Patterns of Crimean-Congo haemorrhagic fever virus seroprevalence in 1 2 human and livestock populations in northern Tanzania Ellen C Hughes^{1,2,8*}, William de Glanville², Tito Kibona³, Blandina Theophil Mmbaga⁴, 3 Melinda K Rostal⁵, Emanuel Swai⁶, Sarah Cleaveland², Felix Lankester⁷, Brian J Willett⁸, 4 5 Kathryn J Allan² 6 1 University of Liverpool Institute of Infection Veterinary and Ecological Sciences, Department of livestock and 7 One Health, Brownlow Hill, Liverpool, UK; 2 University of Glasgow College of Medical Veterinary and Life 8 Sciences, School of Biodiversity, One Health and Veterinary Medicine, Glasgow, UK; 3 Nelson Mandela African 9 Institute of Science and Technology, Arusha, Tanzania; 4 Kilimanjaro Christian Medical University College, 10 Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania; 5 EcoHealth Alliance, Health and Policy, 11 New York, NY, US; 6 Ministry of Agriculture Livestock and Fisheries, Department of Veterinary Services, 12 Dodoma, Tanzania; 7 Washington State University, Paul G. Allen School for Global Health, Pullman, WA, US; 8 13 MRC-University of Glasgow Centre for Virus Research, Glasgow, UK 14 Corresponding author Ellen C Hughes, ellen.hughes@liverpool.ac.uk, c/o MRC-University of Glasgow 15 Centre for Virus Research, Glasgow, UK 16 Abstract 17 Results from a cross-sectional study of Crimean-Congo haemorrhagic fever virus (CCHFV) in northern Tanzania demonstrated high seroprevalence in humans and ruminant livestock 18 with high levels of spatial heterogeneity. CCHFV may represent an unrecognised human 19 20 health risk in this region and drivers of exposure need further investigation. 21

22 Research Letter

23	Crimean-Congo haemorrhagic fever virus (CCHFV) is a tick-borne orthonairovirus with the
24	potential to cause severe haemorrhagic fever in humans and for onward human-to-human
25	transmission [1]. The virus is a World Health Organization priority pathogen for research and
26	development [2]. A wide range of wild and domestic animals can be infected [3], but CCHFV
27	does not typically cause clinical disease in non-human species [1]. In eastern Africa, since
28	2013 intermittent outbreaks of disease in humans have occurred in Uganda but the
29	epidemiology remains poorly understood [4]. Northern Tanzania has been identified as an
30	area likely to be at high risk of CCHF in humans [5] but no clinical cases have yet been
31	reported in the country.
32	To investigate CCHFV exposure in northern Tanzania, we performed serological testing on
33	human and ruminant livestock sera collected in 2016 using a multilevel sampling frame from
34	351 humans and 7456 livestock in linked households in Arusha and Manyara Regions (Figure
35	1) [6]. Sera were tested using a multi-species ELISA (ID Screen ${ m I\!R}$, IDvet, Grabels, France) and
36	seroprevalence estimated using the <i>Survey</i> package in R [7]. We assessed species-level
37	differences in seroprevalence using a mixed-effects model with household and village as
38	random effects. Patterns of spatial autocorrelation in village-level seroprevalence were
39	investigated using Moran's I statistic and correlation of village-level seroprevalence
40	between species pairs was assessed using Pearson's correlation coefficient (appendix).
41	Overall seroprevalence was high in all livestock species (cattle: 49.6% (95% Confidence
42	interval (CI) 40.0-59.2); goats: 33.8% (95% CI 21.7-47.5); sheep: 27.8% (95% CI 17.0-40.6)
43	(Table 1, Figure 1) , with sheep and goats having significantly lower odds of exposure than
44	cattle (Sheep OR=0.32 (95% Cl 0.27-0.37), p=<0.001; Goats OR=0.45 (95% Cl 0.39-0.51),

45	p=<0.001). Village-level seroprevalence ranged widely to a maximum of > 70% in each of the
46	three livestock species (Table 1). While livestock seroprevalence can vary widely, these
47	values were consistent with those reported elsewhere in East Africa [3]. The finding of a
48	higher seroprevalence in cattle than in sheep and goats is also consistent with other settings
49	in Africa [3] and may reflect differences in host feeding preferences of Hyalomma spp. ticks,
50	considered to be important vectors of CCHFV [1]. However, further work is required to
51	understand the relative contribution of different host species to viral maintenance, as well
52	as their relationship to human infection risk.
53	Overall human seroprevalence was 15.1% (95% Cl 11.7-19.2) but village-level
54	seroprevalence varied widely between study sites (Table 1). Seroprevalence was similar to
55	that reported in health-care-seeking patients in Kenya in 2012 [10] but higher than the 1.2%
56	values reported in community participants elsewhere in Tanzania [8]. However, given the
57	substantial between-village variation observed (Table 1), interpretation of these regional
58	comparisons is challenging.
59	Assessment of spatial autocorrelation via Moran's I statistic (Table 1) showed no evidence of
60	village-level spatial autocorrelation in livestock, suggesting that although context-specific
61	drivers such as husbandry practices and local agro-ecology are likely important, drivers of
62	exposure were not observable at a broader landscape level. In contrast, significant positive
63	spatial autocorrelation was observed in the village-level human seroprevalence (Moran's I
64	statistic 0.43, p=<0.001). Additionally, species-pair correlations showed that village-level
65	human and livestock seroprevalence were not correlated (rho=0.16 (p=0.51)), with high
66	human seroprevalence seen in some low livestock prevalence locations and vice versa
67	(Appendix). This heterogeneity, in combination with the differences in spatial distribution,

68	suggest different possible drivers of exposure in livestock and human populations. For
69	example, the infection prevalence of ticks in the peri-domestic environment may be a more
70	important driver of infection for people than for livestock, which may be exposed across a
71	wide range of environments when moving for grazing and water. However, as discrepancies
72	in sample size may have exaggerated these differences, further linked investigation into
73	human and livestock exposure and patterns of tick infection is required.
74	The high exposure levels to CCHFV in people implies that clinical CCHF is a potentially
75	serious, underdiagnosed health risk in this population and suggests that CCHF should be
76	included as a differential diagnosis for undifferentiated febrile illness in northern Tanzania.
77	However, evidence of human seropositivity in the absence of clinical cases, even where
78	health professionals are familiar with CCHF diagnosis, is common [9, 10]. The causes of
79	disease emergence in such human populations are poorly understood and further research
80	into regions such as northern Tanzania, where the virus is endemic but human disease has
81	not been reported, is critical to understanding human disease risk.
82	Three key findings arise from this study: (a) CCHFV is circulating widely in both humans and
83	livestock across northern Tanzania: (b) CCHFV seroprevalence shows high spatial
84	heterogeneity and further investigations are needed to understand drivers of exposure; (c)
85	high human seroprevalence demonstrates widespread exposure of people to the virus and
86	suggests that CCHF should be included as a differential diagnosis for febrile illness in this
87	region.

88 Conflict of interest

89 The authors declare no conflicts of interest.

90 References

91	1.	Bente, D.A., et al., Crimean-Congo hemorrhagic fever: history, epidemiology,				
92		pathogenesis, clinical syndrome and genetic diversity. Antiviral Res, 2013. 100 (1): p.				
93		159-89.				
94	2.	WHO, W.H.O. Prioritizing diseases for research and development in emergency				
95		contexts. 2022 [cited 2022 26/02/2022]; Available from:				
96		https://www.who.int/activities/prioritizing-diseases-for-research-and-development-				
97		<u>in-emergency-contexts</u> .				
98	3.	Spengler, J.R., E. Bergeron, and P.E. Rollin, Seroepidemiological Studies of Crimean-				
99		Congo Hemorrhagic Fever Virus in Domestic and Wild Animals. PLoS Negl Trop Dis,				
100		2016. 10 (1): p. e0004210.				
101	4.	Balinandi, S., et al., Serological and molecular study of Crimean-Congo Hemorrhagic				
102		Fever Virus in cattle from selected districts in Uganda. Journal of virological methods,				
103		2021. 290 : p. 114075-114075.				
104	5.	Messina, J.P., et al., The global distribution of Crimean-Congo hemorrhagic fever.				
105		Trans R Soc Trop Med Hyg, 2015. 109 (8): p. 503-13.				
106	6.	Herzog, C.M., et al., Pastoral production is associated with increased peste des petits				
107		ruminants seroprevalence in northern Tanzania across sheep, goats and cattle.				
108		Epidemiol Infect, 2019. 147 : p. e242.				
109	7.	Lumley, T., survey: analysis of complex survey samples, in R package version 4.0.				
110		2004.				
111	8.	Rugarabamu, S., et al., Seroprevalence and associated risk factors of selected				
112		zoonotic viral hemorrhagic fevers in Tanzania. International Journal of Infectious				
113		Diseases, 2021. 109 : p. 174-181.				

- 114 9. Hoogstraal, The Epidemiology of tick-borne CCHF in Asia Europe and Africa. 1979.
- 115 10. Christova, I., et al., *High seroprevalence for Crimean-Congo haemorrhagic fever virus*
- in ruminants in the absence of reported human cases in many regions of Bulgaria.
- 117 Exp Appl Acarol, 2018. **75**(2): p. 227-234.
- 118
- 119

Table 1: Seroprevalence of Crimean-Congo haemorrhagic fever virus in cattle, sheep, goats and humans in northern Tanzania. Number tested, overall seroprevalence, seroprevalence range by village and Moran's I statistic for livestock and human serum samples collected in northern Tanzania in 2016 and tested for antibodies to Crimean-Congo haemorrhagic fever virus. Moran's I statistic and associated p value are shown for the village level.

Species	Tested (N)	Seroprevalence (95% CI)	Seroprevalence range by village (95% CI)	Moran's I statistic (p value)
openeo				Village
Cattle	3015	49.6 (40.0-59.2)	5.3 (1.2-9.4) <i>to</i> 76.6 (70.3-82.8)	-0.09 (p=0.60)
Sheep	2059	27.8 (17.0-40.6)	0.0 (0-3.9) <i>to</i> 70.3 (55.5-85.0)	-0.09 (p=0.57)
Goats	2382	33.8 (21.7-47.5)	0.0 (0-3.9) <i>to</i> 70.3 (55.5-85.0)	-0.10 (p=0.61)
Human	351	15.1 (8.5 – 23.8)	0.0 (0.0-16.1) <i>to</i> 50 (30.7-69.2)	0.43 (p=0.001)

Figure 1: Seroprevalence of Crimean-Congo haemorrhagic fever virus for a) human, b) cattle, c) sheep and d) goats in villages in Arusha and Manyara

regions,

Tanzania

northern