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Timely detection of Barrett’s esophagus, the pre-malignant condition of esophageal adenocarcinoma,
can improve patient survival rates. The Cytosponge-TFF3 test, a non-endoscopic minimally invasive
procedure, has been used for diagnosing intestinal metaplasia in Barrett’s. However, it depends on
pathologist’s assessment of two slides stained with H&E and the immunohistochemical biomarker TFF3.
This resource-intensive clinical workflow limits large-scale screening in the at-risk population. Deep
learning can improve screening capacity by partly automating Barrett’s detection, allowing pathologists
to prioritize higher risk cases. We propose a deep learning approach for detecting Barrett’s from
routinely stained H&E slides using diagnostic labels, eliminating the need for expensive localized expert
annotations. We train and independently validate our approach on two clinical trial datasets, totaling
1,866 patients. We achieve 91.4% and 87.3% AUROCs on discovery and external test datasets for
the H&E model, comparable to the TFF3 model. Our proposed semi-automated clinical workflow can
reduce pathologists’ workload to 48% without sacrificing diagnostic performance.

Introduction

Early detection of cancer offers the best chance of long-term
survival and good quality of life for patients. This is the main
driver behind initiatives aimed at early detection in esophageal
adenocarcinoma (EAC), which has a poor 5-year survival rate
below 20%1, primarily due to late diagnosis2. Barrett’s esopha-
gus (BE) is the pre-malignant tissue that presents an opportunity
to detect and treat EAC early. However, it is estimated that less
than 20% of patients with BE are diagnosed3, resulting in the
majority of EAC cases being diagnosed without the possibility
of early treatment.

Currently the standard diagnostic test for BE is endoscopic
biopsies with histopathology in patients who are at higher risk
due to gastroesophageal reflux disease (GERD) symptoms. Con-
sidering the high prevalence of GERD (10–30%) in the adult
population4, screening at scale is challenging, as endoscopy is
resource-intensive. Of these patients, an estimated 5–12% will
be diagnosed with BE5,6. Increasing the detection and monitor-
ing of BE is therefore a priority for EAC early diagnosis and
treatment.

In recent years, minimally invasive capsule sponge devices
such as the Cytosponge have been developed to enable large-
scale screening. The capsule sponge samples cells throughout
the length of the esophagus in a short procedure performed by

a nurse in a clinic, and accurately identifies patients with BE
or early cancer when coupled with specific biomarkers on a
slide7–10. The biomarker trefoil factor 3 (TFF3) identifies goblet
cells, the hallmark for intestinal metaplasia (IM) in BE8,11, and
the biomarker p53 detects malignant transformation of BE12.
Lastly, hematoxylin and eosin (H&E) staining is used for cellular
atypia as an indicator of pre-malignant changes.

Similar to endoscopic biopsies, these tests rely on manual
inspection of histopathology specimens by pathologists for diag-
nosis. In current practice, a histopathologist inspects each of the
three slides (TFF3, H&E, p53) for every patient. A BE diagnosis
is made by inspecting both H&E for cellular morphology and
TFF3 for goblet cells7. The complete visual inspection of a case
may take the pathologist 8–10 minutes. As with any large-scale
screening, pathologist spends most of their time examining neg-
ative cases, instead of prioritizing high-risk cases; this limits the
scalability of the test for population-level screening.

Deep learning has demonstrated potential to improve screen-
ing coverage with successful application to digital histopatho-
logical images13. Such methods have illustrated promising diag-
nostic performance in cancer detection and classification14,15. In
recent years, deep learning approaches have been shown to learn
the spatial organization of cells in tumors16, classify different
tumor types17, and learn histopathological characteristics related
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to the underlying genomic mutations18. A common approach
to image classification problems in histopathology has been su-
pervised deep learning based on localized expert annotations in
whole-slide images9, where smaller regions in such large images
(several gigabytes in size) need to be visually inspected and
manually annotated by pathologists. Creating such annotations
is time- and resource-intensive, limiting the scalability of the su-
pervised deep learning methods for model development. Recent
improvements in weakly supervised deep learning19,20 based on
the multiple instance learning (MIL) paradigm21, enable model
training from whole-slide images, using the diagnostic infor-
mation rather than specialized local annotations. This makes it
possible to leverage existing datasets composed of slides and
pathologists’ routine diagnostic reports, including labels for ad-
jacent slides of the same patient. The approach can be scaled to
larger sample sizes for training more effective and robust deep
learning models. Consequently, the approach can be extended
to new domains such as screening examinations for other cancer
types in diagnostic histopathology.

In this paper, we propose a weakly supervised deep learning
approach based on MIL to predict the presence of IM for the
detection of BE directly from the routinely stained H&E whole-
slide images (slides) of capsule sponge samples, without requir-
ing TFF3 staining (Fig. 1a–b). We develop and test our approach
on a discovery dataset from the DELTA implementation study
and externally validate it on the BEST2 multi-center clinical
trials dataset7 (Fig. 1c). To ensure model interpretability, we con-
duct qualitative, quantitative and failure-modes analysis of the
deep learning model outputs. We propose two semi-automated
machine learning (ML)-assisted clinical workflows for Barrett’s
screening, which can considerably reduce the pathologists’ man-
ual workload to 48% without loss in diagnostic performance,
and TFF3 staining to 37%, respectively.

Results

Weakly supervised deep learning models can accurately de-
tect BE from H&E and TFF3 slides. The discovery dataset
consists of 1,141 patient samples with paired pathology data con-
taining adjacent H&E and TFF3 slides. It was randomly divided
into development and test datasets using an 80:20 split (Fig. 1c).
Two models were trained using four-fold cross-validation on the
discovery development set following the BE-TransMIL model
architecture (Fig. 1b, Methods), and evaluated on the discovery
test set. The first model, H&E BE-TransMIL, addresses the
main aim of detecting BE from H&E slides directly. The second
model, TFF3 BE-TransMIL, was trained on TFF3 slides—this
is intuitively an easier computer vision task, as goblet cells are
distinctively stained as dark brown.

We benchmarked four different types of image encoders
for each of the two models, namely, SwinT22, DenseNet12123,
ResNet1824, and ResNet5024 for feature extraction (Methods).
Cross-validation metrics on the discovery development dataset
reveal that the model with the ResNet50 image encoder achieves
the highest performance for detecting BE from H&E and TFF3
slides (Extended Data, Table 1 and Table 2). For the H&E
model, ResNet50 achieves the highest area under receiver oper-

ating characteristic curve (AUROC) (mean ± standard deviation:
0.931 ± 0.021) and area under precision–recall curve (AUPR)
(0.919 ± 0.031) among the four encoders. For the TFF3 model,
ResNet50 achieves the highest or consistent AUROC (0.967
± 0.003) with a consistent AUPR (0.951 ± 0.014), though
DenseNet121 achieves the highest AUPR.

Summarizing the performance of the respective best models
on the discovery test set at the selected operating points (see
Methods for details), the H&E BE-TransMIL model achieves
specificity: 0.922 (95% CI: 0.874–0.963), sensitivity: 0.727
(95% CI: 0.647–0.833) and AUROC: 0.914 (0.869–0.951)(Fig. 2a).
The TFF3 BE-TransMIL model reaches specificity: 0.965 (95%
CI: 0.919–0.986), sensitivity : 0.791 (95% CI: 0.707–0.882)
and AUROC: 0.939 (95% CI: 0.901–0.971) (Fig. 3a). Note that
the TFF3 BE-TransMIL model serves as the upper bound for
the model trained with the adjacent H&E-stained slides.

Both H&E and TFF3 models focus on regions with goblet
cells – the hallmark of IM for detecting BE. A key feature
of BE-TransMIL models is a learnable attention mechanism,
whereby the slide prediction is computed from the weighted
feature representations of individual image tiles. Consequently,
we can analyze distribution of attention weights and assess tiles
contributing most (or least) to the model’s prediction. To ensure
interpretability of the trained deep learning models’ outcomes,
we perform detailed qualitative and quantitative analysis by
investigating regions where the H&E and TFF3 models relatively
focus on, including visual inspection of slide attention heatmaps
and tile saliency maps, and TFF3 stain–attention correspondence
analysis.

We analyze the slide attention heatmaps of the model and
visually inspect high- and low-attention tiles, each of size 224 ×
224 pixels (see Methods for details). For the H&E BE-TransMIL
model, we analyze a true BE-positive slide (Fig. 2c) and observe
that tiles that receive high attention (red regions in attention
heatmap) contain goblet cells, indicative of BE. Moreover, these
regions exhibit brown (positive) TFF3 staining in the adjacent
TFF3 slide that further validates the presence of BE. Similarly,
we confirm that the tiles with very low attention (blue regions
in attention heatmap) do not contain goblet cells, and depict
no brown staining in the adjacent TFF3 slide. For a true BE-
negative slide (Fig. 2c), the attention heatmap shows uniform
attention values without any high-attention regions, reflecting
the absence of goblet cells. The adjacent TFF3 slide also does
not indicate any positive brown staining. We repeat the analysis
on the corresponding TFF3 slide with the attention heatmaps
of the TFF3 BE-TransMIL model for the same BE-positive and
negative slides (Fig. 3c and d). Again, we observe that the
high-attention tiles indicate goblet cells clearly visible with dark
brown TFF3 stain for BE-positive slide, and nearly uniform low-
attention tiles without any brown TFF3 stain in the BE-negative
slide.

In order to understand the relative importance given by trained
model encoders at a more fine-grained level in the tiles of a slide,
we generated saliency maps using gradient-weighted class ac-
tivation mapping (Grad-CAM)25 for individual tiles (Methods,
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Dataset Study Patients (Slide pairs) BE-positive BE-negative

Discovery development set (train, validation) DELTA 912 348 (38.2%) 564 (61.8%)

Discovery test set DELTA 229 87 (38.0%) 142 (62.0%)

External test set (holdout) BEST2 725 329 (45.4%) 396 (54.6%)

Total 1,866 764 (40.9%) 1,102 (59.1%)
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Fig. 1 Method overview for automatic detection of Barrett’s esophagus (BE) from H&E and TFF3 slides, including dataset preprocessing,
model training, and data used in the study. a, H&E and TFF3 stained histopathological slides are scanned from adjacent sections and
preprocessed using distinct pipelines for H&E and TFF3, as shown in purple and blue boxes, respectively. b, Preprocessed slides are split on-the-fly
into non-overlapping tiles and used to train weakly supervised BE-TransMIL models end-to-end from H&E and TFF3 slides separately. A similar
training procedure is performed for both stains. c, A summary of the datasets utilized in the study, with percentages of BE-positive and negative
cases.
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Fig. 2 Quantitative and qualitative analysis of the H&E BE-TransMIL (ResNet50) model on the discovery test dataset. a, ROC curve and
metric values (95% confidence intervals (CI)) at the selected operating point. b, Example of a true positive H&E slide. Attention heatmap is
heterogeneous, showing regions of high and low attentions that correspond to TFF3 staining in the adjacent TFF3 slide. Goblet cells visible in the
tiles with high attention values; tiles with low attention values do not show any goblet cells. c, Example of a true negative H&E slide. Attention
heatmap shows uniform attention without any high-attention regions; high- and low-attention tiles are without any goblet cells. Color bars along
heatmaps show the range of attention values with marked mean value.
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Fig. 3 Quantitative and qualitative analysis of the TFF3 BE-TransMIL (ResNet50) model on the discovery test dataset. a, ROC curve and
metric values (95% CI) at the selected operating point. b, Example of a true positive TFF3 slide. Brown TFF3-stained goblet cells are visible in the
tiles with high attention values, whereas tiles with low attention values do not show any brown TFF3 stain or goblet cells. c, Example of a true
negative TFF3 slide. Attention heatmap shows uniform attention without any markedly high-attention regions; tiles with highest and lowest attention
values do not have any positively stained TFF3 regions, indicating absence of goblet cells.
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Extended Data, Fig. 2). We observe that, for both H&E and
TFF3 model encoders, there is visual agreement between the
locations of goblet cells indicative of BE, and saliency map acti-
vations. Specifically, for the H&E model, we observe that higher
importance is given by the models to the mucin-containing gob-
let cells (translucent, bluish appearance). The TFF3 model
attributes more importance to regions with goblet cells showing
positive TFF3 staining.

Going beyond qualitative visual inspection on few slides,
we want to quantitatively establish across the discovery test
dataset whether high-attention H&E tiles correspond to brown
staining on the adjacent TFF3 slides, indicating the presence
of goblet cells. A stain–attention correspondence analysis was
performed, involving the spatial registration of TFF3 slide to the
corresponding H&E slide (Extended Data, Fig. 3) extracting the
3,3’-diaminobenzidine (DAB) stain ratio in the TFF3 tiles, and
computing the correspondence of the H&E attention heatmaps
with the TFF3 stain ratios (Fig. 4a), see Methods for details. We
use the same BE-positive and negative slides as in Fig. 2c–d and
3c–d to illustrate the slide-level stain–attention correspondence.

For the example slides of the H&E BE-TransMIL model
(Fig. 4b), we find that in the attention plot of the BE-positive
slide, high-attention tiles overlap with high stain ratio values.
The higher attention values concentrate on the tiles with high-
est TFF3 expression, showing a high attention–stain agreement.
The attentions are not uniform and become lower as stain ratio
decreases. A Pearson’s correlation coefficient r > 0.5 between
stain and attentions substantiates a high correspondence. For
the BE-negative slide, attention is largely uniform as the model
detects no goblet cells, and attention values have a higher nor-
malized entropy than BE-positive slide. All 50 true BE-positive
H&E slides present a positive correlation between the stain ra-
tio and attention weights, with mean ± standard deviation of
0.35 ± 0.23 and range 0.01–0.84. Additionally, the normalized
attention entropies across all slides are higher for BE-negative
slides, indicating more uniform and diffused attentions com-
pared to BE-positive slides.

For the the example slides of the TFF3 BE-TransMIL model
(Fig. 4c), we observe that high-attention tiles overlap with high
stain ratio values and vice-versa with r > 0.5 for the BE-positive
slide, similar to the observation for the H&E model. For the
BE-negative slide, attention values are diffuse, with a higher
normalized entropy than the BE-positive slide. The latter obser-
vation is supported by the box and strip plots of entropies over
all slides. Again, all stain–attention correlation coefficients r for
the 58 true-positive TFF3 slides are positive, with mean ± std.
dev. of 0.28 ± 0.19 and range 0.02–0.67.

Failure-modes analysis reveals complex cases for BE detec-
tion from histopathological slide. To specifically understand
where the models were unable to correctly detect BE, we eval-
uated the incorrectly predicted cases in the discovery test set
(see Methods for details). We observe false prediction rates for
the H&E model (27.3% false negative (FN), 7.8% false positive
(FP)) and TFF3 model (20.9% FN, 3.5% FP) on the discovery
test set (Fig. 2a, Fig. 3a). Our failure-modes analysis (see Ex-

tended Data, Table 4 for error quantities) reveals complex cases
for which visual BE detection from histopathological slides is
challenging.

We first focus on false negatives (FNs) due to their high inci-
dence rate and clinical relevance. Out of all the FNs (Extended
Data, Table 4), the majority (56% of the total FNs) are shared
across both the H&E and TFF3 BE-TransMIL models. An ex-
pert pathologist reviewed these shared cases and reported that, in
majority of the shared cases (48%), the goblet cell (i.e. hallmarks
of IM) groups were not well-represented on the H&E slide, in
28%, there were small or few groups of goblet cells, and in 16%
of these cases, the H&E slide was not well-preserved and mucin
was not clearly visible. These observations suggested that such
features may not be representative in the training dataset and
were difficult to identify as positives. In addition, we analyzed
the unique FNs of each model. H&E-only FNs (38% of the total
FNs) may indicate ‘pseudo-adjacent’ tissue sections, wherein
a TFF3 slide contains goblet cells but the paired H&E slide,
obtained farther along the tissue block, may not. TFF3-only
FNs (6% of the total FNs) contain background noise with low
contrast between foreground tissue and background, and higher
levels of stain blush (a faint or lower intensity staining, not nec-
essarily associated with the location of goblet cells; also noticed
in a few true negative cases), leading to nearly uniform atten-
tions and a negative prediction. In summary, the majority of FNs
were observed as non-trivial to visually detect BE by the pathol-
ogist, with none or sparse goblet cells in the H&E slide and
unclear or equivocal staining in the adjacent TFF3 slide. These
cases were labeled BE-positive by default to avoid missing any
suspicious cases by the Cytosponge-TFF3 test; this observa-
tion informs our deployment strategy to design workflows to
maximize specificity.

In the cases that were FP calls (Extended Data, Table 4), we
observe that the shared FPs for the H&E and TFF3 BE-TransMIL
models are much fewer (23% of the total FPs) than the shared
FNs. Qualitative analysis of the shared and H&E-only FP slides
reveals that very few (1–2) tiles show high attentions suggest-
ing goblet cells. This appears to be related to the presence of
pseudogoblet cells, which have a goblet cell-like appearance in
the H&E slide and non-specific staining on the adjacent TFF3
slide26. Other artifacts were also mistaken by the models as
goblet cells with high attentions due to darker intensities resem-
bling positive TFF3 staining (e.g. bubbles’ borders), and other
non-specific staining.

The trained model for BE detection from H&E slides gener-
alizes well to an external dataset. We used an external dataset
of 725 cases from the multi-center BEST2 case–control clinical
trial study7 for external validation (Fig. 1c, Methods). We ob-
serve that the H&E BE-TransMIL model achieves 0.873 (95%
CI: 0.844–0.899) AUROC (Fig. 5a). The model achieves a
comparable performance on the external test dataset, i.e. sim-
ilar to the discovery test dataset (Fig. 2a) with 0.914 (95% CI:
0.870–0.952) AUROC. In the visual inspection of the attention
heatmaps (Fig. 5b–c), we find high-attention tiles containing
goblet cells for the BE-positive slide and uniform attention for
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Fig. 4 Model attentions of BE-TransMIL models show high correspondence with TFF3 stain in true positive slides, and are uniform and
diffused for true negative slides. a, Overview of TFF3 stain ratio computation. Left: slide-level attention plots for true positive slide (overlap with
stain ratio, Pearson correlation r, and entropy) and true negative slide (with entropy). Right: Overlay of box and strip plots of normalized entropy of
attention distributions of all slides in the test dataset using b, H&E BE-TransMIL (ResNet50) model and c, TFF3 BE-TransMIL (ResNet50) model.
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BE-negative slide, as expected. Note that the H&E stain inten-
sity of the external example slide is different from the H&E stain
intensity of the example slide in the discovery dataset, owing to
different staining protocols of the two datasets (Methods).

The average predictive performance of a pathologist on Cy-
tosponge samples from the BEST2 study dataset with respect
to endoscopy labels is discussed in9, with a specificity of 0.927
and sensitivity of 0.817. We observe that on the external dataset
from the same study, our weakly supervised deep learning model
achieves a specificity of 0.881 and sensitivity of 0.720 at the se-
lected operating point using only pathologists’ diagnostic labels.
Although, the model performance is not directly comparable to
the pathologist’s predictive performance, this observation on the
BEST2 study informs the design of semi-automated ML-assisted
workflows, as discussed in the next section.

Proposed ML-assisted workflows can substantially decrease
manual review workloads. Integration of ML-assisted work-
flows in clinical practice could reduce pathologist workloads
to assess histopathology slides by markedly lowering the cases
requiring pathologist’s manual review, and can improve cost-
effectiveness by reducing the need for specialized stains. Com-
paring several workflows based on the above two criteria (see
Methods), we propose two semi-automated ML-assisted work-
flows. In the first approach, we use either the H&E or TFF3
BE-TransMIL positive predictions to be followed by pathologist
review. The second approach prioritizes the H&E model alone,
such that TFF3 staining could be limited to cases with a positive
finding in H&E. These are illustrated in Fig. 6a–b (see Extended
Data, Table 5, Fig. 4 for detailed results). The workflows are
designed to optimize specificity, to enable pathologists to review
fewer negative cases and focus on the high risk cases.

The first workflow, “Pathologist reviews any positives” (Fig. 6a),
requires both H&E and TFF3 models to analyze a sample, de-
ferring to a pathologist if either model predicts positively. In
other words, if both models agree that there are no signs of BE
on either stain, the sample is assumed to be likely BE-negative
and is not manually reviewed. This configuration can achieve
1.00 sensitivity and 1.00 specificity on the discovery dataset with
respect to the pathologists’ diagnosis alone, suggesting that the
two models and pathologist are complementary (Extended Data,
Fig. 4). In this scenario, only 48% (41–55%) of samples would
need manual review, implying a 2.1× (1.8–2.5×) reduction in
pathologist’s workload. Among the samples that would reach
pathologist review (i.e. likely positives), 14–20% are expected to
be BE-positive, compared to the baseline prevalence of 5–12%
in the fully manual clinical setting5. However, this workflow
still relies on both conventional H&E and immunohistochemical
TFF3 stains, similar to the current manual screening pathway.

The second workflow, “Pathologist reviews H&E model posi-
tives”, stipulates that a sample is only manually reviewed if the
H&E alone is positive (Fig. 6b), which would require TFF3 stain-
ing only for the 37% (31–45%) of samples that get reviewed
by a pathologist. However, this workflow would result in a
lower sensitivity of 0.91 (0.84–0.96) (Extended Data, Fig. 4)
compared to the first workflow which uses both H&E and TFF3

models. In this scenario, pathologist workload could be reduced
by 2.7× (2.2–3.4×). Among the samples reaching patholo-
gist review, the observed prevalence of BE-positive would be
16–24%.

Discussion

Detection of BE from histopathology slides presently relies on
a pathologist manually inspecting both the routine H&E and
specialized TFF3 stained slides for each patient. The current
resource-intensive clinical workflow represents a big hurdle for
large-scale screening for BE using the Cytosponge-TFF3 test.
Our work has demonstrated that weakly supervised deep learn-
ing models can detect BE using only the H&E slides. Most
importantly, these models were able to identify the salient fea-
tures used by pathologists, namely goblet cells. This approach
shows that accurate models can be trained directly from the
reported histopathology at the slide-level. This is an important
difference from the previous models9, as large-scale localized
annotations in these slides require significant time and effort
from expert pathologists.

Screening for BE currently requires pathologists to spend the
bulk of their time reviewing cases that are negative. Exploring
the potential of integrating deep learning models into clinical
practice, we imagine that the first steps in a disease screening
setting would be to optimize pathologists’ manual workload to
enable them prioritize high risk cases. We suggest an alterna-
tive using semi-automated workflows, including one that uses
both H&E and TFF3 models. We estimate that the number of
cases pathologists would need to review could be cut in half
(48% current cases for manual review) without any loss of accu-
racy. This implies a 2.1× increase in screening coverage with
the same number of pathologists by screening out the negatives
and enabling pathologists to focus on positives.

We observe that our models generalize well to an external
dataset, demonstrating a comparable predictive performance as
the discovery test set. These results are encouraging, considering
the differences between the discovery and external datasets,
including the slide preparation and staining protocols, patient
populations, and reporting pathologists. The external evaluation
demonstrates that our trained models could become a stepping
stone to (semi-)automating the Cytosponge-TFF3 screening test,
potentially allowing to scale it to larger populations.

One of the limitations of this study is that, while the discovery
dataset is derived from various sites in the UK across different
patient populations, the samples were sectioned and stained at
a single site. This limitation was highlighted in the external
validation dataset which showed greater variation in the stain,
artifacts such as pen marks, and tissue preservation differences.
We could not quantify whether or how much these differences
relate to the failure cases. Future studies can account for this
by mixing these now well-characterized datasets in training and
test, as well as by continuing to include new data over time as
sample processing protocols change. An additional source of
error we observed during model development was manual errors
in extraction of slide labels from pathologists’ reports. This
process could be improved using large language models (e.g.
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Fig. 5 Quantitative and qualitative analysis of the H&E BE-TransMIL (ResNet50) model on the external dataset. a, ROC curve and metric
values (95% CI) at the selected operating point. b, Example of a true positive H&E slide. Similar to the H&E example slide of internal dataset (Fig.
2), the slide attention heatmap shows regions of high and low attentions, where goblet cells can be seen in the tiles with high attention values; tiles
with low attention values do not show any goblet cells. c, Example of a true negative H&E slide. Attention heatmap shows nearly uniform attention;
high- and low-attention tiles do not have any goblet cells.
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Proposed 
ML-assisted workflow
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review

TFF3 staining Observed 
prevalence

Sensitivity Specificity

Pathologist reviews 
any positives

48% (41-55%) 100% 17% (14-20%) 1.00 (1.00-1.00) 1.00 (1.00-1.00)

Pathologist reviews 
H&E model positives

37% (31-45%) 37% (31-45%) 19% (16-24%) 0.91 (0.84-0.96) 1.00 (1.00-1.00)

c

Pathologist reviews any positives

H&E model

TFF3 model

Pathologist
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Neg
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Pathologist reviews H&E model positives

H&E model

Pathologist
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BE-negative

Neg

Neg
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Fig. 6 Proposed ML-assisted workflows. a, Workflow “Pathologist reviews any positives” b, Workflow “Pathologist reviews H&E model positives”
c, Quantitative comparison of the proposed workflows in terms of the requirements for pathologist review as fraction of the current reviewed cases,
TFF3 staining as fraction of the current cases, observed prevalence of BE, sensitivity and specificity (with 95% CIs in parentheses). “Pos” and “Neg”
refer to BE-positive and negative, respectively.
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GPT-4) to extract diagnostic information from unstructured text,
ranging from the slide labels to clinical variables we have not
accounted for in our models.

Although we offer two options for integrating deep learning
models into the current clinical workflow, this continues to be an
area of active research. Moreover, user interfaces have recently
been introduced in ML-assisted histopathology workflows27–29,
where open questions include how specific visualizations can
best assist pathologists’ practice to accelerate their visual as-
sessment of slides or aid their diagnostic decision-making. For
instance, an overlay of model-generated attention heatmap on
the whole-slide image with the ability to adjust opacity could
help pathologists focus on the highlighted regions, leading to
expert-time savings. Future work is required to quantify ML-
assisted pathologist review times and compare with time to
confirm or reject model results.

In summary, a weakly supervised deep learning approach us-
ing only routine H&E slides enables the training of a pathologi-
cally accurate model that offers the potential to reduce pathol-
ogist workloads through semi-automated workflows, allowing
them to prioritize high risk cases, thereby facilitating large-scale
screening of BE. Furthermore, the approach requires no extra
efforts to create localized expert annotations. This also means
that future models could be trained continually in real-time as
new diagnostic data is generated, plausibly leading to further im-
provements in the performance of the trained models. Moreover,
reliance on only diagnostic labels from pathologist assessments
or reports facilitates the adoption of the approach to other screen-
ing applications in clinical histopathology.

Methods

Discovery and external evaluation datasets. The discovery
dataset consists of 1,141 cases with both hematoxylin and eosin
(H&E)- and trefoil factor 3 (TFF3)-stained whole-slide images
from patients in the DELTA implementation study (integrated
diagnostic solution for early detection of esophageal cancer
study; funded by Innovate UK; ISRCTN91655550). Ethics
approval was obtained from the East of England—Cambridge
Central Research Ethics Committee (DELTA 20/EE/0141) and
written informed consent was obtained from each patient.

The external test dataset consists of 725 cases with H&E
slides from the BEST2 (ISRCTN12730505) clinical trials11,30.
Ethics approval was obtained from the East of England—Cambridge
Central Research Ethics Committee (BEST2 10/H0308/71) and
the trials are registered in the UK Clinical Research Network
Study Portfolio (9461). Written informed consent was obtained
from each patient.

After retrieval, the Cytosponge was placed in SurePath Preser-
vative Fluid (TriPath Imaging, Burlington, NC, USA) and kept
at 4 ◦C. The sample was then processed to a formalin fixed
block7. TFF3 staining was performed on slides 2 and 15 on
serial sections according to established protocol (proprietary
monoclonal antibody) using standard protocols on a BOND-
MAX autostainer (Leica Biosystems, Newcastle upon Tyne,
UK) as previously described13. Expert histopathologists scored
the TFF3 slide in a binary fashion, where a single TFF3 positive

goblet cell is sufficient to classify the slide as positive.
In the BEST2 trial all patients underwent an endoscopy within

an hour of the Cytosponge procedure7. DELTA was a prospec-
tive trial with both known Barrett’s esophagus (BE) patients and
reflux screening patients. For this analysis, no follow-up endo-
scopic information was available. All class labels were based
on the expert pathologists’ reading of the Cytosponge slides.

Slides in both discovery and external datasets were scanned in
digital pathology image formats (NDPI and SVS, respectively),
with 5×, 10× , 20×, and 40× as the available magnifications,
with a resolution of 0.23 µm/pixel at the highest magnifica-
tion. Quality control was performed to exclude the slides whose
Cytosponge sample contained insufficient gastric tissue9. Addi-
tionally, visual quality control was performed to ensure correct
H&E/TFF3 categorization of all images.

Data preprocessing. Preprocessing was performed to mitigate
undesirable artifacts (e.g, bubbles, shadows, pen marks), stan-
dardize background effects, and to remove control tissue in
TFF3 slides. Foreground masks for H&E slides were extracted
via HistoQC31 with configuration ‘v2.1’ (https://github.com/
choosehappy/HistoQC), and all background pixels were set to a
fixed plain-white value (255, 255, 255) in the RGB color model.
Each H&E slide contains two tissue sections side-by-side, whose
separate bounding boxes were determined based on morpholog-
ical processing of the foreground masks. For the immunos-
tained TFF3 slides, the low staining contrast led to unsatisfac-
tory automatic foreground segmentation for some slides. There-
fore, tissue section bounding boxes for TFF3 slides were ob-
tained semi-automatically, using the Microsoft Azure Machine
Learning (https://azure.microsoft.com/en-us/services/machine-
learning/) data labeling tool. Foreground masks were then ob-
tained for each section using the 80th percentile of the estimated
hematoxylin concentration via stain deconvolution32, as a thresh-
old to select cell nuclei, followed by binary closing to fill in the
gaps between the cells and finally binary opening to remove
false positive pixels in the background. Both morphological
operations were applied using a disk of 8 pixels radius at 1.25×
objective magnification (equivalent to 60 µm). Lastly, the H&E
and TFF3 tissue sections were cropped and stored at a single res-
olution in TIFF format (10× objective magnification at a fixed
scale of approximately 0.92 µm/pixel), resulting in a tenfold
reduction in dataset size and improved training throughput. The
specific preprocessing pipelines for H&E and TFF3 slides are
demonstrated in Fig. 1a.

We selected a 10× objective magnification for model training
and inference, as it offers an adequate balance of contextual tis-
sue architecture and cellular morphology, specifically for goblet
cells, in the given field-of-view for a tile of 224 × 224 pix-
els (Extended Data, Fig.1). We also performed a sensitivity
study of the H&E BE-TransMIL model using different objective
magnifications at 5×, 10×, and 20× (Extended Data, Table 3).
Error bars were estimated via replication across random ini-
tializations of BE-TransMIL model parameters. We report the
performance on a 10% random data split from the discovery
development dataset, the rest 90% used for training. We found
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that 10× achieves superior overall predictive performance com-
pared to other magnifications, corroborating our visual assess-
ment of tiles containing goblet cells at different magnifications
(Extended Data, Fig.1). Additionally, we observed that 10×
magnification offers a good trade-off between slide coverage
during training phase and predictive performance, due to GPU
memory limitations.

Model description. Due to high number of pixels in a slide
(gigapixel sizes), it is not possible to process the entire slide at
once with current hardware. The most common approach is to
split the slide into tiles of equal size, such that batches of tiles
can be easily handled by computer vision encoders. In the ex-
isting supervised learning approaches, each tile is given a label
based on expert annotations of local regions on the slide (“dense
annotations”); at prediction time, the results on individual tiles
are aggregated as a proxy for the slide label9,33. Pathologists
spend significant time and effort labeling specific cellular struc-
tures on a slide that are then used to train a model to classify
new slides into one of the slide labels.

However, in a weakly supervised setting, instead of having
access to a label for each tile, only slide-level labels are available.
Classifying a set of tiles using a single binary slide label is a
form of multiple instance learning (MIL), where we call the
set of K instances (tiles) in a slide as a “bag”, and assume that
K could vary for each bag, that is, not all slides will have the
same amount of tiles. We also assume that each bag (slide) has
a binary label; in our case BE-positive or negative, and at least
one instance (tile) should be positive for the entire bag (slide)
to be positive19,21. In contrast to the supervised setting, the
ground-truth label for each slide was obtained from pathologists’
diagnostic labels for the cases, without the need to curate a
training dataset with localized manual annotations.

Preprocessed slides were used to train weakly supervised
models on H&E and TFF3 slides separately. For training and
inference, the preprocessed slide were split on-the-fly into non-
overlapping tiles of 224×224 pixels (≈ 200 µm× 200 µm) with
or without random offset (for training and inference, respec-
tively) and background tiles were excluded, using the open-
source MONAI library34. Tiling on-the-fly, as opposed to offline
pre-tiling, offers greater flexibility in generating a wider variety
of tiles that prevents the deep learning model from overfitting to
the training set. At evaluation time, all the foreground tissue tiles
in the slide were used to compute the model output (whole-slide
inference). However, during training, only a subset of tiles (bag
of size K) was used due to the limited GPU memory size. In
order to ensure that relevant tissue regions were included in the
bag during training, we applied a minimum intensity filter; this
heuristic is based on the fact that dense cellular regions have an
inherently darker appearance. Therefore, if K does not cover
the entire slide, we ensured that the most relevant regions are
selected. Additionally, we set an intensity threshold at 90% to
exclude background regions previously set to plain-white in the
preprocessing step for the H&E slides in the discovery dataset.
Finally, we applied random geometric augmentations includ-
ing 90◦ rotations and horizontal and vertical flipping to reduce

overfitting effects during training.
The network architecture, depicted in Fig. 1b, is inspired by

the model variant Transformer-MIL proposed in19. It is built
upon attention-based MIL21 paradigm, wherein a trainable mod-
ule attributes an “attention” weight to each instance (tile) in the
bag (slide). This has the benefit of being highly interpretable,
as it facilitates inspection of whether the tiles with highest at-
tention values are abnormal tissue sections that contain goblet
cells in this context. The overall model architecture is com-
posed of four main components. First, a feature extractor that
encodes each image tile into lower-dimensional feature maps; it
consists of one of the convolutional neural network (CNN) or
vision transformer encoders. Second, a dependency module that
captures spatial dependencies between individual tile maps in a
bag into compact vector representations (“tile embeddings”); it
is composed of four consecutive Transformer35 encoder layers.
Next, an attention MIL pooling module21 using a multi-layer
perceptron (MLP) with a single hidden layer of dimension 2048.
Finally, a fully-connected classifier layer that receives a linear
combination of all tile embeddings weighted by attention values
to compute the final probability to predict a label for the slide.

We benchmarked different deep learning image encoder ar-
chitectures including the ‘tiny’ version of Shifted Window Trans-
former (Swin-T)22, DenseNet12123, and two variants of ResNet24,
namely, ResNet18 and ResNet50. These encoders have achieved
promising results on a variety of computer vision tasks, such
as image classification, object detection, and segmentation. All
encoders were initialized using weights from models pretrained
on natural images. We used the highest possible bag size (K)
with each encoder, constrained by the available GPU memory.
To optimize the supported bag size K for each encoder, we
implemented activation checkpointing36, where we reduced the
amount of memory required to store intermediate activations
used to compute gradients during the backward pass, freeing up
GPU memory for larger bag sizes processing. Comparative anal-
ysis of the encoders using four-fold cross-validation (Extended
Data, Table 1, Table 2) depicts that ResNet50 (K=1200) en-
coder outperforms the other three encoders for detection of BE
from H&E and TFF3 slides, which is then selected for further
result analysis. Intuitively, ResNet50, owing to a deeper net-
work architecture with more trainable parameters than ResNet18
(K=2300), encodes the image tiles more favorably and leads
to superior performance even with a lower bag size. The other
two encoders, Swin-T (K=1100) and DenseNet121 (K=700),
are more computationally expensive to train than the ResNets
(leading to lower bag sizes), and exhibit lower performance
compared to ResNets.

The complete (“end-to-end”) networks were finetuned using
binary cross entropy loss using solely slide labels. Hyperpa-
rameter tuning was performed for high specificity, so that the
models could confidently identify negative cases automatically
(see Supplementary Material for tuned hyperparameters). For
training the models, we used a batch size of 8 slides. Learn-
ing rate was fixed at 3× 10−5 with a weight decay of 0.1, and
models were trained for 50 epochs. Due to unbalanced datasets,
class reweighting was applied using the Scikit-learn library37.
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At 10× objective magnification, H&E histopathological slides
have a mean number of 3,779 tiles (range: 428 – 14,278 tiles),
hence, it is not feasible to encode all tiles at once due to GPU
memory constraints. Therefore, to perform whole-slide infer-
ence at evaluation time, we encoded the bag of tiles in chunks,
concatenated the sub-feature maps into a large tensor, before
feeding it to the transformer encoder that computes attention
across the entire slide. Note that encoding in chunks is not
feasible at training time due to parallel processing limitations
that require exact number of forward passes to synchronize sub-
processes, in addition to higher GPU memory requirements to
store activations and gradients during the training phase. Train-
ing of all BE-TransMIL models was performed using compute
nodes of 8 NVIDIA V100 GPUs in the Microsoft Azure cloud
(https://azure.microsoft.com/). Inference was run on a single
V100 GPU. 40 CPU cores were used to tile the whole-slide
images (WSIs) on the fly.

Statistical methods. We split the discovery dataset into develop-
ment and test as an 80:20 split (Fig. 1c). We performed four-fold
cross-validation experiments on the discovery development set;
this led to an effective train/validation/test split of 60:20:20 on
the discovery dataset. Validation and test sets were randomly
selected, stratified according to distributions of class labels and
patient pathway (surveillance or screening).

To compare the performance of different weakly supervised
models, we calculated area under receiver operating charac-
teristic curve (AUROC) and area under precision–recall curve
(AUPR), which are threshold-agnostic metrics, as well as accu-
racy, specificity, and sensitivity at 0.5 probability threshold. We
report these metrics on the discovery validation set for each of
the H&E and TFF3 models in Extended Data, Tables 1 and 2.
We also performed replication experiments at different mag-
nifications to observe the variation of metrics across random
initializations of model parameters (Extended Data, Table 3).

After training the cross-validation models, we computed AU-
ROC values for each fold on the validation dataset. For clinical
relevance, the classification threshold was chosen at 0.85 sensi-
tivity on the validation set for each model. The cross-validation
fold with the highest AUROC was then used for inference and
computing standard metrics (accuracy, AUROC, AUPR, speci-
ficity, and sensitivity) on the discovery and external test datasets
at the selected probability threshold (Figs. 2b, 3b, and 5b). In
addition, we plotted ROC curves with bootstrapping for confi-
dence intervals (CI) (Figs. 2a, 3a, and 5a). CIs were defined as
the 2.5th and 97.5th percentiles on distributions of 1000 samples
(with replacement) of the test dataset size.

Qualitative analysis. For qualitative analysis, including visual-
ization of results for interpretability of the BE-TransMIL models,
we plotted attention heatmaps overlaid on the slides. For each
tile, we color-coded the attention values based on the reversed
spectral colormap (high to low values coded from red, yellow,
green, to blue), and stitched the tile maps to get the slide at-
tention heatmap. Also, we visually investigated the tiles with
high and low attention values, for fine-grained inspection of the

regions where the models gave highest or lowest importance
while performing the prediction (Figs. 2c–d and 3c–d).

Gradient-weighted class activation mapping (Grad-CAM)25

generates class localization maps by visualizing the gradients
that flow into the last convolutional layer of the encoder of the
weakly supervised model, which retains the class-specific spatial
information from the input image before the fully- connected
and pooling layers. The highlighted areas on these maps depict
the specific locations within an image that are crucial for a model
to identify a specific class. Grad-CAM requires no architectural
modifications or retraining of the model, making it convenient
to use. For the example BE-positive slide in the test set (Figs. 2
and 3), we generated Grad-CAM saliency maps for both H&E
and TFF3 BE-TransMIL models. The target layer from the
encoder architecture was the fourth ResNet block. We generated
saliency maps of the 10 tiles of the example true-positive slide
with highest attention (Extended Data, Fig. 2).

TFF3 expression quantification and stain–attention corre-
spondence analysis. To quantify whether the high-attention
tiles of the learned models correspond to tiles with high TFF3
expression, a detailed analysis was performed as follows. To
obtain fine-grained TFF3 staining correspondence with the H&E
tiles, the reference TFF3 tissue crops were spatially registered
to the corresponding H&E crops38 (Extended Data, Fig. 3). For
registration, we first estimated the hematoxylin concentration
from RGB pixel values via stain deconvolution32, using the Ma-
cenko method39 to estimate the stain matrix for H&E slides and
employing the default hematoxylin–eosin–DAB (HED) stain
matrix using the Scikit-image library40 for TFF3 slides. The
hematoxylin images were then registered with an affine trans-
form (16×/4× downsampled) followed by a coarse cubic B-
spline deformation (5×5 grid, 4×/2× downsampled), optimiz-
ing a mutual information criterion using SimpleITK41. The same
fitted transform was then applied to the corresponding 3,3’-
diaminobenzidine (DAB) image (DAB is the chromogen used
in TFF3 staining). As registration is a computationally intensive
process for gigapixel-sized whole-slide images, we registered
the TFF3 slides at 5× objective magnification (1.84 µm/pixel).
The fitted transform parameters were then applied to register the
corresponding slides at 10× objective magnification.

To analyze the correspondence of TFF3 expression and model
attentions, we quantified the proportion of the DAB-stained pix-
els out of all tissue pixels in the TFF3 slides. We created a
binary mask of the positive DAB stained regions based on the
method described in38. Firstly, we separated the channels of
the H&E into constituent hematoxylin and DAB stains, then we
detected the foreground mask on the hematoxylin channel and
the stain mask on the DAB channel using Otsu thresholding, and
post-processed the stain mask to remove small holes, using pa-
rameters in38 (only variance threshold was changed to take into
account the difference in slide sizes). To compute the stain ratio
for each tile in the TFF3 slides, the tiling operation was applied
to the TFF3 slides using the same parameters as H&E slides.
Tile coordinates were used to retrieve the foreground mask and
DAB mask of each tile in the TFF3 slides. The tile-level stain
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ratio was calculated by dividing the number of positive pixels in
the tile DAB mask by the total number of positive pixels in the
tile foreground mask.

We analyzed the correspondence between the TFF3 stain ratio
and model attentions of each tile for BE-positive slides from the
test set. We visually inspected the registration results between
the corresponding TFF3 and H&E slides by plotting the differ-
ences of foreground masks of the registered slides (example in
Extended Data, Fig. 3), and ensured that the registration qual-
ity was acceptable for most slide pairs for the correspondence
analysis. To quantify the correspondence of TFF3 stain ratio
and model attentions, we performed several types of analyses.
Firstly, we computed normalized stain ratio and normalized
model attentions (range 0–1) for each tile in the paired slides
and found Pearson’s correlation (r) between the two variables,
higher values denoting higher correspondence between stain
ratio and attention values. We computed normalized entropies
of attention distributions for each slide to measure the dispersion
of the learned attentions.

Visual inspection of the slides with lower correlation coeffi-
cients reveals noisy stain mask extraction due to low contrast and
spuriously stained regions in the TFF3 slides, or sub-optimal reg-
istration in the case of H&E stain–attention correspondence anal-
ysis due to occasional mismatches in amount of tissue present in
adjacent H&E- and TFF3-stained sections (e.g. missing pieces,
ragged edges).

Failure-modes analysis. We computed the model agreement
Fagree of H&E and TFF3 BE-TransMIL models on their false
predictions (false positives (FPs) or false negatives (FNs)). This
was computed as the Jaccard index (intersection over union) of
the sets of false predictions made by TFF3 and H&E models
independently. In addition, we inspected montages of false
predictions made by both models. Specifically, the TFF3 slides
were visually inspected to detect errors as the stain is specific for
goblet cells, and we found sources of error that can confound the
deep learning models occur, including background staining or
low contrast between foreground and background. We observed
that Fagree was much higher for the FNs than for FPs, hence,
we prioritized these shared FNs to be manually reviewed by a
trained pathologist.

Workflow analysis. We define a workflow as a semi-automatic
decision process involving the H&E and TFF3 models as well
as manual pathologist review of the corresponding H&E and
TFF3 histopathology slides. We first outline two ML-assisted
scenarios that still involve manual review by pathologists of all
slides to minimize the risk of missed detections. Firstly, the pro-
vision of either the H&E or TFF3 BE-TransMIL model outputs
(e.g. predictions, attention heatmaps) to pathologists to guide
their review and speed-up assessment time of potential positives.
Secondly, given the demonstrated prediction performance of
the H&E model alone, the need to conduct the more expen-
sive TFF3 staining if a positive finding is confirmed with the
H&E model alone can be reduced; thereby lowering preparation
costs. Upon demonstration of continued robustness and greater
gains over manual pathology reviews, ML-assisted workflows to

(semi-)automatically filter out certain cases (detected negatives,
for example) could be particularly valuable.

We analyzed the performance (sensitivity, specificity) and the
requirement for pathologist review and TFF3 stain for multiple
combinations of H&E and TFF3 models as well as pathologist,
leading to 14 different ML-assisted workflows (Extended Data,
Fig. 4, Table 5). We analyzed the workflow performance on the
discovery test dataset at an operating point corresponding to 0.95
sensitivity on the validation set. As majority of our proposed
workflows are semi-automated involving a pathologist, this set-
ting can help prevent overlooking suspicious positives. Note
that the discovery dataset is heavily enriched for BE-positive
cases (38.1%) (Fig. 1c), whereas the expected prevalence in
a screening population is 5–12%5. Therefore, to simulate the
real-world impact of integrating the presented systems into a
clinical pathway, we applied importance re-weighting to the
samples to achieve a more representative effective prevalence
of 8%. Pathologists’ workload reduction is computed as the
reciprocal of the fraction of manual reviews.

The 14 ML-assisted workflows (Extended Data, Table 5) are
named according to Boolean expressions and briefly explained
as follows. “Pathologist”, “H&E only”, and “TFF3 only” are
workflows involving the detection of BE solely by the patholo-
gist, H&E BE-TransMIL model, and TFF3 BE-TransMIL model,
respectively. “H&E and TFF3” refers to a workflow where a
sample is BE-positive only if both TFF3 and H&E models pre-
dict it as BE-positive. “H&E or TFF3” workflow will detect a
sample as BE-positive if either of the two ML models detect it
as positive. The next four workflows are similar configurations
as the previous two, combining pathologist and/or either of the
two models. The workflow “H&E and (TFF3 or Pathologist)”
will consider a sample BE-positive if it is labeled as positive
by the H&E model and one of the TFF3 model or pathologist.
“H&E and TFF3 and Pathologist” will consider a sample BE-
positive only if it is labeled positive by the pathologist and both
ML models. “(H&E or TFF3) and Pathologist” workflow will
label a sample BE-positive if any of the two ML models and the
pathologist label it as BE-positive, whereas “(H&E and TFF3)
or Pathologist” workflow will consider a sample BE-positive
if either both ML models or the pathologist call it BE-positive.
Lastly, “Consensus or Pathologist” workflow will return the
label of a sample as predicted by both ML models if they agree
(consensus), otherwise it will consider the label of the patholo-
gist.

Extended Data
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a

b

Fig. 1 224×224 tiles of a slide for different objective magnifications: top row shows the same field-of-view at different resolutions, bottom row shows
different fields-of-view at different magnifications for a given tile size, with the blue box showing the corresponding region in the first row. a, H&E tiles.
b, TFF3 tiles.

Encoder AUROC AUPR Accuracy Sensitivity Specificity

SwinT 0.905 ± 0.018 0.892 ± 0.022 0.836 ± 0.017 0.801 ± 0.045 0.856 ± 0.047
DenseNet121 0.919 ± 0.026 0.907 ± 0.031 0.855 ± 0.025 0.824 ± 0.080 0.874 ± 0.025
ResNet18 0.922 ± 0.011 0.906 ± 0.012 0.849 ± 0.019 0.833 ± 0.063 0.858 ± 0.058
ResNet50 0.931 ± 0.021 0.919 ± 0.031 0.876 ± 0.047 0.813 ± 0.060 0.915 ± 0.077

Table 1 H&E BE-TransMIL 4-fold cross-validation performance (0.5 probability threshold) on the discovery validation data splits using different types
of image encoders. ResNet50 encoder shows most favorable overall performance.

Encoder AUROC AUPR Accuracy Sensitivity Specificity

SwinT 0.967 ± 0.006 0.955 ± 0.007 0.918 ± 0.016 0.908 ± 0.014 0.925 ± 0.032
DenseNet121 0.965 ± 0.006 0.958 ± 0.008 0.914 ± 0.014 0.867 ± 0.050 0.943 ± 0.031
ResNet18 0.963 ± 0.002 0.946 ± 0.014 0.907 ± 0.023 0.890 ± 0.030 0.918 ± 0.055
ResNet50 0.967 ± 0.003 0.951 ± 0.014 0.922 ± 0.009 0.893 ± 0.039 0.939 ± 0.016

Table 2 TFF3 BE-TransMIL 4-fold cross-validation performance (0.5 probability threshold) on the discovery validation data splits using different types
of image encoders. ResNet50 encoder shows most favorable overall performance, better or consistent with DenseNet121 encoder.
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a

b

Fig. 2 Grad-CAM saliency maps of the top 10 tiles (with highest attention values) of a BE-positive slide (ResNet50, layer 4). a, H&E BE-TransMIL
model. b, TFF3 BE-TransMIL model.

Adjacent H&E (reference) 
and TFF3 (moving) slides

Crop tissue 
sections

Registration at 10x objective 
magnification: rigid + 

deformable adjustment

Extract 
Hematoxylin 

channel

Rigid TFF3     Fixed H&E    Deformable TFF3

Stitching of TFF3 registered 
sections and background 

standardisation 

Registration QC: 
difference foreground

(H&E – registered TFF3)

Fig. 3 Registration of adjacent TFF3 and H&E slides.

Mag. AUROC AUPR Accuracy Sensitivity Specificity

5× 0.941 ± 0.003 0.918 ± 0.010 0.863 ± 0.0147 0.857 ± 0.048 0.867 ± 0.052
10× 0.960 ± 0.006 0.954 ± 0.005 0.911 ± 0.014 0.834 ± 0.033 0.958 ± 0.018
20× 0.953 ± 0.009 0.951 ± 0.007 0.911 ± 0.011 0.811 ± 0.059 0.972 ± 0.032

Table 3 H&E BE-TransMIL (ResNet50) replication experiments (mean and standard deviation over n=5 random initializations) at different objective
magnifications (‘Mag.’): performance (0.5 probability threshold) on a 10% data split from the discovery developmental set. 10× objective magnification
shows most favorable overall performance. The variance across initializations is consistently small.
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Failure type Total errors Shared errors H&E-only errors TFF3-only errors

False negatives 34 (100%) 19 (55.88%) 13 (38.23%) 2 (6.67%)
False positives 56 (100%) 13 (23.21%) 31 (55.35%) 12 (21.42%)

Table 4 Failure quantities computed for H&E and TFF3 BE-TransMIL models. Percentages in parentheses are with respect to the total number of
errors for each failure type.

Fig. 4 Performance analysis of multiple ML-assisted workflows. The sensitivity and specificity of each workflow with respect to pathologist
(cross at top-left corner) is presented alongside 95% confidence intervals. ROC curves of the H&E and TFF3 models are also presented.

Workflow Pathologist review TFF3 staining Obs. prevalence

Pathologist 100% 100% 8%
H&E only 0% 0% 0%
TFF3 only 0% 100% 0%
H&E AND TFF3 0% 37% [31–45%] 0%
H&E OR TFF3 0% 63% [55–69%] 0%
H&E AND Pathologist 37% [31–45%] 37% [31–45%] 19% [16–24%]
H&E OR Pathologist 63% [55–69%] 63% [55–69%] 1% [1–2%]
TFF3 AND Pathologist 31% [25–38%] 100% 24% [20–31%]
TFF3 OR Pathologist 69% [62–75%] 100% 1% [0–2%]
H&E AND (TFF3 OR Path.) 17% [12–23%] 37% [31–45%] 3% [1–7%]
H&E AND TFF3 AND Path. 20% [16–26%] 37% [31–45%] 33% [26–43%]
(H&E OR TFF3) AND Path. 48% [41–55%] 100% 17% [14–20%]
(H&E AND TFF3) OR Path. 80% [74–84%] 100% 2% [1–2%]
Consensus OR Pathologist 28% [21–35%] 100% 5% [2–8%]

Table 5 Pathologists’ workload as a fraction of current reviewed cases, TFF3 staining as a fraction of the current cases, and observed prevalence of
BE for possible workflows using the BE-TransMIL models, along with their 95% CIs.
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Code availability

The open-source repository https://github.com/microsoft/hi-ml/
tree/main/hi-ml-cpath contains the code and library require-
ments for data preprocessing, core BE-TransMIL network archi-
tectures for training and evaluation of deep learning models, and
statistical analysis presented in this study. More detailed code
will be added to this repository before publication.

Data availability

Data cannot be shared by corresponding author due to license
agreements of Cyted Ltd with partners. The study protocols
for DELTA and BEST2 are publicly available. Data may be
available upon request to the original institution. All data used
was deidentified.
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List of Acronyms

AUPR area under precision–recall curve

AUROC area under receiver operating characteristic curve

BE Barrett’s esophagus

CI confidence intervals

CNN convolutional neural network

DAB 3,3’-diaminobenzidine

EAC esophageal adenocarcinoma

FN false negative

FP false positive

GERD gastroesophageal reflux disease

H&E hematoxylin and eosin

IM intestinal metaplasia

MIL multiple instance learning

ML machine learning

MLP multi-layer perceptron

Swin-T Shifted Window Transformer

TFF3 trefoil factor 3

WSI whole-slide image
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