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ABSTRACT 33 
The uptake of COVID-19 vaccines remains low despite their high effectiveness. Epidemic 34 
models that represent decision-making psychology can provide insight into the potential impact 35 
of vaccine promotion interventions in the context of the COVID-19 pandemic. We coupled a 36 
network-based mathematical model of SARS-CoV-2 transmission in Georgia, USA with a social-37 
psychological vaccination decision-making model in which vaccine side effects, post-vaccination 38 
infections, and other unidentified community-level factors could “nudge” individuals towards 39 
vaccine resistance while hospitalization spikes could nudge them towards willingness.  40 
 41 
Combining an increased probability of hospitalization-prompted resistant-to-willing switches with 42 
a decreased probability of willing-to-resistant switches prompted by unidentified community-43 
level factors increased vaccine uptake and decreased SARS-CoV-2 incidence by as much as 44 
30.7% and 24.0%, respectively. The latter probability had a greater impact than the former. This 45 
illustrates the disease prevention potential of vaccine promotion interventions that address 46 
community-level factors influencing decision-making and anticipate the case curve instead of 47 
reacting to it.   48 
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The most impactful intervention to date against the COVID-19 global pandemic has been the 49 
development and distribution of highly effective vaccines.1,2 The COVID-19 vaccine rollout in the 50 
United States began in late 2020 with a two-dose primary series, before waning immunity and 51 
decreased effectiveness against novel SARS-CoV-2 strains prompted the development of four 52 
sequential booster vaccinations.3 Although these vaccines have been widely available in the 53 
United States since 2021, only about 70% of the eligible U.S. population had completed the 54 
primary vaccine series as of mid-2023.4 Primary series coverage was even lower in the state of 55 
Georgia, at around 58%.4 Vaccine uptake slowed in the later months of 2021, has been 56 
consistently lower in younger age groups, and tapered off markedly for subsequent doses.4 This 57 
is partially due to vaccine hesitancy – a complex phenomenon related to concerns about the 58 
safety, efficacy, and necessity of these vaccines.5,6 59 

Encouraging higher vaccine uptake by addressing vaccine hesitancy is crucial, but the 60 
effects of vaccine promotion interventions can be difficult to predict since decisions on whether 61 
and when to receive a vaccine dose are influenced by a multitude of factors – including fear of 62 
illness,7 altruism,7,8 social conformity,9,10 and information spread via social contacts, news 63 
outlets, or social media.11,12 Mathematical models can compare counterfactual scenarios and 64 
represent complex individual- and community-level behaviours, providing insight into the optimal 65 
formulation and timing of such interventions. While several models of vaccination decision-66 
making exist, most of them consider one-time decisions; are focused on theory rather than real-67 
world scenarios; and, most crucially, are rooted in game theory, meaning they rely on the 68 
assumption of rational actors.13-16 In contrast, social psychological research suggests that 69 
individuals typically rely on heuristics rather than rational cost-benefit analyses when making 70 
complex decisions.17 For example, decisions generally obey the law of inertia: they tend to 71 
remain stable over time but are sensitive to small “nudges” from unfavourable outcomes.18 To 72 
provide valid insights into vaccination interventions, mathematical models are needed that 73 
account for such heuristics and capture feedback effects between behaviour and epidemic 74 
outcomes.  75 

The role of heuristics and inertia in decision-making has been studied in the context of 76 
annual influenza vaccination but is not yet well understood in the context of the ongoing COVID-77 
19 vaccine rollout. Papst et al developed a seasonal influenza model in which prior infections 78 
and vaccine side effects could “nudge” persons to change their future vaccination decisions, 79 
creating a feedback loop between behaviour and disease spread.19 This model, while theoretical 80 
in its focus, was consistent with the empirical findings of a longitudinal cohort study on trends in 81 
influenza vaccination: the cohort’s vaccination behaviour was generally stable over time, but flu 82 
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infections could influence subsequent vaccination decisions and those who did switch between 83 
approaches tended to persist in their new behaviour, in a practical illustration of the law of 84 
inertia.20 Adapting the modelling framework developed by Papst et al for a mathematical model 85 
of SARS-CoV-2 could provide insight into how vaccine promotion interventions should be 86 
formulated and targeted specifically to boost the stagnant levels of COVID-19 vaccine coverage.  87 

In this study, we utilized a model of SARS-CoV-2 dynamics in the state of Georgia – a 88 
high-burden population with significant gaps in vaccine coverage – and coupled it with a social-89 
psychological decision-making model in which vaccine side effects, breakthrough infections, 90 
and the overall state of the outbreak could “nudge” individuals to change their vaccination 91 
behaviour. Our goal was to use this novel combination of methods to explore how changes to 92 
the probabilities of individuals adapting their behaviour after experiencing one of these “nudges” 93 
might impact disease incidence.  94 
 95 
RESULTS  96 
Model Overview. Our network-based mathematical model was parameterized and calibrated to 97 
represent the COVID-19 epidemic in the state of Georgia, USA from January 2021 to August 98 
2022. Figure 1 shows the calibrated model’s simulated monthly infection, hospitalization, and 99 
death rates against empirical trends in Georgia, with hospitalizations peaking in August 2021 100 
(Delta wave) and infections peaking in January 2022 (Omicron wave). There were 131.1 101 
infections (50% SI: 129.9, 132.3), 82.0 symptomatic cases (50% SI: 81.2, 82.7), and 0.36 102 
deaths (50% SI: 0.35, 0.38) per 100’000 person days in this model.  Figure 2 displays the 103 
model’s simulated vaccine coverage by age group and dose against the corresponding 104 
empirical coverage.  105 

We compared this calibrated reference model to counterfactual scenarios in which we 106 
decreased the probability that a breakthrough infection would prompt a willing-to-resistant 107 
vaccine attitude switch (hereafter referred to as the Breakthrough Nudge Probability or 108 
Breakthrough NP); increased the probability that a spike in hospitalizations would prompt a 109 
resistant-to-willing switch (hereafter referred to as the Hospitalization Nudge Probability or 110 
Hospitalization NP); and/or decreased the probability of a vaccine willing-to-resistant switch 111 
related to something other than side effects or breakthrough infections (hereafter referred to as 112 
the Miscellaneous Nudge Probability or Miscellaneous NP). A detailed description of the model, 113 
its parameters, and the scenario specifications is provided in the Methods and in Table 1. 114 

Intervention Impacts. Doubling the Hospitalization NP generally led to a slight increase in the 115 
coverage of all vaccine doses; the absolute change ranged from about 1% to 5% (for example, 116 



   

 5 

for 18- to 49-year-olds, coverage changed from 74.2%, 61.4%, and 18.3% for the first, second, 117 
and third doses to 77.0%, 64.9%, and 22.8%). Reducing the Breakthrough NP to 0 had no 118 
discernible impact. In contrast, reducing the Miscellaneous NP to 0 led to marked increases in 119 
coverage of the second, third, and (if applicable) fourth doses, with the absolute change ranging 120 
from 9% to 48%, while the first dose coverage was slightly reduced (Table 2). When the 121 
Miscellaneous NP was fixed, the total doses administered generally increased as the 122 
Hospitalization NP increased but did not change substantially as the Breakthrough NP 123 
decreased (Figure 3A1). The relationship between the Hospitalization NP and Miscellaneous 124 
NP was more complex: simultaneously increasing the Hospitalization NP and decreasing the 125 
Miscellaneous NP while the Breakthrough NP was fixed led to an increase in doses 126 
administered if the Miscellaneous NP was above about 20% of its reference value. When the 127 
Miscellaneous NP was decreased further, the impact of the Hospitalization NP became 128 
negligible (Figure 3A2).  129 

The overall pattern for incidence was the inverse of that for doses: a lower 130 
Miscellaneous NP and a higher Hospitalization NP generally led to fewer infections, although 131 
the impact of the Hospitalization NP was negligible for the lowest values of the Miscellaneous 132 
NP (Table 3 and Figure 3B). The minimum incidence rate across scenarios was 99.5 infections 133 
per 100’000 person-days (50% SI: 97.4, 101.5), corresponding to 31.5 (50% SI: 29.5, 33.7) 134 
infections averted per 100’000 person-days compared to the reference scenario; this occurred 135 
when the Hospitalization NP was 160% of its reference value and the Miscellaneous NP was 0. 136 
The minimum symptomatic case rate across scenarios was 60.3 cases per 100’000 person-137 
days (50% SI: 59.1, 61.1), corresponding to 21.7 (50% SI: 20.8, 22.8) cases averted per 138 
100’000 person-days compared to the reference scenario; this occurred when the 139 
Hospitalization NP was doubled and the Miscellaneous NP was 0. 140 

Table 4 and Figure 3C demonstrate a similar pattern for deaths, with more noise from 141 
model stochasticity. The minimum death rate across scenarios was 0.25 deaths per 100’000 142 
person-days (50% SI: 0.24, 0.27), corresponding to 0.11 deaths averted per 100’000 person-143 
days (50% SI: 0.09, 0.13) compared to the reference scenario; this occurred when the 144 
Hospitalization NP was doubled and the Miscellaneous NP was zero.  145 

Figure 4 shows the impact of nine selected intervention scenarios on vaccine coverage 146 
over time relative to the epidemic curve. Doubling the Hospitalization NP alone (Panel A) 147 
affected all vaccine-resistant persons and increased their vaccine uptake relative to the 148 
reference scenario across all doses, starting when the hospitalization threshold was typically 149 
crossed in late August 2021. As a result, the subsequent January 2022 infection peak was 150 
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somewhat reduced. Halving or eliminating the Breakthrough NP (Panels B and C) affected only 151 
the much smaller population subset who experienced breakthrough infections and caused a 152 
nominal increase in their third- and fourth-dose uptake from February 2022 onward. Halving or 153 
eliminating the Miscellaneous NP alone (Panels F and G) affected all individuals who received 154 
at least one dose and increased their second-, third-, and fourth-dose uptake from February 155 
2021 onward on a much larger scale; as a result, the subsequent August/September 2021 and 156 
January 2022 peaks were both more considerably reduced. When the Miscellaneous NP was 157 
only halved, the hospitalization threshold was generally still crossed in autumn 2021, so also 158 
doubling the Hospitalization NP had an additive effect (Panel H). When the Miscellaneous NP 159 
was reduced to zero, however, infections – and, by extension, hospitalizations – were reduced 160 
enough that the threshold was no longer crossed at all, making the Hospitalization NP irrelevant 161 
(Panel I).  162 

Additional Results. The relative impact of the different intervention scenarios was the same 163 
across age targeting approaches, but the interventions acted on a smaller scale when they were 164 
limited to those aged 65+ years (Supplemental Figures S1 and S2). Sensitivity analyses of the 165 
infection- and vaccine-induced immunity parameters showed that, while the scale of the 166 
outbreak varied, the relative impact of the nine selected interventions was similar, except that 167 
interventions on the Hospitalization NP became less impactful when the half-life of vaccine 168 
induced immunity was increased from 80 days to 140 days or more (Supplemental Tables S1 169 
and S2).  170 
 171 
DISCUSSION   172 
In our study, we used the novel combination of a network-based model of SARS-CoV-2 173 
dynamics and a social-psychological model of COVID-19 vaccination decision-making to 174 
investigate which of the pathways between vaccine willingness and resistance might have the 175 
greatest influence on vaccine coverage and disease incidence. We found the miscellaneous 176 
willing-to-resistant pathway to be the most influential: eliminating the drop-off in vaccine uptake 177 
between doses due to community-level miscellaneous factors increased the number of vaccine 178 
doses administered by 30.7% and, as a result, decreased the incidence rate by 23.6%. 179 
Doubling the probability that a spike in hospitalized prevalence would prompt vaccine hesitant 180 
persons to vaccinate increased vaccine uptake by 5.4% and decreased incidence by 4.0%, a 181 
smaller but still substantial impact. In contrast, eliminating the probability that a breakthrough 182 
infection would prompt a previously vaccine willing person to forgo further vaccination had 183 
negligible population-level benefits. Overall, our study suggests that epidemic outcomes are 184 
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improved when baseline vaccine hesitancy is addressed to reduce the vaccine-naïve population 185 
while as many vaccinated persons as possible are kept on the path to subsequent doses, and 186 
that optimizing the timing of any vaccine promotion intervention relative to the timing of infection 187 
waves – so that the interventions anticipate the case curve instead of reacting to it – is critical. 188 

In our study, interventions affecting persons’ responses to community-level factors were 189 
impactful, while those affecting responses to individual-level factors were not, primarily because 190 
far more persons were exposed to the former set of interventions than the latter. The 191 
miscellaneous willing-to-resistant pathway could affect anyone who received at least one 192 
vaccine dose within the model timeframe; it was mostly meant to encompass collective factors, 193 
such as widespread false messaging on social media about vaccine-induced female 194 
infertility.21,22 The hospitalization-related resistant-to-willing-pathway, similarly, could affect 195 
anyone who was vaccine resistant when hospitalizations spiked – not just those who were 196 
hospitalized themselves. Conversely, the breakthrough-related willing-to-resistant pathway 197 
could only affect the small number of fully vaccinated and still vaccine willing individuals who 198 
became infected and experienced symptoms despite the layers of protection against both 199 
transmission and symptomatic disease provided by the vaccine. Thus, the fundamental 200 
difference between changes to the hospitalization or miscellaneous nudge probabilities, which 201 
were beneficial on a population level, and changes to the breakthrough nudge probability, which 202 
were not, is that the former set of changes had a much wider reach. This finding regarding the 203 
importance of scale is consistent with empirical evaluations of vaccine promotion interventions: 204 
Athey et al found that the impact of social media advertisements promoting COVID-19 205 
vaccination was small on a per-person basis but in aggregate convinced upwards of 11 million 206 
persons.23 The distinction we made between individual- and community-level precipitating 207 
events is unique to our model. In the Papst et al model of influenza vaccination, individuals 208 
based their decisions solely on personal past experiences of infections or vaccine side effects; 209 
the two model parameters controlling these events (the vaccine efficacy and the probability of 210 
vaccine morbidity) were both relevant to their model predictions.19 By considering more varied 211 
precipitating events, our study contributes an additional finding: vaccine promotion interventions 212 
that focus on experiences shared by wide segments of the population may have more disease 213 
prevention potential than those focused on individual experiences with the COVID-19 vaccine in 214 
isolation.  215 

Our results also suggest that, due to their better optimized timing, proactive interventions 216 
(e.g., changes to the miscellaneous nudge probability) have much more disease prevention 217 
potential than interventions that are reactive to naturally occurring transmission events (e.g., 218 
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changes to the hospitalization and breakthrough nudge probabilities). Lowering the 219 
miscellaneous nudge probability meant that as soon as an individual received their first dose, 220 
their willingness to receive the next was cemented. As such, not only did changes to the 221 
miscellaneous nudge probability cause the largest increase in vaccine coverage, but they also 222 
acted the fastest, causing increased dose two uptake as early as February 2021 – the month 223 
after the start of the vaccine rollout. These interventions thus affected both infection spikes that 224 
occurred within our model timeframe. In contrast, changes to the hospitalization nudge 225 
probability could affect the later spike but not the earlier one, which was already well underway 226 
by the time the hospitalized prevalence in our model usually crossed its threshold in late August 227 
2021; if the miscellaneous nudge probability was low enough, it could pre-empt interventions on 228 
the hospitalization nudge probability altogether by keeping the hospitalized prevalence below its 229 
threshold for the full model timeframe. Similarly, the minor increases in third- and fourth-dose 230 
uptake caused by changes to the breakthrough nudge probability began very late in the model 231 
timeframe, by which point the number of infections that could potentially have been averted was 232 
small. These results are consistent with those of other COVID-19 modelling studies that have 233 
found the success of a particular vaccination campaign to be highly sensitive to its timing: 234 
Gavish et al projected that advancing Israel’s summer 2021 booster campaign by 2 weeks could 235 
have halved the number of cases in the subsequent three months.24 The models developed by 236 
Papst et al and a preceding influenza study by Wells et al both assumed that each annual 237 
influenza vaccine rollout concluded before that year’s outbreak began;19,25 they therefore did not 238 
consider how the rollout’s impact could vary based on timing. Our model’s ability to account for 239 
concurrent vaccination and transmission dynamics facilitated our finding that proactively timed 240 
interventions – ones that, for example, anticipate increases in hospitalized prevalence instead of 241 
reacting to them after the fact – could have a greater impact on epidemic outcomes.  242 

Finally, we found that limiting vaccine promotion interventions to those aged 65 years or 243 
older, who are at increased risk of severe outcomes, led to fewer prevention benefits than when 244 
either 18- to 64-year-olds or all adults were targeted. This was likely due in part to the relatively 245 
small size of the older age group and to their higher reference levels of vaccine willingness, 246 
which left less room for intervention-prompted increases. Our study supports findings from 247 
previous modelling studies suggesting that vaccine hesitancy should be addressed in younger 248 
populations, who are less susceptible to severe disease or death but who play a larger role in 249 
transmission and have lower baseline vaccine willingness.24,26,27 250 

Our approach has several limitations. First, we only explicitly modelled and tracked three 251 
factors that could affect vaccination decisions: vaccine side effects, breakthrough infections, and 252 
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hospitalized prevalence. To account for all other potential factors, we used a “miscellaneous” 253 
willing-to-resistant pathway in our vaccination decision-making model, with receipt of a given 254 
vaccine dose used as a proxy for the subsequent, unidentified events that might trigger vaccine 255 
resistant attitudes. Without information on the timing of those events, we had to assume that 256 
individuals who became vaccine resistant for these other reasons between receiving dose n and 257 
when they would otherwise have received dose n + 1 did so immediately after receipt of dose n, 258 
which may have exaggerated the impact of the miscellaneous nudge due to the timing factors 259 
discussed above.   260 

We also did not consider clustering by vaccination type, correlations between a parent’s 261 
type and their children’s vaccination status, or the ways that vaccine resistant views might 262 
propagate through a network (e.g., how persons might be influenced by breakthrough infections 263 
within their household or social network even if they themselves were not a breakthrough case). 264 
By assuming that unvaccinated persons were distributed randomly through the network, we may 265 
have overestimated the indirect protection they received via vaccinated contacts. This may, in 266 
turn, have muted the impact of our interventions, since we did not account for the possibility of 267 
the interventions breaking up pockets of vaccine resistance within certain households or 268 
neighbourhoods – but as the issue of clustering is complex, it should be explored further by 269 
future work on this model. 270 

Another limitation of our model is the uncertainty to which some of our parameters are 271 
subject. Due to data limitations, our reference willing-to-resistant nudge probabilities were 272 
extrapolated from surveys of vaccine willingness beyond their intended use. Since COVID-19 273 
emerged relatively recently, data on the waning of vaccine-induced and natural immunity is 274 
currently limited, and we did not account for heterogeneity in immunity by age, disease severity, 275 
or other factors.28-30 To address this limitation, we performed sensitivity analyses on the two 276 
immunity duration parameters and found that our conclusions about which interventions were 277 
most effective generally held. 278 

In conclusion, our findings indicate that addressing community-level factors influencing 279 
decision-making may have more disease prevention potential than intervening based on 280 
individuals’ own vaccination and infection history, and that attention should be paid to 281 
formulating vaccination strategies that accurately predict and pre-empt increases in the case 282 
curve. These conclusions were facilitated by a mathematical model that included realistic details 283 
of human behaviour based on established results in social psychology, illustrating that models 284 
with greater psychological realism can be useful for informing future public health interventions 285 
that address barriers to vaccination. 286 
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METHODS  287 
This study used a network-based mathematical model of SARS-CoV-2 transmission, disease 288 
progression, and vaccination behaviours in the population of Georgia, USA over a twenty-month 289 
period from January 2021 to August 2022 – i.e., the month in which eligibility for the first vaccine 290 
dose began to expand in Georgia to the month before the start of the bivalent booster rollout. 291 
Our model was built using EpiModelCOVID, a previously validated extension of the EpiModel 292 
software platform, which uses the statistical framework of exponential random graph models 293 
(ERGMs) to simulate dynamic contact networks.31 For this study, we built a social-psychological 294 
decision-making model into the vaccination processes within EpiModelCOVID. The model code 295 
and software are available on GitHub (https://github.com/EpiModel/COVID-Vax-Decisions). 296 

Core Model Structure. Our model tracked 100’000 persons (agents) representing a sampled 297 
population of the state of Georgia, USA. Agents were assigned an initial age according to 298 
Georgia’s age pyramid as of 2020.32 They could exit the model population at any time through 299 
death (general or disease-specific), while new agents entered the model population exclusively 300 
through birth. All modelled agents were members of two distinct, overlapping contact network 301 
layers and transmission environments: community and household.  302 

For the community network layer, all contacts (edges) were non-persistent (no duration). 303 
Based on the COVIDVu study, we estimated the mean daily degree for this network layer to be 304 
13.8 across all agents and 5.7 across agents aged 65 years or older.33 The POLYMOD social 305 
mixing study extrapolated to U.S. settings was used to parameterize age mixing, with the within-306 
group contact proportion set at 69% for those aged under 18 years, 81% for 18- to 64-year-olds, 307 
and 21% for 65+-year-olds.34 The community environment was estimated with an ERGM from 308 
which we then simulated at each timestep. 309 

The household network layer was comprised of persistent contacts, lasting from entry 310 
into the population to simulation end or death. Each agent was assigned to a household 311 
according to an algorithm based on U.S. Census data: 1) 29.2% of households had at least one 312 
member aged under 18 years;35 2) 79.1% of households had at least one 18- to 64-year-old;35 313 
3) 31.4% of households had at least one 65+-year-old;35 4) the average household had 2.7 314 
persons;36 5) every household with a child also had at least one adult; and 6) 97.9% of children 315 
had an 18- to 64-year-old in their household.37 We took this approach due to the lack of recent 316 
social mixing data for children in U.S. settings. Household edges were specified such that each 317 
household was fully saturated and each edge was within a single household. Community and 318 
household contacts were subsequently combined to create a multi-layer dynamic network. 319 
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 Our model represented the natural history of COVID-19 using a SEIRS framework. 320 
Susceptible agents could stochastically transition to the exposed state upon contact with an 321 
infected person (i.e., a discordant contact). The daily probability of infection given a discordant 322 
contact depended on the vaccination status of the susceptible agent, the symptom status of the 323 
infectious agent, and whether the contact was household- or community-level. Newly infected 324 
agents were stochastically assigned to either an asymptomatic or symptomatic clinical pathway, 325 
with a subset of symptomatic agents subsequently designated for hospitalization. The 326 
probabilities of symptoms and hospitalization both depended on age and vaccination status. 327 
Agents in the hospitalized state experienced a higher age-specific mortality rate than those in 328 
other states. Once recovered, agents stochastically re-entered the susceptible state, where they 329 
could be reinfected. Parameters defining the model’s disease progression, transmission, and 330 
clinical epidemiology (Table 1) were either drawn from existing literature or calibrated as 331 
described below.  332 

Vaccination Decision-Making Process. Each adult agent was assigned a binary vaccination 333 
“type”– resistant or willing – such that the prevalence of vaccine willingness by age group at the 334 
start of the vaccine rollout matched the empirical distribution in late 2020.38,39 The vaccination 335 
decision-making process for agents aged under 18 years was not explicitly modelled, given 336 
fundamental differences in this process for minors versus adults. Instead, children received 337 
vaccine doses according to age-specific rates. 338 

In accordance with the law of inertia in decision-making,18 agents maintained their initial 339 
attitude toward vaccination until an adverse event (“nudge”) prompted them to change – 340 
meaning disease outcomes could affect vaccination behaviour, which in turn affected future 341 
disease outcomes. Four such nudges were considered: 1) experiencing vaccine side effects 342 
could prompt a vaccine willing individual (who had received at least one dose) to become 343 
vaccine resistant; 2) experiencing an infection while fully vaccinated (a “breakthrough infection”) 344 
could prompt a vaccine willing individual (who had received at least two doses) to lose trust in 345 
the vaccine and become vaccine resistant; 3) increased hospitalized prevalence in the 346 
population could prompt any vaccine resistant individual to grow more concerned about the 347 
spread of COVID-19 and become vaccine willing; and 4) an additional willing-to-resistant 348 
pathway covered all other reasons for developing vaccine resistant attitudes (among individuals 349 
who had received at least one dose), such as social conformity or media influences. For this 350 
fourth miscellaneous pathway, the timing of an individual’s last vaccine dose was used as a 351 
proxy for the timing of the unknown precipitating event prompting resistance towards future 352 
doses. 353 
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To parameterize the first two nudges, we identified: 1) the odds ratio comparing the 354 
likelihood of booster willingness for those who had versus had not missed work due to side 355 
effects from the primary vaccination series;40 and 2) the odds ratio comparing the likelihood of 356 
booster willingness for those who had received the primary vaccination series and had versus 357 
had not been subsequently infected.41 We converted these odds ratios to one-time probabilities 358 
of being “nudged” towards vaccine resistance. For the third nudge, we estimated the probability 359 
that a vaccine-eligible adult in Georgia was convinced to vaccinate by an increase in 360 
hospitalized COVID-19 prevalence between July and September 2021, using the finding that 361 
38% of that period’s surveyed late adopters were motivated by concern about local 362 
hospitalizations.9 The probabilities of behaviour change associated with the fourth nudge were 363 
treated as free parameters in the calibration process. 364 

At any timestep, agents could stochastically undergo vaccination if they were not 365 
currently symptomatic, had not tested positive in the last two weeks, were vaccine willing (for 366 
adult agents), and were currently eligible for their next dose based on their age group and 367 
vaccination history. Vaccination reduced the risk of disease acquisition, the risk of progression 368 
to symptomatic disease, and the risk of eventual hospitalization. Vaccine immunity waned over 369 
time following an exponential decay with a half-life of 80 days.42 370 

Calibration. The per-act infection probability was calibrated so that the simulated number of 371 
incident infections by month matched the confirmed case counts reported by the Georgia 372 
Department of Public Health (GDPH),43 adjusted to account for underreporting44 and scaled to a 373 
population of 100’000. To account for time-varying coverage of non-pharmaceutical 374 
interventions and the introduction of new variants, this per-act infection probability was boosted 375 
by 34% for two periods of increased transmission and suppressed by 40% for three periods of 376 
decreased transmission. The age-specific hospitalization proportions and disease-related 377 
mortality multiplier were calibrated so that the resultant COVID-19 related hospital admissions 378 
and deaths by month matched GDPH reports.43 Finally, age- and dose-specific vaccination rates 379 
and the nudge probabilities for the miscellaneous willing-to-resistant pathway were calibrated so 380 
that the resultant vaccine coverage by age, dose, and month matched the levels reported by the 381 
CDC for Georgia.4 382 

Intervention Scenarios. We compared our calibrated model to counterfactual scenarios that 383 
explored hypothetical interventions on three of the four nudges in our model. These 384 
interventions did not affect the precipitating events, but rather the agents’ responses to them. 385 
Specifically, we 1) kept the probability that vaccine side effects would prompt a vaccine willing-386 
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to-resistant switch constant across all scenarios; 2) decreased the probability that a 387 
breakthrough infection would prompt a willing-to-resistant switch (the Breakthrough Nudge 388 
Probability or Breakthrough NP) to as little as zero; 3) increased the probability that a spike in 389 
hospitalizations would prompt a resistant-to-willing switch (the Hospitalization Nudge Probability 390 
or Hospitalization NP) to as much as two times the reference value; and 4) decreased the 391 
probability of a vaccine willing-to-resistant switch related to something other than side effects or 392 
breakthrough infections (the Miscellaneous Nudge Probability or Miscellaneous NP) to as little 393 
as zero. We then also explored the impact of applying these changes to only older adults (65+-394 
year-olds) or only younger adults (18- to 64-year-olds) instead of all adult agents.  395 

Since data on the duration of COVID-19 immunity was limited, we performed sensitivity 396 
analyses on two particularly uncertain parameters: the average duration of natural immunity to 397 
infection after recovery and the half-life of vaccine-induced immunity. 398 

Model Output. For each model scenario, we tracked the incidence rate of SARS-CoV-2 399 
infections, the COVID-related death rate, and the per-dose vaccine coverage by age group over 400 
time. The median and 50% simulation interval (SI) of each output across 128 simulations per 401 
scenario were reported.402 
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TABLES & FIGURES 
Table 1. Selected model parameters  

Parameter Value Source 

Population & Household Characteristics   

Population proportion by age group*  0.233, 0.620, 0.147 [32] 

Avg. household size 2.7 [36] 

Proportion of households with members in 
given age group* 0.292, 0.791, 0.314 [35] 

Proportion of children living with adult under 65 0.979 [37] 

Community Contact Patterns   

Overall daily mean degree 13.8 [33] 

Daily mean degree for persons aged 65+ 5.7 [33] 

Associative mixing proportion by age group* 0.69, 0.81, 0.21 [34] 

Transmission & Natural History   

Reference per-act transmission probability 0.050 Calibrated 

Relative transmission risk if asymptomatic  0.5 [45] 

Contacts per household pairing per day  3 Calculated from [46] 

Proportion symptomatic by age group^ 0.573, 0.642, 0.760, 0.800, 0.813, 
0.814, 0.769, 0.723, 0.666 [47] 

Proportion hospitalized by age group^ 0.006, 0.006, 0.008, 0.015, 0.021, 
0.027, 0.036, 0.046, 0.054 

Calibrated;  
ratios from [47] 

Avg. duration of latent period, in days 5.5 [48] 

Avg. duration of pre-clinical infection, in days 1.5 [45] 

Avg. duration of clinical infection, in days 3.5 [45] 

Avg. duration of hospitalization, in days 10.0 [49] 

Avg. duration of asymptomatic infection, in days 5.0 [45] 

Avg. duration of natural immunity, in days 300 [42] 

General annual mortality rate, in deaths per 
100'000 persons per year† 

608, 30, 13, 22, 63, 116, 143, 187, 228, 
300, 416, 600, 945, 1’453, 1’952, 2’817, 
4’369, 7’159, 15’626 

[50] 

COVID-related mortality multiplier 1800 Calibrated 

Vaccination   

Proportion initially vaccine willing‡ N/A, N/A, 0.70, 0.75, 0.91 [38] and [39] 

Hospitalization nudge probability 0.102 Calculated from [9] 

Side effect nudge probability 0.073 [40] 

Breakthrough infection nudge probability 0.125 [41] 

Miscellaneous nudge probability (post Dose 1)‡ N/A, N/A, .18, .18, .12 Calibrated 

Miscellaneous nudge probability (post Dose 2)‡ N/A, N/A, .75, .43, .35 Calibrated 
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Miscellaneous nudge probability (post Dose 3)‡ N/A, N/A, N/A, 0.50, 0.42 Calibrated 

Hospitalization threshold in cases per 100'000 36 [51] 

Time step for start of dose 1 rollout‡, # 534, 132, 84, 74, 11 [52], [53], [54], [55], [56] 

Time step for start of dose 3 rollout‡, # N/A, 368, 323, 323, 265 [57], [58], [59] 

Time step for start of dose 4 rollout‡, # N/A, N/A, N/A, 453, 453 [60] 

Dose 1 vaccination rate, per day‡ 0.0005, 0.0012, 0.0160, 0.0160, 0.0180 Calibrated 

Dose 2 vaccination rate, per day‡  0.010, 0.015, 0.300, 0.300, 0.450 Calibrated 

Dose 3 vaccination rate, per day‡  N/A, 0.003, 0.045, 0.038, 0.015 Calibrated 

Dose 4 vaccination rate, per day‡  N/A, N/A, N/A, 0.005, 0.008 Calibrated 

Relative risk of infection, by dose 0.324, 0.112, 0.120, 0.120 [61], [62] 

Relative risk of symptoms, by dose 0.40, 0.09, 0.09, 0.09 [63], [62] 

Relative risk of hospitalization, by dose 0.30, 0.02, 0.07, 0.07 [63], [62] 

Per-dose probability of side effects 0.18 [40] 

Half-life of vaccine immunity, in days 80 [42] 

* Values displayed for the following age groups: <18, 18-64, and 65+ yrs. 
^ Values displayed for the following age groups: <10, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, and 80+ yrs. 
† Values displayed for the following age groups: <1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-
49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, and 85+ yrs. 
‡ Values displayed for the following age groups: <5, 5-17, 18-49, 50-64, and 65+ yrs. 
# Day 1 corresponds to 01 January 2021 
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Table 2. Proportion of adult population vaccinated, by dose and age group, for select scenarios. Green indicates higher 
coverage than the reference level and orange indicates lower (by at least 0.5%). Corresponding 50% simulation intervals are 
available in the Appendix in Table S3. 
 

Scenario Ages 18 - 49 Ages 50 – 64  Ages 65+ 

Hospitalization 
Nudge Prob. 

Breakthrough 
Nudge Prob. 

Miscellaneous 
Nudge Prob. 

Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3 Dose 4 Dose 1 Dose 2 Dose 3 Dose 4 

% % % % % % % % % % % 

Ref. Ref. Ref. 74.2 61.4 18.3 74.2 61.4 36.2 7.3 89.8 78.9 51.8 17.0 

200% of Ref. Ref. Ref. 77.0 64.9 22.8 77.0 64.9 40.4 8.0 91.0 81.1 55.8 18.1 

Ref. 50% of Ref. Ref. 74.2 61.4 18.4 74.2 61.4 36.2 7.3 89.8 78.9 51.9 17.1 

Ref. 0% of Ref. Ref. 74.2 61.3 18.3 74.2 61.3 36.3 7.4 89.8 78.9 52.0 17.2 

200% of Ref. 50% of Ref. Ref. 77.0 64.9 22.9 77.0 64.9 40.5 8.0 91.0 81.1 55.8 18.1 

200% of Ref. 0% of Ref. Ref. 77.1 64.9 22.9 77.1 64.9 40.6 8.0 91.0 81.1 55.9 18.2 

Ref. Ref. 50% of Ref. 74.1 67.2 41.5 74.1 67.2 53.5 15.9 89.7 83.7 67.9 30.5 

Ref. Ref. 0% of Ref. 71.4 70.4 66.2 71.4 70.4 71.7 29.1 88.8 87.6 85.1 49.1 

200% of Ref. Ref. 50% of Ref. 77.0 70.4 45.4 77.0 70.4 57.2 16.5 90.9 85.4 70.5 31.3 

200% of Ref. Ref. 0% of Ref. 71.4 70.4 66.2 71.4 70.4 71.6 29.1 88.8 87.6 85.1 49.1 
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Table 3. Overall infection rate and infections averted by end of simulation, for select scenarios. Green indicates fewer 
infections than the reference level and orange indicates more. Corresponding 50% simulation intervals are available in the Appendix 
in Table S4. 
 

Scenario Total Infections 
per 100'000 PD 

Infections Averted 
per 100'000 PD 

Percent of 
Infections Averted 

Infections Averted 
per Addtl. 1’000 

Doses 
Hospitalization 
Nudge Prob. 

Breakthrough 
Nudge Prob. 

Miscellaneous 
Nudge Prob. n n % n 

Reference Reference Reference 131.1 - - - 

200% of Reference Reference Reference 125.8 5.3 4.0 391.0 

Reference 50% of Reference Reference 131.2 -0.2 -0.1 -232.0 

Reference 0% of Reference Reference 131.1 0.0 0.0 1’296.0 

200% of Reference 50% of Reference Reference 125.7 5.3 4.1 388.6 

200% of Reference 0% of Reference Reference 125.8 5.2 4.0 377.9 

Reference Reference 50% of Reference 116.0 15.0 11.4 394.1 

Reference Reference 0% of Reference 100.1 30.9 23.6 391.8 

200% of Reference Reference 50% of Reference 112.1 18.9 14.4 392.8 

200% of Reference Reference 0% of Reference 99.8 31.3 23.9 396.2 

 
  



   

 5 

Table 4. Overall death rate and deaths averted by end of simulation, for select scenarios. Green indicates fewer deaths than 
the reference level and orange indicates more. Corresponding 50% simulation intervals are available in the Appendix in Table S5. 
 

Scenario Total Deaths per 
100'000 PD 

Deaths Averted 
per 100'000 PD 

Percent of Deaths 
Averted 

Deaths Averted 
per Addtl. 1’000 

Doses 

Hospitalization 
Nudge Prob. 

Breakthrough 
Nudge Prob. 

Miscellaneous 
Nudge Prob. n n % n 

Reference Reference Reference 0.363 - - - 

200% of Reference Reference Reference 0.344 0.018 5.1 1.4 

Reference 50% of Reference Reference 0.364 -0.002 -0.4 9.2 

Reference 0% of Reference Reference 0.360 0.003 0.7 10.3 

200% of Reference 50% of Reference Reference 0.346 0.017 4.6 1.3 

200% of Reference 0% of Reference Reference 0.342 0.020 5.6 1.4 

Reference Reference 50% of Reference 0.305 0.058 15.9 1.5 

Reference Reference 0% of Reference 0.254 0.108 29.8 1.4 

200% of Reference Reference 50% of Reference 0.303 0.060 16.5 1.2 

200% of Reference Reference 0% of Reference 0.250 0.112 31.0 1.4 
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Figure 1. Model calibration results for cases, hospitalizations, and deaths. The 
reference model was calibrated to (1) an estimate of the total number of incident SARS-
CoV-2 infections, (2) the reported number of confirmed COVID-19-related hospital 
admissions, and (3) the reported number of confirmed COVID-19-related deaths, all per 
100’000 persons in Georgia per month.  
 

 
 
 
  



   

 7 

Figure 2. Model calibration results for vaccine coverage. The reference model was also 
calibrated to the reported vaccine coverage levels in Georgia by age group, dose, and 
month. 
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Figure 3. Vaccines administered, incidence rate, and death rate by model scenario. The 
hospitalization nudge probability (Hosp. NP) was increased from 100% to 200% of its reference 
value, the breakthrough nudge probability (Breakthrough NP) was decreased from 100% to 0% 
of its reference value, and the miscellaneous nudge probabilities (Misc. NP) were decreased from 
100% to 0% of their reference values, all in increments of 10%. For each parameter combination, 
the median number of vaccine doses administered per run, the median infection rate per 100’000 
person-days, and the median disease-related death rate per 100’000 person-days across 128 
runs are displayed.  
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Figure 4. Epidemic curve vs. cumulative vaccines administered over time for select 
scenarios. The blue regions represent the (median) incident infections by day across the full 
population of 100’000 nodes. The coloured lines represent the difference between the (median) 
cumulative number of vaccine doses administered across all age groups in the scenario of 
interest and the corresponding (median) number from the reference scenario, as of each point in 
time. Note that the secondary y-axes differ across panels. 
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