, stream water 

Water 

Treatment†  
Treated Water 

Any household treatment used to 

make water drinkable.  

If further specified, then allocated to 

treated by boiling, chlorination, 

presence of treatment materials or 

treatment itself was confirmed by 

observation of a surveyor. If not 

further specified, then allocated to 

generally treated water 

Treating water by e.g., 

boiling or chlorinating 
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Untreated Water 
No household treatment used to 

make water drinkable 
Drinking untreated water 

Water 

Management† 

Safe Water Storage 

Any method of storing potable water 

in containers with a lid, a narrow 

mouth, or a similar design 

Storing water in container 

with lid and/ or container 

with narrow opening 

Unsafe Water Storage 

Any method of storing potable water 

with open containers without a seal 

or lid or with a wide opening 

Storing water in container 

with wide opening and no 

covering; changes in 

colour, odour, and taste of 

water 

* originally named “drinking water” under JMP classification [22] 738 

† categories added to the JMP categories 739 

  740 
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Table 2. Results of the Meta-Analysis. 741 

Indicator of water 

quality 

N 

exposure

s 

Pooled OR 

(95% CI) 

Test of Heterogeneity Wolfe et al. 

(2018) 

OR (95% CI) 

Cochran’

s Q 
τ

2 
I2 

(95% CI) 

Improved water      
1.08 

(0.54–2.15) 

 Safely managed water       

  Sachet water 3 
1.69 

(1.13–2.52) 
3.505 0.000 

0.00 

(0– >99.56) 
 

  Bottled water 5 
0.52 

(0.19–1.36) 
27.126** 1.017 

83.01 

(53.62–97.80) 

0.35 

(0.13–0.96) 

  Tap water 11 
0.92 

(0.41–2.08) 
101.537** 1.670 

90.42 

(79.65–96.84) 
 

 Basic water 5 
0.44 

(0.27–0.69) 
7.460 0.008 

2.49 

(0.00–98.12) 
 

 Limited water 4 
0.84 

(0.14–4.89) 
15.874** 2.773 

88.81 

(58.13–99.33) 
 

Unimproved water 9 
2.91 

(1.21–7.02) 
52.609** 1.437 

88.67 

(71.92–97.49) 

3.42 

(2.47–4.74) 

Surface Water 10 
3.40 

(2.52–4.58) 
9.026 0.000 

0.00 

(0.00–75.97) 

2.27 

(1.07–4.80)a 

Treated water 9 
0.42 

(0.27–0.65) 
19.214* 0.231 

54.21 

(5.73–87.98) 

0.44 

(0.35–0.56) 

  Boiled 7 
0.38 

(0.17–0.84) 
24.006** 0.899 

81.52 

(52.16–96.98) 
 

  Chlorinated 6 
0.37 

(0.17–0.83) 
19.943** 0.736 

78.95 

(40.66–96.66) 
 

  
Observation of 

Treatment Materials 
4 

0.41 

(0.15–1.14) 
12.170** 0.763 

75.00 

(19.80–98.15) 
 

Untreated water 15 
2.51 

(2.03–3.10) 
8.442 0.000 

0.00 

(0.00–34.40) 

3.47 

(2.76–4.35) 

Safe water storage 6 
0.19 

(0.03 – 1.36) 
38.199** 4.754 

87.19 

(63.92–97.62) 

0.55 

(0.39–0.80) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.06.23295113doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.06.23295113
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

56 
 

Unsafe water storage 5 
1.32 

 (0.57 – 3.03) 
20.194** 0.668 

77.76 

(37.99–97.08) 

2.79 

 (2.13–3.65) 

*p < 0.05 742 

**p < 0.01 743 

a categorized as surface water contact by Wolfe et al. [17]  744 
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Figures 745 

Fig 1. PRISMA Flow Diagram. 746 
 747 

748 
 749 
  750 
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Fig 2. Meta-analysis of the associations between the subgroups of safely managed water and 751 
cholera. 752 
 753 
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(B)  755 
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Fig 3. Meta-analysis of the association between basic water and cholera. 757 
 758 

 759 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.06.23295113doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.06.23295113
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Fig 4. Meta-analysis of the associations between unimproved water and cholera as well as 760 
surface water and cholera. 761 
 762 

(A)  763 

(B)  764 
 765 
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Fig 5. Meta-analysis of the associations between water treatment and cholera. 767 
 768 
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