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KEY POINTS 
 
Question 
 
Can machine learning help identify undiagnosed patients with Acute Hepatic Porphyria (AHP), a 
group of rare diseases? 
 
Findings 
 
Using electronic health records (EHR) data from two centers we developed models to predict: 1) 
who will be referred for AHP testing, and 2) who will test positive. The best models achieved 89-
93% accuracy on the test set. These models appeared capable of recognizing 71% of the cases 
earlier than their true diagnosis date, reducing diagnostic delays by an average of 1.2 years. 
 
Meaning  
 
Machine learning models trained using EHR data can help reduce diagnostic delays in rare 
diseases like AHP.  



 

 

 

 

ABSTRACT 
 
Importance 
 
Acute Hepatic Porphyria (AHP) is a group of rare but treatable conditions associated with 
diagnostic delays of fifteen years on average. The advent of electronic health records (EHR) 
data and machine learning (ML) may improve the timely recognition of rare diseases like AHP. 
However, prediction models can be difficult to train given the limited case numbers, unstructured 
EHR data, and selection biases intrinsic to healthcare delivery. 
 
Objective 
 
To train and characterize models for identifying patients with AHP. 
 
Design, Setting, and Participants 
 
This diagnostic study used structured and notes-based EHR data from two centers at the 
University of California, UCSF (2012-2022) and UCLA (2019-2022). The data were split into two 
cohorts (referral, diagnosis) and used to develop models that predict: 1) who will be referred for 
testing of acute porphyria, amongst those who presented with abdominal pain (a cardinal 
symptom of AHP), and 2) who will test positive, amongst those referred. The referral cohort 
consisted of 747 patients referred for testing and 99,849 contemporaneous patients who were 
not. The diagnosis cohort consisted of 72 confirmed AHP cases and 347 patients who tested 
negative. Cases were female predominant and 6-75 years old at the time of diagnosis. 
Candidate models used a range of architectures. Feature selection was semi-automated and 
incorporated publicly available data from knowledge graphs. 
 
Main Outcomes and Measures 
 
F-score on an outcome-stratified test set 
 
Results 
 
The best center-specific referral models achieved an F-score of 86-91%. The best diagnosis 
model achieved an F-score of 92%. To further test our model, we contacted 372 current patients 
who lack an AHP diagnosis but were predicted by our models as potentially having it (≥ 10% 
probability of referral, ≥ 50% of testing positive). However, we were only able to recruit 10 of 
these patients for biochemical testing, all of whom were negative. Nonetheless, post hoc 
evaluations suggested that these models could identify 71% of cases earlier than their diagnosis 
date, saving 1.2 years. 
 
Conclusions and Relevance 
 
ML can reduce diagnostic delays in AHP and other rare diseases. Robust recruitment strategies 
and multicenter coordination will be needed to validate these models before they can be 
deployed.  



 

 

 

 

INTRODUCTION 
 
The paradox of rare diseases is that they collectively affect as much as 10% of the population 
yet are individually uncommon, with a prevalence under 1:20001. Diagnosing them requires 
significant expertise, which is typically a limiting factor. Patients with rare diseases can suffer for 
years or decades without a diagnosis, leading to unnecessary tests, ineffective (or even 
harmful) treatments, lost quality of life, underemployment, and other costs affecting individuals 
and society. 
 
An example of this is Acute Hepatic Porphyria (AHP), a group of rare but treatable, inherited 
diseases of heme biosynthesis. AHP presents with episodes of severe pain that result from the 
abnormal accumulation of delta-aminolevulinic acid (d-ALA) and porphobilinogen (PBG)2. AHP 
attacks are episodes of neurologic damage, and patients with repeated attacks are at risk for 
complications affecting the nervous system, liver, and kidneys3–5. The prevalence of 
symptomatic AHP is roughly 1:100,0006,7, contributing to average diagnostic delays of 15 years 
following symptom onset 8. Thus, many AHP patients have high chronic disease burden and 
poor quality of life9,10. However, the FDA approval of givosiran now provides a prophylactic 
option for AHP patients with recurrent attacks. An important next step is to reduce diagnostic 
delays in these patients so they may manage AHP earlier and potentially prevent downstream 
morbidity and even mortality9. 
 
Advances in machine learning (ML) and methods for using electronic health records (EHR) data 
offer an alternative to the standard of care, which relies on local expertise to make these 
diagnoses. EHRs contain detailed information on the patient journey, including symptoms, 
(mis)diagnoses, and attempted treatments prior to a successful diagnosis. These data could 
help train ML models to identify these patients earlier11.  
 
Despite this promise, building accurate and generalizable models for patient identification 
remains difficult. The low prevalence of these patients results in class imbalance, where models 
have too few cases and too many controls for optimal learning, particularly in the face of many 
predictive features. Moreover, EHR data accumulates over time as patients navigate through 
health systems in ways that influence their chances of being correctly diagnosed. Thus, a 
careful attention to time (to prevent models from using future information to predict the past) and 
to possible selection biases along the patient journey is critical to avoid errors that have affected 
prior efforts12–14. 
 
Here we developed an ML approach to reduce diagnostic delays in AHP. Using the EHR data 
from two medical centers (UCSF, UCLA), we trained models to sequentially predict the 
likelihood that a patient would eventually be tested for AHP, and the likelihood that they would 
test positive. We evaluated the models on a hold-out test set and characterized their potential 
impact on the patient journey. Lastly, we attempted a prospective validation of these models by 
recruiting and biochemically testing current patients who were predicted as having AHP. 
 
METHODS 
 
The study was approved by the institutional review boards at UCSF (20-31754) and UCLA (21-
001260). 
 
Cohort selection 
 



 

 

 

 

We constructed a causal model of the patient journey towards a new diagnosis (Figure 1). It 
revealed that this journey could be subdivided into two key “selection” steps: 1) the decision to 
refer a patient for AHP testing, and 2) confirmation of a diagnosis. Importantly, these steps were 
associated with predictors that were likely to be captured within EHR systems. However, the 
predictors were thought to be different for each step. For example, predictors of a clinician’s 
likelihood of considering an AHP diagnosis and/or of patients encountering such a clinician may 
be different from the predictors that dictate the AHP diagnosis itself. We decided to model each 
step using different cohorts, one subject to the decision to refer (“referral cohort”), and the other 
with a chance of testing positive (“diagnosis cohort”).  
 
We queried structured EHR databases (UCSF, 2012-2022; UCLA, 2019-2022) to identify cases 
and controls for each cohort. Referral cases were identified based on patients aged 10-65 with 
an encounter in the porphyria clinic (UCSF) or a completed AHP test (UCLA). Referral controls 
were patients with at least one clinical encounter for abdominal pain. This is the most common 
symptom of AHP attacks, and patients meeting this definition were conceptualized as having a 
non-zero probability of being tested. 
 
Diagnosis cases were patients with AHP. These cases came from a disease registry (UCSF) 
and following manual review of patient records (UCLA). All cases had urinary d-ALA or PBG 
levels greater than twice the laboratory upper limit of normal, with compatible symptoms at the 
time of testing. At UCLA, potential cases subject to manual review were identified from the EHR 
database based on having one of the following elements: an AHP ICD code, a hemin order, or a 
urine d-ALA or PBG lab order. Cases were all confirmed by clinician experts on the study team. 
Diagnosis controls were patients who were either seen in the porphyria clinic (UCSF) or 
completed adequate biochemical testing at the time of compatible symptoms (UCLA), and were 
confirmed as a non-case. 
 
Data preparation 
 
We harmonized EHR data from both centers to facilitate downstream modeling. These data 
consisted of standard structured data (diagnosis, procedures, medications, laboratory tests, 
demographics, encounters, providers) and machine-redacted notes15. We used cTAKES16 to 
extract named entities to serve as potential predictive features. We also used domain 
knowledge and regular expressions to generate additional text-based features. We 
preprocessed the structured data to generate one-hot-encoded features (Supplemental 
Methods). 
 
We generated two datasets corresponding to the referral and diagnosis cohorts as described 
above. We then subject the data to a time-based filter to remove all future elements that would 
not be available to a deployed model at inference time. For the referral model, we removed all 
data elements that occurred on or after the date of referral to the UCSF porphyria clinic, or 
occurring on or after the date that a UCLA patient had a structured data element of interest (ICD 
code, hemin order, urine d-ALA/PBG lab order). Of note, data from the date of referral was also 
excluded to prevent models from predicting referrals using the information in concurrently 
documented “assessment and plan” sections, which would not be useful in practice. For the 
diagnosis model, we removed all data elements occurring on or after the date of the first 
biochemical evaluation of AHP. This was done to prevent information leakage (e.g. 
documentation indicating that the diagnosis was already known to the patient or clinician). 
 
Feature selection 
 



 

 

 

 

The initial feature space included standard structured data and one-hot-encoded features 
derived from notes. The latter were generated using automated methods (Supplemental 
Methods) as well as manually, using domain knowledge. For each dataset (referral, diagnosis), 
we selected only those features meeting these criteria: 1) a Wald p-value < 0.05 on a single 
logistic regression model, and 2) features directly linked to AHP in knowledge graphs. We used 
two knowledge graphs (KGs): SemMedDB17, a database of information sourced from PubMed 
abstracts, and a custom knowledge graph generated from the Genetic and Rare Diseases 
Information Center1. The latter was generated using Graphvite18, which links entities to AHP if 
they are described as being associated with it. EHR-based features were retained if they 
matched a relevant KG-based entity based on shared UMLS concepts19.  
 
Following this approach, we began with 25,320 candidate features, applied p-value based 
selection to reduce to 3,316 features, and used KGs to finalize 138 features. 
 
Model training, internal validation 
 
We used each dataset (referral, diagnosis) to define a different prediction task: 1) who will be 
referred for testing, among those with some chance of being referred (i.e. an abdominal pain 
encounter), and 2) who will test positive, among those who underwent testing. We used scikit-
learn20 and autoGluon21 to train and evaluate 87 model architectures (Supplemental Methods). 
Each dataset underwent outcome-stratified splitting, with 70% used for training and 5-fold cross-
validation, and 30% for testing. 
 
For referral prediction, we compared results using a combined dataset as well as using separate 
referral models from each center. We only generated one diagnosis model given the paucity of 
AHP cases. The models achieving the highest F1 score on the test set were retrained on the full 
dataset prior to downstream tasks.  
 
Prospective evaluation 
 
We applied the referral and diagnosis models to recently seen patients at UCSF or UCLA (≥1 
encounter in 2019-2022) meeting the following additional criteria: 1) aged 18-65, 2) opted into 
research, 3) having a patient-provider messaging account. We identified all patients with ≥ 10% 
referral probability and ≥ 50% diagnosis probability. These thresholds were selected to account 
for the low probability of referrals for rare conditions. We calculated the expected number of new 
diagnoses, under the assumption of a 20% response rate, to confirm non-futility of a potential 
prospective evaluation. We then utilized patient recruitment services at UCSF and UCLA to 
solicit patient participation in a prospective test of model accuracy. Patients were solicited via 
electronic messaging and mail. Consented participants submitted a urine specimen for d-ALA 
and PBG testing.  
 
Model characterization 
 
We applied the finalized models to data from the UCSF AHP cases and evaluated if they could 
have identified any patients earlier than their actual diagnosis year, established by manual 
review. We retrospectively applied the model to each year of EHR data (2012-2022) and used 
data available at the end of that year to calculate the running probability of a positive diagnosis. 
We counted as a model diagnosis any patient meeting the same probability thresholds as the 
prospective study. We tabulated cases that were model-identifiable ≥ 1 years prior to their 
actual diagnosis, and quantified the mean years saved over the full cohort.  
 



 

 

 

 

RESULTS  
 
We defined two cohorts to train sequential models that estimate 1) the probability that a patient 
will be referred for AHP testing, among those with a reasonable chance of being referred 
(“referral cohort”), and 2) the probability that a patient will test positive for AHP, among those 
who underwent definitive testing (“diagnosis cohort”). The referral cohort, corresponding to all 
patients with at least one clinical encounter for abdominal pain (a common symptom of AHP), 
consisted of 100,596 patients. 747 (381 from UCSF; 366 from UCLA) were “referral cases”, that 
is, patients who were referred for testing. The remainder were “referral controls” (29,963 at 
UCSF; 69,886 at UCLA). The diagnosis cohort consisted of 419 patients, with 72 confirmed 
AHP cases (49 from UCSF, 23 from UCLA), and 347 controls (332 from UCSF, 15 from UCLA).  
 
Of note, the number of referral cases (747) was larger than the size of the diagnosis cohort 
(419) because many patients who were referred for testing did not complete it. In this analysis, 
we assumed that the population of patients who complied with this clinical recommendation for 
testing was a representative subset of the overall patient pool referred for testing. In other 
words, patients with an underlying (but probably unknown) diagnosis of AHP were neither more 
nor less likely to complete a confirmatory diagnostic test. This assumption was thought to be 
reasonable on a priori grounds, and enabled a more straightforward application of these models 
at inference time. 
 
Our AHP cohort was enriched for non-Hispanic white females, with most diagnosed with AIP in 
their 20s or 30s. The sub-cohorts from UCSF and UCLA showed minor differences in clinical 
features (Table 1). For example, 29% at UCSF had a positive family history of AHP, compared 
to 13% at UCLA. These differences were expected given that UCSF is a tertiary-care center that 
receives many outside referrals. By contrast, UCLA has a broader primary care base, and thus 
more within system diagnoses of AHP.  
 
We created separate referral machine learning models for each center, to account for 
differences in referral patterns by allowing for center-specific feature weights. We created a 
single diagnosis model to reduce overfitting and maximize predictive power. 
 
Model performance 
 
For each task, we trained multiple ML models and evaluated them on an outcome-stratified test 
set. We selected the models achieving the highest F-score for downstream analysis. The 
highest performing models achieved an F-Score of 86% and 91% for predicting referrals, and an 
F-score of 92% (Table 2). An analysis of the most important features for the diagnosis model 
revealed a constellation of terms with a plausible connection to AHP (eFigure 1).  
 
Prospective evaluation 
 
We used the finalized model architectures to predict new cases from the pool of undiagnosed 
patients (referral control group) that had recently been seen at UCSF or UCLA (2019-2022). We 
identified 406 patients with a referral probability of ≥ 10% and a diagnosis probability ≥ 50% 
(eFigure 2). We selected the 10% cutoff heuristically to balance two goals: 1) maximizing the 
power of a potential study to reject a null hypothesis corresponding to an unpredictive model, 
i.e. one that predicts all patients as having a 7/10,000 chance of AHP (the empiric probability in 
referral cohort), and 2) limiting model extrapolation over patients with essentially no chance of 
ever being tested for this condition. Within this group, and assuming a 20% probability of 



 

 

 

 

participation, we expected to identify 14 new cases (95% CI 7-24). As such, we decided to 
proceed with this prospective study. 
 
After engaging subject recruitment services, we identified 372 patients meeting the following 
additional criteria: 1) alive and aged 18-65 as of the start of recruitment, 2) opted into research, 
3) accessible via the myChart patient-provider portal (Figure 3). Following several rounds of 
recruitment, we consented 12 patients. 10 patients completed a confirmatory biochemical test, 
corresponding to a 2.7% participation rate. All patients tested negative. 
 
Model characterization 
 
We assessed whether our models could have diagnosed any AHP case earlier than their true 
diagnosis date. We retrospectively applied our referral and diagnosis models to the available 
patient data as it existed at the end of each calendar year within the database, and calculated 
running probabilities of referral and diagnosis. We identified the year that a patient exceeded a 
referral probability of 10% and diagnosis probability of 50%, and compared it to their true 
diagnosis year by manual review (eFigure 3). We found that 71% of our cohort could have been 
diagnosed earlier than their true diagnosis year. The average reduction in the diagnostic delays 
of the total cohort was 1.2 years. 
 
DISCUSSION 
 
We developed a new ML-based solution to reduce diagnostic delays in patients with rare 
diseases. Our strategy involved multiple steps. We used a causal model to identify gating steps 
along the patient journey and inform a modeling approach that avoids selection biases. We 
used cases of confirmed AHP from two academic medical centers to train models to 
sequentially predict patients who will be referred for a diagnostic testing as well as who will test 
positive, amongst those who are tested. Our models were highly accurate on internal validation, 
likely reflecting the use of automated ML and KG-enhanced feature engineering. Although our 
prospective validation effort was unsuccessful, it was to some extent expected for a rare 
disease. Moreover, it does not diminish the general conclusion that EHR data can play an 
important role in training algorithms to augment clinical decision making, enhance efficiencies 
within health systems, and improve patient outcomes. Indeed we found that 71% of our AHP 
cohort could be identified earlier than their actual diagnosis date, with a mean reduction of 1.2 
years. Given the high burden of disease in symptomatic AHP patients and the availability of 
preventive treatment for acute attacks, such a reduction in diagnostic delays is likely to result in 
improved patient outcomes. 
 
Our work contributes to the field of rare disease prediction by addressing weaknesses in the 
literature. The most direct precursor to our work is from Cohen et al12, who also developed an 
AHP prediction model using EHR data. Their method was limited by the lack of time-based 
preprocessing to prevent models from using “future” data elements (e.g. AHP treatments) to 
predict the “past” (e.g. an AHP diagnosis). This motivated our chosen approach. Many other 
similar efforts for other diseases have been published13,22–26, but none incorporate the full range 
of methods used here, including 1) notes-based features, 2) using domain knowledge and KGs 
to improve feature selection, 3) a two-stage modeling approach to avoid selection bias and 
model extrapolation, 4) using automated ML to optimize model performance, and 5) 
characterizing the model’s potential impact on the patient journey. This is the only rare disease 
prediction model we are aware of that has been subjected to a prospective test. Overall, we 
believe that this work sets a new, higher bar for the field of rare disease prediction and EHR-
enabled research.  



 

 

 

 

 
One limitation of our models is that they are unable to identify any patient with a near 0 
probability of being diagnosed within a health system. This observation is related to the positivity 
assumption in causal inference27. Multiple social determinants of health may explain why a 
patient may never receive a within-system diagnosis: 1) the inability to afford the many visits 
needed to be recognized as a case (itself a potential consequence of unrecognized AHP), 2) 
concerns over being diagnosed with a hereditary and incurable condition, and 3) social 
circumstances that make patients less likely to consistently seek care at a single system. Other 
reasons could be provider related. AHP commonly presents in younger women, whose 
complaints may be written off and misdiagnosed. Although our models trained on a relatively 
diverse dataset, both are academic centers with a significant expertise, itself a gating factor in 
the patient journey (Figure 1).  
 
Another limitation of this study was our inability to prospectively validate it. This reflected many 
factors, including 1) the rarity of AHP and thus the rarity of undiagnosed patients at 
UCSF/UCLA, and 2) institutional limitations against over-contacting patients for study 
recruitment. Future studies involving community systems and/or integrated networks with more 
longitudinal capture of the patient journey may address help these limitations and increase the 
chances of a successful validation.  
 
In conclusion, we developed, characterized, and internally validated a novel machine learning 
approach to reduce diagnostic delays in AHP. Future work is needed to enhance these models 
over larger and more diverse datasets, prospectively validate its performance on undiagnosed 
patients, develop it into a decision support tool, and extend this approach to other diseases. 
 
Funding: Research reported in this publication was supported by the National Library of 
Medicine of the National Institutes of Health under Award Number K99LM014099, the National 
Center for Advancing Translational Sciences, National Institutes of Health, through UCSF-CTSI 
Grant Number UL1 TR001872, as well as the UCLA Clinical and Translational Science Institute 
through grant number UL1TR001881. Additional support was provided by the UCSF Division of 
Gastroenterology, the UCSF Bakar Computational Health Sciences Institute, and Alnylam 
Pharmaceuticals, Inc. Its contents are solely the responsibility of the authors and do not 
necessarily represent the official views of the NIH. 
 
Potential Competing Interests: VAR receives research support from Alnylam, Takeda, Merck, 
Genentech, Blueprint Medicines, Stryker, Mitsubishi Tanabe, and Janssen. BW receives 
research support from Alnylam and Mitsubishi Tanabe, and honoraria for participation in 
advisory boards from Alnylam, Mitsubishi-Tanabe, and Disc Medicine. KA reports receiving 
consulting fees, advisory board fees and grants to the university from Alnylam Pharmaceuticals, 
Recordati Rare Diseases, Mitsubishi Tanabe Pharma America and Disc Medicine. RD, SM, NC, 
and RD are employees of Alnylam Inc, and JA was an employee of Alnylam Inc at the time of 
his contribution to this manuscript. All authors declare that no actual competing interests exist. 
 
Acknowledgements: The authors thank the contracting offices and Clinical and Translational 
Science Institutes of UCSF and UCLA for their support of this study. They thank the UCSF 
Academic Research Services and Bakar Computational Health Sciences Institute teams for 
supporting the computational needs of this study. 
 
Data Sharing: The raw data used in this manuscript is available from UCSF and UCLA 
following the execution of a data use agreement. The analytical code is available at 
https://github.com/rwelab/AHPPrediction.  



 

 

 

 

 
 
  



 

 

 

 

FIGURES 
 

 
 
Figure 1: A causal model of the AHP patient journey to a confirmed diagnosis. The 
probability of a within-system new diagnosis of AHP is influenced by multiple factors, including 
the number and nature of patient presentations, local expertise of providers, availability of 
specialists and/or lab testing, and patient’s ability and desire to follow clinical recommendations. 
We identified two selection “bottlenecks”: the probability that a patient will be identified by a 
given provider as needing a specialty evaluation for possible AHP, and the probability that a 
tested patient will be confirmed as a new case (blue font). Each of these bottlenecks were 
separately modeled, to reduce bias and improve the accuracy of downstream predictions. 
 

 
Figure 2: An overview of the ML pipeline. EHR data from UCSF and UCLA were harmonized 
to generate Referral and Diagnosis cohorts. The structured data from these patients underwent 
preprocessing and normalization, and the unstructured data were partially structured using 
cTAKES and regular expressions. These data were normalized and harmonized. We used data-
driven and KG-based feature selection techniques to reduce the feature space from 25,320 
candidate features to 138 final features. These were used to train, perform model selection 
using cross validation, and finalize models to be used for prospective validation. 
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Figure 3: Summary of the prospective study and its outcomes. 451 patients were identified 
by the algorithm, of which 372 could be contacted for potential study enrollment. Enrollment was 
carried out in parallel in both participating medical centers. 10 subjects submitted specimens, all 
of which were negative. 
  



 

 

 

 

 
TABLES 
 
Characteristics Case Control 

 
Total 
(N=72) 

UCSF 
Case  
(N=49) 

UCLA 
Case 
 (N=23) 

Total 
(N=347) 

UCSF 
Control 
(N=332) 

UCLA 
Control 
 (N=15) 

Age 0-20 5 5 0 58 58 0 
Age 20-40 34 22 12 113 108 5 
Age 40-60 17 11 6 112 106 6 
Age 60+ 16 11 5 64 60 4 
Age        Min 6 6 22 1 1 22 
Age        Max 74 74 73 88 88 77 

Female sex no.    
(%) 

81 78 87 48 46 80 

Body-mass 
index 25.7±3.7 23.9±1.2 27.4±6.3  28.6±12.6 29.2±18.0 28.1±7.3 

Hispanic 
Ethnicity 6.9 8.1 6.2 15.27 14.15 4.1 

Non-Hispanic 
Race       
--White 63 67 52 54 53 80 
--Black 0.4 0.2 0.1 0.3 0.1 0.1 
--Asian 0.1 0.8 0 0.2 0.2 0 
--Other 38 32 48 46 47 20 
% with acute 
recurrent 
abdominal pain 

47 41 61 30 28 60 

% with a 
positive family 
history 

39 35 48 5 4 27 

% with a 
psychiatric 
diagnosis 

114 8 28 6 5 20 

% with Acute 
intermittent 
porphyria 

83  88  74 - - - 

% with 
Hereditary 
coproporphyria 

10 8 13 - - - 

% with 
Variegate 
Porphyria 

7 4 13 - - - 

 
Table 1: Demographics and clinical characteristics of the cases and controls from the 
diagnosis cohort. Cases correspond to patients with AHP. Controls correspond to patients 



 

 

 

 

who were tested and were deemed definitively negative for AHP. Percentages were rounded to 
the nearest whole number except in cases where the proportion was near 0.  
 
  



 

 

 

 

 

Task Model F-
Score 

Accurac
y 

Sensitivi
ty 

Specifici
ty 

PP
V 

UCSF 
Referral  

Ada Boost  91  94 92  85 84 

UCLA 
Referral 

Logistic 
Regressio
n  

86  89 91  79  86  

Diagnosi
s Model 

Logistic 
Regressio
n  

92  93  96 90 92  

Table 2: Performance of the best machine learning models for the referral and diagnosis 
tasks. All numbers correspond to percentages rounded to the nearest whole number. 
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