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Abstract 

        

Purpose: Genetic variants in complement genes are associated with age-related macular 

degeneration (AMD). However, many rare variants have been identified in these genes, but have 

an unknown significance, and their impact on protein function and structure is still unknown. We 

set out to address this issue by evaluating the spatial placement and impact on protein structureof 

these variants by developing an analytical pipeline and applying it to the International AMD 

Genomics Consortium (IAMDGC) dataset (16,144 AMD cases, 17,832 controls). 

Methods: The IAMDGC dataset was imputed using the Haplotype Reference Consortium 

(HRC), leading to an improvement of over 30% more imputed variants, over the original 1000 

Genomes imputation. Variants were extracted for the CFH, CFI, CFB, C9, and C3 genes, and 

filtered for missense variants in solved protein structures. We evaluated these variants as to their 

placement in the three-dimensional structure of the protein (i.e. spatial proximity in the protein), 

as well as AMD association. We applied several pipelines to a) calculate spatial proximity to 

known AMD variants versus gnomAD variants, b) assess a variant’s likelihood of causing 

protein destabilization via calculation of predicted free energy change (ddG) using Rosetta, and 

c) whole gene-based testing to test for statistical associations. Gene-based testing using seqMeta 

was performed using a) all variants b) variants near known AMD variants or c) with a ddG >|2|. 

Further, we applied a structural kernel adaptation of SKAT testing (POKEMON) to confirm the 

association of spatial distributions of missense variants to AMD. Finally, we used logistic 

regression on known AMD variants in CFI to identify variants leading to >50% reduction in 

protein expression from known AMD patient carriers of CFI variants compared to wild type (as 

determined by in vitro experiments) to determine the pipeline’s robustness in identifying AMD-

relevant variants. These results were compared to functional impact scores, ie CADD values > 

10, which indicate if a variant may have a large functional impact genomewide, to determine if 

our metrics have better discriminative power than existing variant assessment methods. Once our 

pipeline had been validated, we then performed a priori selection of variants using this pipeline 

methodology, and tested AMD patient cell lines that carried those selected variants from the 

EUGENDA cohort (n=34). We investigated complement pathway protein expression in vitro, 

looking at multiple components of the complement factor pathway in patient carriers of 

bioinformatically identified variants.  

Results: Multiple variants were found with a ddG>|2| in each complement gene investigated. 

Gene-based tests using known and novel missense variants identified significant associations of 

the C3, C9, CFB, and CFH genes with AMD risk after controlling for age and sex (P=3.22x10-

5;7.58x10-6;2.1x10-3;1.2x10-31). ddG filtering and SKAT-O tests indicate that missense variants 

that are predicted to destabilize the protein, in both CFI and CFH, are associated with AMD 

(P=CFH:0.05, CFI:0.01, threshold of 0.05 significance). Our structural kernel approach 

identified spatial associations for AMD risk within the protein structures for C3, C9, CFB, CFH, 

and CFI at a nominal p-value of 0.05. Both ddG and CADD scores were predictive of reduced 

CFI protein expression, with ROC curve analyses indicating ddG is a better predictor (AUCs of 

0.76 and 0.69, respectively). A priori in vitro analysis of variants in all complement factor genes 
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indicated that several variants identified via bioinformatics programs PathProx/POKEMON in 

our pipeline via in vitro experiments caused significant change  in complement protein 

expression (P=0.04) in actual patient carriers of those variants, via ELISA testing of proteins in 

the complement factor pathway, and were previously unknown to contribute to AMD 

pathogenesis.  

Conclusion: We demonstrate for the first time that missense variants in complement genes 

cluster together spatially and are associated with AMD case/control status. Using this method, 

we can identify CFI and CFH variants of previously unknown significance that are predicted to 

destabilize the proteins. These variants, both in and outside spatial clusters, can predict in-vitro 

tested CFI protein expression changes, and we hypothesize the same is true for CFH. A priori 

identification of variants that impact gene expression allow for classification for previously 

classified as VUS.  Further investigation is needed to validate the models for additional variants 

and to be applied to all AMD-associated genes. 

 

 

Introduction 

        

Changes to protein structures are a common cause of Mendelian disease, and are often 

found to influence risk of complex diseases, including age-related macular degeneration 

(AMD)1. Traditional computational methodologies for scoring protein structure impact are done 

via modeling known protein structures and identifying their predicted impact based on known 

functional variants (e.g. Polyphen/Sift2). These predictions are most accurate when a variant in 

question is located in a high impact area of the protein and involve a dramatic amino acid 

substitution or deletion, such as variants located in an alpha helix or beta sheet3–5. However, the 

impact of more minor changes, such as missense mutations in unstructured regions or with a less 

dramatic amino acid substitution, on protein function is less clear and has proven difficult to 

evaluate. One approach to address this issue is to calculate free energy change, but these are 

computationally intensive6 ,and are not generally performed on a large scale, though some 

thermodynamic changes can be found in the database ProTherm7. In addition, only solved 

protein structures from the Protein Data Bank (PDB)8 can be utilized for computational 

evaluation of both minor and major changes. As of 2020, 14,028 solved structures for proteins 

can be found in the PDB, although non experimentally and predicted structures can be created 

with modeling methods like Swiss-Model utilizing the Expasy webserver9. In 2021, AlphaFold 

was released to the public, allowing for most structures to be solved with great accuracy due to 

the machine learning algorithm, leading to the fact that most structures are available for use to 

evaluate changes (Jumper, 2021).  In addition, the identification of a method that can reliably 

identify those factors that impact stability that then impact protein function, especially in disease, 

has not been determined, despite the solved protein structures available in the PDB and through 

AlphaFold. 

 The complement factor pathway is well known to play a role in AMD pathogenesis10 . 

Variation in multiple genes in the complement factor pathway (e.g. CFH, C9, C3, CFB)  are 
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known risk loci, as well as possible drug therapy targets. The International Age-related Macular 

Degeneration Genomics Consortium (IAMDGC) identified and confirmed variants in the 

complement factor genes that influence AMD10, and further analyses have identified rare 

variants in the complement factor genes that influence protein expression and function11–20 

However, it is unknown if all variants in those genes contribute to pathogenesis of AMD, or how 

those variants impact protein expression and function. Classification of variants of unknown 

significance (VUS) has clinical impact, and it is unclear if rare variants, which may not be 

powered for detection  in a GWAS, influence AMD pathogenesis, or if there are criteria that we 

can use to identify only those variants that influence protein expression or structure.  

In addition, many of variants in the other 29  previously AMD-associated loci have not well 

evaluated as to protein expression in a large scale. Further, it is unknown if the functional 

mechanisms of the rare variants in the complement genes, influence AMD pathogenes in the 

same way as the well-known common variants (e.g. Y402H in CFH). These variants may not 

influence protein structure in obvious ways, but rather cause minor distortions to binding sites, 

pockets of influence (like in gating areas or ion channels), and stability in more subtle ways. 

Identifying likely functional variants from those of unknown significance in both the 

complement genes and the other AMD genes would allow for further identification of important 

areas of the protein for drug targets and therapy. Leveraging protein spatial proximity to known 

AMD variants, like the 52 already known variants10, would allow classification of variants as 

detrimental or neutral. 

Once variants affecting protein structure can be identified computationally, the identification of 

variants that influence protein expression in actual bench experiments can be performed. 

Variants that influence CFI expression have been detailed previously15, and we can validate our 

computational identification by looking at protein expression in previously tested variants.. We 

aim to perform the “holy grail” of variant testing, to winnow down large scale listings to variants 

than can be computationally predicted and experimentally validated. Using this pipeline, we 

aimed to see if we could replicate identification of variants where we already knew their impact 

on protein expression, and then move one step further to predict which novel variants, not 

previously associated with AMD pathogenesis, would have a similar effect on protein expression 

in the complement factor pathway. This would be a proof-of-concept whether we can a priori 

identify variants computationally as likely damaging that affect protein expression 

experimentally in vitro. 

 We hypothesize that the spatial proximity within a protein between variants of known 

significance and rare variants of unknown significance can help predict the functionality of these 

uncharacterized variants.We tested these variants’ impact on protein structure and function using 

the genotyped data of the complement factor genes in AMD. We utilize PathProx21,22 to evaluate 

the spatial proximity between known disease-causing variants and variants observed in the 

IAMDGC and POKEMON23 to evaluate clustering of variants found to be more prevalent in 

cases alone, or controls alone. Finally, computationally modeling of the change in free energy 

needed to fold the protein in the presence of these missense variants using Rosetta provides a 

comprehensive picture of the likely role of these variants in AMD risk. 
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Methods 

 

Genetic data on AMD 

. The IAMDGC dataset (original: AMD=16,144, control=17,832) has 250K tagging and 

250K rare/common variants on a custom chip developed for the IAMDGC (Affymetrix, detailed 

in Fritsche et al 2016). The starting point for pre-imputation was 569,645 variants genome wide 

genotyped on the custom chip. These were filtered according to previous methodology for SNPs 

that were problematic due to whole genome amplified samples, sex-specific associations, or 

variants that did not genotype well according to QC parameters described in Fritsche et al 

(2016). Briefly, only individuals with a known phenotype (geographic atrophy (GA), 

neovascular AMD (nvAMD) and dry/atrophic AMD (aAMD), and European descent based on 

the previous population stratification analysis10 were used. Analysis was performed with Plink 

1.9 and XWAS 3.0, along with R and Bioconductor. Of the IAMDGC, 18,865 female and 10,404 

male samples were used (12,087 control/14,273 AMD). All data collection was approved by the 

institutional review board or ethics committee of all participating institutions.  

 The Haplotype Reference Consortium panel (HRC) 1.1 dataset was used for the 

imputation reference panel24. It contained 64,976 haplotypes including chromosome X. The 

Michigan Imputation Server was utilized, . and ShapeIT25 was used for pre-phasing(HG19 data). 

Imputation was performed using minimac326.  

 The final variant count was 275,759 before imputation after filtering and QC. The QC 

pre-imputation included a identity by descent calculation (IBD), removal of the heterozygote 

haploid genotypes on X, Hardy-Weinberg equilibrium (HWE) calculated separately for males 

and females and the variants removed, missing and frequency testing was performed according 

to standard and variants removed, along with removal of samples with missing phenotypes. 3 

SNPs failed the sex frequency testing at a P=7.56x10^-6, and were removed. 

All samples were then imputed using HRC 1.1. Post-imputation processing sensitive to 

gender occurred in similar steps to pre-imputation processing including HWE, missingness, 

frequency and sex-specific details, along with the QUAL threshold. There were still some SNPs 

(n=1273) with a different frequency amongst sexes in controls with P<5.9x10-8 which were 

removed. The improvement in imputation was 3-fold the number of variants successfully 

imputed compared to the original IAMDGC data. 

Data for CFH, CFI, C3, C9, and CFB were pulled after HRC 1.1 imputation. 500 base 

pairs before and after gene start/end were pulled to include the maximum amount of variants 

available. Hg19 was used for reference. All sample phenotypes were used, and then filtered for 

advanced AMD, which includes both neovascular AMD and geographic atrophy, the same 

definition for advanced AMD as in Fritsche et al.10. Each gene contained a different number of 

variants pulled from the IAMDGC data within the boundaries listed below. 
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Risk and ‘neutral’ variant identification 

A literature review for all AMD associated variants in the complement factor complex was 

completed on [30.11.2020]. Missense variants were retained for algorithm usage while nonsense, 

splice site, ncRNA, near gene, or UTR variants were excluded. We utilized the genome 

aggregation database v2.1.1 (gnomAD)28 to create lists of likely neutral variants. GnomAD 

provides summary statistics from 125,748 exome sequences and 15,708 whole-genome 

sequences of unrelated individuals who have served as controls in various disease and population 

genetic studies. 

Pipeline for Spatial Associations:  

We developed a pipeline to identify spatial associations from the lists of variants with unknown 

pathological classsication utilizing both POKEMON and PathProx. Each step included both  

Spatial assessments 

Assessments were performed according to the same methodology as Jin, et al (2022). The 

methods in brief: Protein structures that were both experimentally solved and those that could not 

be experimentally solved were predicted, and those structures were taken from the structures in 

the Protein Databank (PDB) [29], and from both Swiss Model and ModBase. Each gene 

underwent cross-referencing to the structures, via UniProt ID Mapping [30], and the Swiss 

Models [8] were cross referenced with UniProt identities as well. ModBase [31] were 

downloaded from ftp://salilab.org/databases/modbase and Ensembl was used to cross-reference 

the proteins and their transcripts. Analysis was performed on single-chain monomers. The PDB 

chains were aligned to canonical UniProt transcripts with SIFTS [32], and aligned to non-

canonical transcripts with the SIFTS REST API. If multiple structures existed, the structure 

curation was guided heuristically to maximize diversity, coverage around variant positions of 

interest, resolution of models, and the sequence identity.  

Spatial assessments 

In the spatial comparisons of variants without prior pathogenic knowledge to AMD to 

characterized variants (PathProx)21,22, pathogenic variants were taken from ClinVar and neutral 

variants from ExAC 2.129, and variants were assigned the 3D location of the centroid of the 

modeled amino acid side chains. Each variant position was weighted with normalized 

BLOSUM30 100 scores, ranging of 0 to 1. Variants with a PathProx score > 0 are on average 

closer in 3D to observed pathogenic than neutral variants, while variants with a PathProx score < 

0 are on average more proximal to neutral variants. 

Computational evaluation on the effects of a variant on the free energy of folding of protein was 

carried out using ∆∆G Monomer from the Rosetta biomolecular modeling suite31. For X-ray 

structures of 2.5 Å resolution or better the “Row 16”19 protocol from Kellogg et al.32 was used; 
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“Row 3” was used otherwise.  ∆∆G Monomer calculations were only performed for Swiss and 

ModBase models with at least 40% sequence identity to their PDB template structures. For the 

purposes of our work, a |∆∆G| > 2 is considered extreme enough to potentially impact protein 

stability. 

Gene-based testing 

Previous studies have shown that removing neutral variants from gene-based testing 21 may 

improve the potential for integration of genomics pipelines into eventual clinical assessment [ To 

maximize the benefit of gene-based testing, we assessed each set of variants (PathProx and ddG) 

using seqMeta, an algorithm that identifies the optimal rho between burden and SKAT testing33. 

(R package version 1.6.7. 2017 https://CRAN.R-project.org/package=seqMeta. ). In summary, 

variants with a PathProx score > 0 (demonstrating a closer proximity to known risk variants over 

neutral variants) or a ddG > 2 (predicted to destabilize the protein structure) were retained for 

gene-based testing. All variants that failed to meet one or more criteria were presumed putatively 

neutral and excluded from all downstream analyses. 

We also employed an orthogonal approach as per Jin et al34, to determine if there was a spatial 

relationship between variants and case-status. This method uses a structural-kernel-based 

variance component test to incorporate spatial proximity between rare variants when calculating 

the gene-based statistic. In short, if two individuals have variants that are proximal to each other 

within the protein structure, they are considered genetically more similar than two people who 

have variants at opposite ends of the 3D protein structure. This structural-kernel is then used for 

subsequent gene-based testing to determine if there are differences in the spatial patterns of 

variants between cases vs. controls.  

Finally, to give additional context to our findings we calculated the seqMeta statistics for all 

missense variants in the gene. While not directly comparable to the results from the above testing 

due to changes in sample size between assessments, these statistics provide additional contextual 

information for interpreting the PathProx and ddG results. For a direct assessment of potential 

enrichment of , we calculated the case carrier percentage for each test: all missense, PathProx > 

0, or ddG > 2. We report all observed p-values, and consider a nominal p < 0.05 indicative of 

observed spatial clustering. 

Prediction of detrimental CFI secretion changes 

To determine if these spatial assessments provide information that can be used to both 

understand and predict underlying biology, we chose to further investigate the CFI gene, which 

has a large body of literature about the impact of specific variants on gene expression. Using our 

previously published data on the effect of mutant CFI on Factor I secretion levels35 we retained 

all missense variants that were found in CFI after classification of those variants as missense. 

PathProx and ddG scores were calculated for these variants. These data were then randomly split 
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into 80/20 training/testing sets, with 4-fold cross-validation done on the 80% training set and a 

final model performance assessment completed in the 20% never used in training. 

To create a binary classifier related to known biological function that could be readily deployed 

clinically, we declared that a reduction in CFI expression to <50% that of the canonical transcript 

was detrimental and chose this as our cutoff of ‘functional’ vs. ‘not functional’. We assessed 

models using both the numerical outputs of PathProx, ddG, and CADD (for comparison to 

existing variant scoring methods) and binary classifiers (PathProx > 0, ddG > 2, and CADD > 10 

representing detrimental variants). We ran unadjusted models and models adjusting for age, sex, 

age+sex, and all combinations of the three variant function predictors.  

Validation in plasma and serum samples of rare variant carriers  

Carriers of likely damaging variants were selected from the European Genetic Database 

(EUGENDA) for validating the predicted effect in plasma and serum samples. In total 35 rare 

variant carriers were included (Supp. Table 1), and the concentrations of complement 

components were determined in EDTA plasma with enzyme-linked immunosorbent assay 

(ELISA). We investigated  Factor I and the complement component C3bBbP which is a protein 

found in the end of the alternative complement pathway and is an indication of complement 

activation. In two CFI variant carriersFI and C3bBbP were measured, in two C3 variant carriers 

C3bBbP was measured, in nine CFB variant carriers FB and C3bBbP were measured, and in 21 

C9 variant carriers   terminal C5b-9 complex (TCC) was measured in plasma, and the lytic activity 

was determined in serum with the hemolytic assay. Measurements were performed in the routine 

diagnostics setting in the Department of Laboratory Medicine of the Radboudumc. The ELISA 

procedures are summarized in Supp. Table 2. The hemolytic assay was performed according to 

the following: Rabbit erythrocytes (Envigo, Netherlands) were washed and diluted with 

magnesium-ethylene glycol tetraacetic acid (Mg-EGTA) buffer (2.03 mM veronal buffer, pH 

7.4, 10 mM EGTA, 7 mM MgCl2, 0.083% gelatin, 115 mM D-glucose, and 60 mM NaCl) and 

diluted in a way, that the absorbance of fully lysed erythrocytes was between 0.8-1.2 at 405 nm. 

Serum samples were diluted in Mg-EGTA buffer, and 20 ul of diluted serum were mixed with 10 

ul erythrocytes and incubated at 37C and 600rpm for 30 min. The reaction was stopped with 

150ul EDTA-GVB, and the samples centrifuged for 2 min at 1000g to remove intact 

erythrocytes. The amount of lysis was determined by measuring the absorbance in supernatants 

at 405 nm. For FI, FB and sTCC and the hemolytic activity the default diagnostic reference range 

was used, while for C3bBbP a cohort specific reference range was determined based on de Jong 

et al. 2022. 20 

Results 

AMD genetics data sources and imputation with HRC 
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The full set of the IAMDGC data was imputed with the Haplotype Reference Consortium 

(HRC v1.1). SHAPEIT was used for phasing and minimac3 for imputation. After imputation 

with the HRC more than 120 variants were pulled for each gene in the complement factor 

pathway (CFH, CFI, C3, C9, CFB). (Table 1). No variants were excluded from any sample that 

was tested, and variants were all genotyped or well imputed (R2 > 0.8).  

Spatial Assessments 

 In total, 323 out of 659 (49%) variants were located in protein structures of sufficient 

quality to assess ddG as per the methods originally, utilizing both Ensembl and UniProt 

transcripts, and utilizing the three structure databases detailed in Methods. A total of 184 

(27.9%) had an extreme ddG (>=2) suggestive of unfavorable protein folding; 64 of these 

variants were in C3, 10 in C9, 63 in CFH, and 47 in CFI. These variants identified as 

unfavorable for protein folding via this methodology were classified as PathProx positive (PP+) 

For the same 323 variants in analyzable protein structures, four variants in C3 were PP+C9 also 

contained four PP+ variants, 53 were PP+ in CFI, and 13 in CFH. There were no variants in CFB 

classified as PP+ and this gene was removed from subsequent analyses in PathProx but not in 

POKEMON.Due to the nature of POKEMON, all variants available in structures were included 

in that analysis to identify potential clusters associated with case-status. 

Gene-based testings 

PathProx SKAT-O results on those variants that were PP+ indicate that novel observed 

variants in CFH, CFI, and C9 that are proximal to known AMD variants (taken from the Fritsche 

et al, 2016 paper10) are associated with AMD risk (P=CFH=0 (threshold<1x10^-15), CFI=0.01, 

C9=0.03). PathProx testing of C3  did not identify any variants in close proximity to known 

pathological variants(C3=0.83)). Since destabilization of CFH and CFI is thought to be causally 

associated with AMD and our statistical test found the unknown variants were associated with 

AMD risk, we further assessed these two genes to see if variants predicted to impact protein 

folding (using ddG) were similarly associated with the AMD phenotype. 

SKAT testing utilizing only variants with a notable impact on ddG found that variants 

predicted to destabilize CFI and CFH are associated with AMD (CFH P=0.05, CFH P=0.01). 

The other complement genes did not show statistical significance with free-energy SKAT testing 

alone (C3 P=0.33, C9 P=0.09)In addition, grouping of ddG variants into a SKAT test implicitly 

assumes that a high ddG variant is damaging whether found in a highly structured or disordered 

protein domain, potentially weakening a true association. 

The POKEMON method, an orthogonal test from PathProx that does not rely on external 

data sources, was also evaluated in these five complement genes. All complement genes have 

clusters of variants in the protein structure that were more associated with cases or controls than 

expected by chance alone (Kernel+frequency testing POKEMON P: C3=0.04, C9=0.01, 
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CFB=2.84x10-14, CFH=0 (threshold<1x10^-15 ), CFI=0.02). When common variants were used, 

we performed inverse scoring on the variants according to the count of people with said variants, 

so we can use frequency to lower the effect that the common variants would have according to 

the frequency, not just spatial distribution. Case-associated clusters were found at the terminal 

end of the CFH (Figure 1) while control-associated variants were more commonly found through 

the center of CFH. Similarly, for C9, 69 variants more commonly found in controls were located 

in the external ring of the protein, while in the internal passageway, the identified variants were 

more commonly found in cases (Figures 1-2).  

Figure 1:  
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Figure 2:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After removing known associated variants, POKEMON was applied to the subphenotype 

of choroidal neovascularization  (CNV) cases only . The association with CFH was significant 

after application of both sex and age as covariates (Table 2 Section 1). When applied to all 

advanced AMD cases, after including sex and age, C9, CFH, and CFI still indicated significance, 

showing that although the covariates of sex and age still have an effect, they do not temper the 

clusters of case/control variants found in the protein (Table 2 Section 2).  

 

Prediction of detrimental CFI expression changes 

We assessed if the functional predictions associated with previously bench validated 

functional changes in CFI expression, as detailed in de Jong et al 202015. We already knew that 

more than 50% of these variants affect protein secretion, but for confirmation we performed 

association analysis with variants that were identified via our spatial analysis.  

ROC curve analysis indicated that ddG was a predictor of CFI expression change, with an 

AUC of 0.77 vs the CADD score model (Figure 3 A indicating CADD score effectiveness 

C9 example of POKEMON 

Variant found 
predominantly in  

      Cases 

     Controls 
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compared with our current ROC curve analysis in Figure 3 B) with an AUC of 0.59 (a known 

benchmark of predicted functionality). Further, this analysis had a sensitivity of 0.78 and a 

specificity of 0.54 indicating it has clinical value. Further details can be found in Figures 3+4 and 

Supplementary Figure 1A-D.   

Figure 3:  

CADD scores (binary)  
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Figure 4:  

ddG binary and CADD (continuous) 

 

Validation in plasma and serum samples of rare variant carriers  

After the indication that we could predict FI secretion, we set out a priori to examine 

protein levels in plasma of rare variant carriers selected from the EUGENDA database. We 

performed a priori hypothesis testing, predicting that these variants would affect complement 

gene expression at a rate greater than random chance.  

In total we identified 34 carriers of variants predicted to affect the protein stability that 

could be included for functional testing. Of these 12 carriers presented with no AMD, 10 

presented with early/ intermediate AMD, 11 presented with advanced AMD, and one individual 

could not be graded. The average age was 74.7±1.24. The measurements performed as outcome 

were taken at different points of the complement factor pathway: C3bBbP (which was also 

utilized as a threshold for significant difference, which was indicated at < 19 CAU/ml), CFI, 

CFB, and TCC (which is the end marker for the complement gene pathways, and it does not 

always signal completely in clinical experiments. (Supplemental Table 3).  

Results indicate that despite the small sample size (n=34), there is a significant difference 

in protein expression in vitro, in the complement pathway amongst carriers of the variants 

identified in our spatial variant methodology. For example, out of 14 variant carriers for CFB 

G252S, 9 carried above normal expression of C3bBbP (P=0.04, Student’s T-Test). Of those, 2 of 
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those 9 also carried abnormal CFI expression, and 2 contained abnormal CFB expression (Table 

3, Supplementary Table 4).  

 

Discussion: 

We have shown, using complementary novel statistical methodologies, that variants of 

unknown significance (VUS) can be identified that impact protein conformation and protein 

expression. This computational testing can identify, from a list of observed variants, which ones 

are predicted via spatial modeling to have an effect, allowing for more efficient prioritization of 

bench testing novel observed variants.  

 

This computational pipeline was tested on the complement genes most well known in 

AMD, and our results were compared to previously published values of gene expression in CFI. 

After confirming that we could reliably identify variants with an observed impact on the 

expression of CFI, we predicted which novel observed variants not previously associated with 

AMD would have a similar impact on gene expression, identifying novel variants meeting this 

threshold. When we combine the free energy results with spatial relationships, we show that 

these variants of previously unknown significance (VUS), have damaging effects, and are 

associated with AMD pathogenesis. We have demonstrated that variants, computationally 

identified as likely damaging, affect protein expression in vitro. This novel methodology can be 

applied to any disease.  

 

In CFH we observe a POKEMON cluster in CCP1, further significant associations were 

identified in CCP3, 4 and 20. Rare coding variants in CFH have been reported to affect binding 

capacities or co-factor function rather than affecting CFH secretion levels , but we have recently 

identified significantly lower CFH plasma levels in rare variant carriers compared to controls20 

In line with this, we observe here a significant association of destabilizing CFH variants in AMD 

patients, and 63 out of 114 (55%) variants are predicted to destabilize CFH with a ddg score 

larger than 2. It should be noted, however, that the resolution of the CFH protein structure is 

limited by the flexibility of the protein, potentially affecting our analysis. Also, the two coding 

variants in CFH showing the highest association with AMD, p.Tyr402His and p.Arg1210Cys, 

show altered binding capacities to extracellular matrix components or albumin binding 

respectively. These effects are not detected in our analyses and present a limitation of the model 

in context of interpreting variants in CFH. A limitation of our study is that these results are only 

as good as the solved protein structure, indicating that there are some resolution limitations, 

however many proteins have been successfully mapped in in crystal structure, indicating that 

solved protein structures are accurate. 

 

Rare coding variants in CFI affect FI secretion levels 12,15,17, with more than half of the 

studied variants affecting FI secretion. Here we observe that 47 out of 85 (55%) CFI variants are 

predicted to destabilize the protein with a ddG score above 2, and we show an increased AUC of 
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0.77 compared to the commonly used CADD score (AUC 0.59). Pokemon analysis shows 

distribution of destabilizing clusters associated with AMD throughout the entire protein 

structure. Overall, given the availability of a high resolution crystal structure for CFI, and a high 

proportion of rare coding variants affecting FI secretion, we conclude that our analysis shows 

high predictive value for interpreting CFI rare coding variants.  

 

C9 polymerization plays a role in formation of the membrane attack complex, which, 

upon successful assembly, can disrupt the membrane of a target cell. Rare coding variants in C9 

affect the polymerization of C914,18 Here we observe POKEMON clusters in the LDLRA and 

MACPF domain of C9, further, of 25 tested variants 10 show a ddG above 2. For four of our 

testewd variants functional testing has been reported previously, the variant p.Thr170Ile is 

predicted to be highly disruptive with a high ddG of 45.95, in line with this significantly reduced 

secretion levels have been reported in vitro for this variant14 .The variants p.Gly126Arg and 

p.Ala529Thr did not affect C9 secretion levels, while the ddg score predicts them to be 

disruptive and benign respectively. The variant p.Phe62Ser is presented to affect stability with a 

ddg of 6.12, however this variant showed significantly increased secretion in vitro 14.  

 

Overall performing functional analysis of rare coding variants is time consuming and expensive, 

consequently accurate prediction models are valuable tools in the diagnostic setting. This process 

of identifying areas where protein stability plays a large role, depending on the DNA sequence 

that creates the protein, will be invaluable in finding biomarkers or targets for new treatment of 

disease. Clinical trials will find it useful to investigate targeted inclusion of rare variant carriers 

for complement inhibitors or other disease/protein trials, and will help with understanding of 

functional consequences of real world translational work.  
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Tables:  

 

Table 1: Different amount of missense variants pulled per complement gene (hg37) 

Gene 

Name 

Chr Start/500BP  End/500BP 

CFH 1 196620508 196717134 

CFI 4 110661348 110723835 

C3 19 6677346 6721162 

C9 5 39283878 39365155 

CFB 6 3180353 3430117 

 

Table 2: Calculation of phenotype with and without inclusion of covariates via POKEMON on 

all complement genes tested 

GENE PDB PHENOTYPE P-VALUE 

No covariates Covariate:SEX Covariate:SEX 

and AGE 

GeneC3 2a73 CNV_only vs 

No_AMD 

0.18 0.18 0.17 

GeneC9 6h04 CNV_only vs 

No_AMD 

9.7E-03 0.015 0.09 

GeneCFH 1haq CNV_only vs 

No_AMD 

1.1E-06 1.4E-06 2.1E-05 

GeneCFI 2xrc CNV_only vs 

No_AMD 

0.13 0.15 0.25 
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GENE PDB PHENOTYPE P-VALUE 

No covariates Covariate:SEX Covariate:SEX 

and AGE 

GeneC3 2a73 (CNV_only, 

Mixed_GA/C

NV, and 

GA_only) vs 

No_AMD 

0.10 0.10 0.09 

GeneC9 6h04 (CNV_only, 

Mixed_GA/C

NV, and 

GA_only) vs 

No_AMD 

4.9E-03 6.6E-03 0.04 

GeneCFH 1haq (CNV_only, 

Mixed_GA/C

NV, and 

GA_only) vs 

No_AMD 

2.4E-09 2.4E-09 2.7E-09 

GeneCFI 2xrc (CNV_only, 

Mixed_GA/C

NV, and 

GA_only) vs 

No_AMD 

1.06E-02 1.11E-02 8.46E-03 
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Table 3: Indication of patients with their age, phenotype and significantly impacted complement 

pathway expression results.  

 

 

Supplementary Figures and Tables:  

 

Supplementary Figures 1A-D: 

CADD and ddg scores both binary and continuous visuals  

 

 

 

 

Supplementary Table 1:  
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Variant with 

Plasma 

Available:  

Gene/Protein 

Variant 

CFI P273R 

CFI T84A 

CFI I518T 

C3 I815M 

C3 S219C 

C3 T220I 

CFB G252S 

CFB V669L  

CFB I569L 

C9 I203V 

C9 E300K 

C9 F338L 

C9 V467F 

C9 L468F 

C9 I476V 

Supplementary Table 2:  

 

Target  FI FB C3bBbP sTCC 

Coating  1000x diluted 

sheep anti-

human FI 

antibody 

(LabNed, 

Netherlands) 

2000x diluted 

polyclonal anti-

human FB 

antibody 

(antibodies-

online.com, 

Germany) 

1000x diluted 

mouse anti-

human Factor 

P#2 (Quidel, 

USA) 

200x diluted 

anti-C5b-9 

antibody 

(bioporto 

diagnostics, 

Denmark)  
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Blocking* First with 

SuperBlock 

(ThermoFisher 

Scientific, 

USA), and then 

with 1% bovine 

serum albumin 

(BSA, Sigma, 

USA) 

1% BSA 

(Sigma, USA) 

1% BSA 

(Sigma, USA) 

1% BSA 

(Sigma, USA) 

Samples 1000x, 2000x 

and 4000x 

diluted in PBST 

0.2% BSA 

4000x and 

8000x diluted in 

PBST 0.2% 

BSA 

50x in PBST-

10mM EDTA 

200x in PBST-

10mM EDTA 

Detection 

antibody 

1000x mouse 

anti-human FI 

(ProSci, USA) 

8000x diluted 

anti-human FB 

HRP-conjugated  

(antibodies-

online.com, 

Germany) 

2000x diluted 

anti-human C3c 

(Siemens, 

Germany) 

2000x diluted 

anti-human C6, 

biotinylated 

(Quidel, USA) 

Secondary 

antibody 

goat anti-mouse 

HRP (DAKO, 

Germany) 

na Goat anti-rabbit 

HRP (DAKO, 

Germany) 

na 

Development o-

phenylenediamin

e 

dihydrochloride 

(OPD) substrate 

(Dako, 

Germany) 

Tetra Methyl 

Benzidine 

(TMB) substrate 

(Sigma, USA)  

 OPD substrate 

(Dako, 

Germany) 

Streptavidin-

HRP (Pierce 

Biotechnology, 

USA) 

     

* in between each step after 

blocking, the plates were washed 

four times with 200µl PBS 0.02% 

Tween 

   

 

Supplemental Table 3:  ELISA reference values 
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  C3bBbP CAU/ml CFI (ug/ml) CFB (ug/ml) TCC 

CAU/ml 

Reference 

Range 

< 19 CAU/ml 22-41 ug/ml 105-209 ug/ml <0,50 

CAU/ml 

 

Supplementary Table 4: All patient ID, genes tested, and values of ELISA on complement gene 

pathway outcomes.  

EU

GE

ND

A 

g

e

n

e 

Protei

n 

chang

e 

additi

onal 

varian

t 

Meas

urem

ents 

Phenotype Age  

C3bB

bP 

CAU/

ml 

CFI 

(ug/

ml) 

CFB 

(ug/

ml) 

TCC 

CA

U/ml 

C3 

052

016 

C

9 

F338L  CFB 

G252S 

sTC

C 

Advanced 

AMD: GA 

61.97    0.38 Ne

gat

ive 

056

455 

C

3 

I815M   C3 + 

C3b

BbP 

Advanced 

AMD: 

neovascular 

AMD 

81.63 27.4     

050

741 

C

F

B 

I569L   FB + 

C3b

BbP 

Advanced 

AMD: 

neovascular 

AMD 

74.1 19.8  292   

051

083 

C

F

B 

G252

S 

  FB + 

C3b

BbP 

Advanced 

AMD: 

neovascular 

AMD 

85.26 196  186   

051

724 

C

F

B 

G252

S 

  FB + 

C3b

BbP 

Advanced 

AMD: 

neovascular 

AMD 

72.73 23.8  173   

052

542 

C

F

I  

P273R   FI + 

C3b

BbP 

Advanced 

AMD: 

neovascular 

AMD 

72.21 21.1 19    

052

730 

C

F

I  

T84A   FI + 

C3b

BbP 

Advanced 

AMD: 

neovascular 

AMD 

77.21 21.6 20    
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041

947 

C

9 

I203V   sTC

C 

Advanced 

AMD: 

neovascular 

AMD 

81.05    0.42 Ne

gat

ive 

047

877 

C

9 

I476T   sTC

C 

Advanced 

AMD: 

neovascular 

AMD 

61.06    <0,2

5 

Ne

gat

ive 

050

587 

C

9 

I476T   sTC

C 

Advanced 

AMD: 

neovascular 

AMD 

70.24    0.26 Ne

gat

ive 

050

696 

C

9 

I476T   sTC

C 

Advanced 

AMD: 

neovascular 

AMD 

85.51    0.45 Ne

gat

ive 

047

918 

C

F

B 

G252

S 

  FB + 

C3b

BbP 

cannot grade 72.25 16.4  180   

052

739 

C

3 

S219C  CFB 

G252S 

C3 + 

C3b

BbP 

early AMD 81.12 17.6     

045

849 

C

F

B 

G252

S 

  FB + 

C3b

BbP 

early AMD 80.63 13.6  213   

043

007 

C

9 

I476T  CFB 

G252S 

sTC

C 

early AMD 76.12    0.31 Ne

gat

ive 

050

689 

C

9 

F338L   sTC

C 

early AMD 69.7    0.49 Ne

gat

ive 

051

965 

C

9 

V467

F 

  sTC

C 

early AMD 70.37    0.39 Ne

gat

ive 

052

990 

C

9 

E300

K 

  sTC

C 

early AMD 63.52    0.28 Ne

gat

ive 

053

455 

C

9 

I203V  CFB 

G252S

, 

E566A 

sTC

C 

early AMD 70.26    0.55 Ne

gat

ive 

051

950 

C

F

B 

G252

S 

  FB + 

C3b

BbP 

intermediate 

AMD 

75.35 22.9  171   
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XXV 
 

055

484 

C

9 

L468F  CFB 

G252S 

sTC

C 

intermediate 

AMD 

72.05    0.34 Ne

gat

ive 

055

670 

C

9 

F338L   sTC

C 

intermediate 

AMD 

94.6    0.35 Ne

gat

ive 

045

759 

C

F

B 

G252

S 

  FB + 

C3b

BbP 

no AMD 74.64 16.9  184   

047

316 

C

F

B 

G252

S 

  FB + 

C3b

BbP 

no AMD 78.43 147  181   

052

011 

C

F

B 

V669

L, 

V577I

, L9H 

  FB + 

C3b

BbP 

no AMD 75.2 13.4  170   

052

580 

C

F

I 

I518T  CFB 

G252S 

FI + 

C3b

BbP 

no AMD 77.93 24.4 36    

044

008 

C

9 

F338L   sTC

C 

no AMD 72.28    2.73 Ne

gat

ive 

052

381 

C

9 

I203V  CFB 

G252S

, L9H 

sTC

C 

no AMD 64.91    0.42 Ne

gat

ive 

052

732 

C

9 

I476T   sTC

C 

no AMD 68.05    0.31 Ne

gat

ive 

052

949 

C

9 

F338L   sTC

C 

no AMD 76.44    0.25 Ne

gat

ive 

053

185 

C

9 

I203V   sTC

C 

no AMD 65.14    0.36 Ne

gat

ive 

053

213 

C

9 

F338L   sTC

C 

no AMD 75.59    0.29 Ne

gat

ive 

055

437 

C

9 

I476T   sTC

C 

no AMD 81.77    0.36 Ne

gat

ive 

055

566 

C

9 

I476T   sTC

C 

no AMD 79.65    0.29 Ne

gat

ive 
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XXVI 
 

      Refer

ence 

Rang

e 

< 19 

CAU/

ml 

22-

41 

ug/

ml 

105-

209 

ug/m

l 

<0,5

0 

CA

U/ml 
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