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Abstract9

Chronic Obstructive Pulmonary Disease (COPD) is a complex, heterogeneous disease. Tradi-10

tional subtyping methods generally focus on either the clinical manifestations or the molecular11

endotypes of the disease, resulting in classifications that do not fully capture the disease’s12

complexity. Here, we bridge this gap by introducing a subtyping pipeline that integrates clinical13

and gene expression data with variational autoencoders. We apply this methodology to the14

COPDGene study, a large study of current and former smoking individuals with and without15

COPD. Our approach generates a set of vector embeddings, called Personalized Integrated16

Profiles (PIPs), that recapitulate the joint clinical and molecular state of the subjects in the17

study. Prediction experiments show that the PIPs have a predictive accuracy comparable to or18

better than other embedding approaches. Using trajectory learning approaches, we analyze the19

main trajectories of variation in the PIP space and identify five well-separated subtypes with20

distinct clinical phenotypes, expression signatures, and disease outcomes. Notably, these subtypes21

are more robust to data resampling compared to those identified using traditional clustering22

approaches. Overall, our findings provide new avenues to establish fine-grained associations23

between the clinical characteristics, molecular processes, and disease outcomes of COPD.24

1 Introduction25

Chronic Obstructive Pulmonary Disease (COPD) is a complex chronic respiratory disease that is26

among the leading causes of death worldwide [1]. The disease manifests as a spectrum of conditions,27

including persistent airflow obstruction, lung inflammation, chronic bronchitis, and emphysema.28

COPD susceptibility has been attributed to a combination of physical, environmental, and genetic29

factors, resulting in significant phenotypic variation across individuals.30

This heterogeneity has prompted substantial research efforts aimed at dissecting the various31

manifestations of the disease, to understand their etiological origins, and to predict their outcomes32

[2]. A practical goal of these studies has been to delineate distinct COPD subtypes by employing33

advanced clustering and machine learning techniques trained with large datasets of clinical and34

genomic data extracted from human cohort studies [3, 4].35

Current COPD subtyping approaches can be divided into those that characterize the observable36

phenotypes of the disease (clinical subtyping), and those that focus on disentangling the disease37

processes, often referred to as “endotypes”, underlying various COPD manifestations (molecular38
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subtyping) [5]. Applications of the former type leverage clinical data including demographics, disease39

symptoms, spirometry measurements, or chest imaging [6, 7, 8, 9], whereas applications of the latter40

type leverage measurements from various omics assays (transcriptomics, proteomics, epigenomics,41

etc.) [10, 11, 5, 12]. Although both approaches offer valuable insights into different aspects of the42

disease, subtype classifications from these applications are exclusively defined within either the clinical43

or molecular domain, with the analysis in the other domain performed primarily for validation or44

post-hoc examination [13, 6, 8, 11, 5]. Consequently, these domain-specific classifications cannot45

capture disease mechanisms arising from the interaction between molecular processes and clinical or46

lifestyle factors [14, 15, 16, 17], potentially leading to inconsistent subtypes that are not reproducible47

across different patient cohorts [18].48

Multi-omics data integration is a widely researched subject [19, 20, 21], and multiple methods49

have been developed for this purpose, such as MOFA [22], iCluster [23] and SNF [24]. In contrast,50

the simultaneous integration of both clinical and omics data for disease subtyping has received51

comparatively less attention, with its applications in COPD being confined to specific domains [25].52

One of the challenges in integrating omics and non-omics data is their inherent complexity. Data53

heterogeneity and bias, already present in multi-omics studies [26], are exacerbated when including54

clinical data, which is typically composed of complex data structures with heterogeneous correlation55

patterns and significant variation in terms of scales, sparsity, and noise [27]. To alleviate these56

issues and to account for potential nonlinear interactions between variables from different domains,57

specialized integrative methodologies based on autoencoder neural networks have been proposed in58

several disease contexts, including COPD [10] and cancer [28, 29, 30, 31]. However, a comprehensive59

subtyping analysis that integrates both the clinical and molecular domains of COPD has not been60

performed.61

In this work, we propose a joint subtyping approach to integrate clinical and gene expression62

data extracted from the COPDGene Study [32] (see Fig. 1 (a)), a large study of current and63

former smokers with and without COPD. Building on recent developments in multi-modal learning64

[33, 34], we developed an integrative method based on variational autoencoders (VAEs). A VAE is65

an unsupervised neural network architecture designed to compress the input data and generate a66

set of compact encodings [35]. We trained the VAE with clinical, imaging, and transcriptomic data67

from COPDGene, generating a set of personalized integrated profiles (PIPs) that encode the joint68

clinical and molecular configuration of every individual in the population. By performing multiple69

outcome prediction experiments, we demonstrate that the generated PIPs are highly informative of70

the individual’s disease state and enable accurate prediction of future disease outcomes. Next, we map71

the continuous trajectories in the VAE space using a recently proposed trajectory learning technique72

[36]. Through this approach, we identify several well-separated disease states, each exhibiting distinct73

clinical and molecular characteristics (joint subtypes). Finally, we show that these joint subtypes are74

characterized by different disease progression patterns and mortality and that they are robust to75

resampling noise.76

2 Results77

COPDGene is an ongoing longitudinal multi-center study of current or ex-smoking individuals with78

and without COPD who have undergone extensive clinical, physiological, and radiological profiling79

at three time points across 10 years (Phase 1, 2, 3, see Fig. 1 (b)). Additionally, periodic long-term80

follow-up (LFU) surveys have been conducted every 6 months throughout the duration of the study.81

10,198 individuals were enrolled at baseline. In this work we considered all of the subjects with clinical82

and blood gene expression data in Phase 2 (five-year follow-up) of the study that were available at the83

time of analysis (3,628 subjects, see Fig. 1 (c)). Clinical data includes demographics, lifestyle factors84

(e.g., smoking habits), spirometry measurements, medical and medication history, chest CT imaging85

measures, respiratory symptoms, and complete blood counts (CBC). Gene expression data consists of86

whole blood RNA-seq profiling. Both of these data modalities have been used extensively for COPD87

subtyping [6, 7, 8, 9, 11, 5], and they are among the most widely-used read-outs of the phenotypic88
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Figure 1: Overall organization of this work. (a) Joint subtyping aims at generating subtypes based
on both clinical and molecular features. (b) COPDGene study design. Data from study stages
preceding Phase 2 (gray) are not used in this work. On the right of the timeline are described the
types of data collected at each study stage and considered in this study. Phase 2 and Phase 3 of the
study are spaced approximately 5 years apart. LFU (Long-term Follow-Up) data consists of survey
assessments conducted approximately every 6 months in between study phases. (c) Starting from
the COPDGene population, an array of clinical and molecular features is extracted and used for
training the VAE. The autoencoder produces a set of personalized integrated profiles (PIPs), one
per individual in the population. (d) Architecture of the VAE. Expression and clinical features are
concatenated with conditional variables (age, sex, race) and processed separately in two encoder
subnetworks. The two encodings are subsequently merged in a shared latent representation (PIP).
Next, the latent representation is concatenated to the conditional variables and processed with two
separate decoder subnetworks to reconstruct the original data.
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and molecular manifestations of COPD. To merge these two data types in a single representation of89

disease state, we designed a data integration scheme based on Variational Autoencoders (VAEs).90

VAEs are probabilistic unsupervised neural network models designed to compress the input to91

generate low dimensional representations [37]. VAEs exploit statistical dependencies between input92

variables to construct a small set of variables (latent code) that preserve most of the input information.93

In contrast to linear techniques such as Principal Component Analysis (PCA), VAEs can capture94

nonlinear relationships between variables [38]. Drawing inspiration from other recently proposed95

architectures for multi-modal data integration [29, 30], we modified the standard VAE architecture so96

as to process and merge two data types (see Fig. 1 (d) and Methods). Our model implicitly performs97

a 2-step dimensionality reduction. The hidden layers in the encoder network (H1/2-expr, H1/2-clin in98

Fig. 1 (d)) process the two data types separately to obtain a data-type-specific representation of the99

input features. These representations are then coupled to generate a joint latent representation that100

encodes both the clinical and molecular information, which we refer to as “Personalized Integrated101

Profile” (PIP). Given the probabilistic nature of the VAE model, it is possible to correct for potential102

confounding factors by including them as a set of conditional variables [39]. These conditional103

variables have a similar role as regression covariates in linear regression modeling. Therefore, we set104

the age, sex, and race of each individual as conditional variables in both data modalities to regress105

out their effect on the learned representation.106

The data processing and integration pipeline consists of several steps (see Methods for further107

details). In brief, we designed two separate processing pipelines for the two data types, consisting of108

feature selection and normalization operations. The resulting set of features selected for training109

the VAE is summarized in Supplementary Table 1. Next, we split the dataset into training and110

validation sets (80%/20%). We trained the VAE on the training set, and used the validation set for111

hyperparameter selection. We performed hyperparameter optimization to determine the optimal112

network depth, layer size, learning rate, and number of components of PIP vectors (latent components).113

Our primary objective was to select parameter configurations that resulted in high reconstruction114

accuracy of the validation set data, with a preference for configurations with fewer latent components.115

We determined that the optimal number of components in terms of reconstruction quality and latent116

vector size is 30. After training the network with the optimal parameters, we then used the Encoder117

subnetwork to generate the PIPs of the full dataset. The generated PIPs are the starting point of118

the subsequent analysis to identify joint subtypes of COPD.119

2.1 Predicting future disease states with Personalized Integrated Profiles120

The PIPs generated by the VAE contain information on both the expression and clinical features of121

a subject. To test the VAE’s performance in compressing and integrating different data modalities122

without sacrificing important information, we set up a prediction task of several prospective COPD123

outcomes. The COPD outcomes included all-cause mortality at 3 and 5 years after the Phase 2 and124

other clinical measurements collected in Phase 3 (P3) of the study, approximately five years after125

Phase 2 (P2) visits (see Methods for further details). These variables are extracted exclusively from126

data collected after Phase 2 of the study and thus were not used to train the VAE. We perform the127

classification using a Random Forest classifier, and define the PIP vectors as input variables and the128

Phase 3 outcomes as target variables (see Methods for details). For comparison, we evaluated the129

performance of the same classifier trained using other types of embedding as input: PCA of clinical130

variables (Clin PCA); PCA of expression variables (Expr PCA); PCA of concatenated expression131

and clinical variables (Expr + Clin PCA); Canonical Correlation Analysis (CCA) scores of the132

expression (Expr CCA) and clinical variables (Clin CCA); and factors calculated by applying the133

integrative method Multi Omics Factor Analysis (MOFA) [22] to expression and clinical variables.134

The performance metrics for the prediction, presented in Table 1, were derived from a 5-fold stratified135

validation repeated 3 times and then averaged (additional measures are reported in Supplementary136

Table 2). The VAE-based PIPs consistently achieve either the highest or second-highest scores across137

most prediction tasks. In the cases where the PIPs do not outperform other embeddings, no other138

alternative embedding scheme emerges as a clear leader in performance. This finding indicates that139
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despite encoding a broader range of information compared to domain-specific alternatives (e.g. Clin140

PCA), the PIPs retain substantial information about an individual’s disease state and its likely141

outcomes.142

F1-score

Clin PCA Expr PCA Expr+Clin PCA Expr CCA Clin CCA MOFA VAE

∆ FEV1 % of pred. 0.75 (0.03) 0.74 (0.04) 0.73 (0.03) 0.75 (0.04) [n.s.] 0.74 (0.04) 0.74 (0.04) 0.73 (0.04)
Inc. chronic bronchitis 0.02 (0.04) 0.01 (0.03) 0.04 (0.06) 0.03 (0.05) 0.04 (0.05) 0.07 (0.07) 0.12 (0.08) **

Exacerbations (P3) 0.37 (0.09) 0.09 (0.06) 0.35 (0.06) 0.23 (0.07) 0.23 (0.08) 0.25 (0.09) 0.41 (0.08) *
∆ Exac. Freq. (P3>P2) 0.10 (0.08) 0.04 (0.05) 0.14 (0.07) 0.12 (0.07) 0.12 (0.08) 0.09 (0.06) 0.20 (0.11) **
Sev. Exacerbations (P3) 0.11 (0.07) 0.04 (0.04) 0.11 (0.08) 0.04 (0.05) 0.03 (0.04) 0.06 (0.06) 0.15 (0.08) *

∆ Sev. Exacerbations (P3>P2) 0.08 (0.06) 0.03 (0.05) 0.06 (0.08) 0.00 (0.02) 0.01 (0.03) 0.04 (0.06) 0.11 (0.07) [n.s.]
∆ MMRC (P3>P2) 0.29 (0.05) * 0.18 (0.05) 0.18 (0.05) 0.24 (0.04) 0.22 (0.05) 0.20 (0.05) 0.26 (0.04)

∆ SF-36 (P3<P2) 0.58 (0.03) 0.59 (0.03) 0.60 (0.03) 0.60 (0.02) 0.61 (0.02) * 0.58 (0.03) 0.59 (0.03)
Mortality (3yr) 0.08 (0.04) 0.12 (0.05) 0.11 (0.05) 0.13 (0.06) 0.13 (0.06) 0.10 (0.03) 0.17 (0.05) *
Mortality (5yr) 0.23 (0.05) 0.19 (0.04) 0.23 (0.03) 0.25 (0.05) 0.25 (0.04) 0.20 (0.04) 0.30 (0.06) **

Table 1: Prediction performance (F1-score) of COPD outcomes. Best performances and second-best
are respectively displayed in bold or underlined. Abbreviations: ∆ = change from P2 to P3, P2 =
phase 2 of COPDGene, P3 = phase 3 of COPDGene, (P3>P2) = value at P3 larger than value at
P2, pred.=predicted, inc. chronic bronchitis = chronic bronchitis not present at P2 but present at
P3, exac. freq.=exacerbations frequency

2.2 Summarizing COPD heterogeneity with principal graphs143

The PIPs generated by the VAE are vectors distributed in a 30-dimensional space of variables that144

implicitly describe the joint molecular and clinical characterization of every individual analyzed in our145

COPDGene dataset. The geometry of the distribution of these generated vectors in the VAE space is146

therefore informative of the patterns of variability of COPD features in the population, including the147

presence, or lack thereof, of separate clusters. Growing evidence suggests that COPD manifestations148

may form a continuous spectrum of disease states[3]. Under such circumstances, characterizations149

based on discrete clusters may impose arbitrary boundaries within subpopulations that may impact150

the robustness of the subtypes. To overcome this issue, we analyzed the trajectories of continuous151

variation of COPD in the VAE space. We used the elPiGraph method [36], an algorithm to fit152

a branching network structure to a set of points in a multidimensional space. ElPiGraph and its153

adaptations have been previously used to identify trajectories in several contexts, including the154

clinical domain of COPD [40] and the molecular domain of cancer [41]. In this study, we extend its155

application to the joint domain of clinical and molecular features of COPD.156

In brief, elPiGraph produces a tree-like network, called principal graph, that is embedded in the157

VAE space. elPiGraph optimizes the coordinates of the nodes of the principal graph to minimize158

their distance from the data points. In this way, the principal graph traverses the main axes of159

variation of the data points, approximating their intrinsic geometry. This procedure results in a160

mapping between each data point and its corresponding projection onto the tree branches, providing161

information on their relative positioning along the main axes of variation.162

We applied elPiGraph to construct the principal graph of the population and associated each163

subject to their closest network branch in the space. The fitted principal graph is composed of 5164

terminal branches, i.e., tree branches connected to the remaining graph only through one endpoint,165

and 2 non-terminal branches, i.e., those connected at both their endpoints (see Fig. 2 (a)). Since166

we were interested in identifying subtypes with distinct disease features and minimal overlap, we167

restricted the analysis exclusively to the individuals within the terminal branches. Further, to168

maximize the separation between different branches, we selected only the 50% of data points that lie169

on the most extreme ends of each branch (see Methods and Figs. 2 (b) and Supplementary Figs. 1170

(a-f)). Overall, 1,552 individuals were selected as members of any of the 5 branches.171
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Figure 2: Features of the principal graph constructed from the COPDGene PIPs. (a) Principal graph
layout. Large black dots and edges represent the fitted graph structure. Smaller dots represent
individuals in the population, where the position is determined according to their proximity to the
graph nodes. Points highlighted in orange are members of the terminal branches, while gray points
are in non-terminal branches. (b) Colored dots represent the individuals selected as members of
each branch after thresholding. Gray dots are individuals that are not assigned to any branch. (c-f)
Distribution of selected features in each branch (top) and across the principal graph (bottom). All
the graph layouts are generated with the Kamada-Kawai algorithm. Abbreviations: Pred.=predicted,
Exac.=Exacerbations

2.3 The joint subtypes have distinct clinical characteristics172

Of the 5 terminal branches, 3 are composed mainly of individuals with GOLD stage 2-4 corresponding173

to moderate-to-severe COPD (bottom left branches in Fig. 2 (b)), whereas 2 branches (referred174

to as NORM1 and NORM2) are composed mainly of individuals with preserved lung function or175

mild COPD, i.e. GOLD stage equal to 0-1 (top right branches in Fig. 2 (b)). The branches are176

characterized by different phenotypic profiles (see Supplementary Table 3).177

The NORM1 and NORM2 branches differ primarily in mean age (NORM1: 67±8.2 yrs, NORM2:178

61±8.5 yrs), current smoking status (NORM1: 18%, NORM2: 44%), and blood cell type composition179

(predominantly neutrophilic in NORM1 and lymphocytic in NORM2).180

The SEV branch consists of older individuals (68.7±8.3 yrs) with the most severe disease181

manifestations - low lung function (52% of predicted FEV1), frequent and severe exacerbations,182
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and high prevalence of chronic bronchitis (Figs. 2 (c-f)). These individuals also have a marked183

degree of emphysema, air trapping, and thickened airway walls. Consistent with the severity of184

their condition, self-reported metrics such as the mMRC dyspnoea scale and SGRQ scores indicate a185

severely compromised quality of life. Despite the high average number of pack years, the SEV branch186

is characterized by the smallest proportion of current smokers (31%) compared to other branches.187

This trend likely reflects the tendency of subjects with severe COPD to stop smoking.188

The MOD branch consists of younger individuals (59.7±6.3 yrs) with moderately impaired lung189

function and low percentage of emphysema and moderate airway wall thickening. However, compared190

to other branches (excluding SEV), MOD subjects are affected by a higher average frequency of191

exacerbations, and the severity of their respiratory symptoms is similar to those observed in the192

SEV branch, with an average mMRC score of 2.4±1.3 compared to 2.7±1.2 in the SEV branch and193

an SGRQ total score of 46.2±19.7 versus 48.7±18.6. In line with previous studies [42], we defined194

frequent exacerbators as those individuals who experience two or more exacerbations in a year. The195

MOD branch has the second-largest proportion of frequent exacerbators (17%) after SEV (25%),196

and this subgroup has a substantial proportion of subjects in GOLD spirometric stage 2 or PRISm197

(preserved ratio impaired spirometry) group [43] (Supplementary Figure 2). Subjects in the MOD198

branch tend to have a phenotype that has been associated previously with airway-predominant199

COPD, with the highest average BMI and lowest amount of emphysema of all branches, as well as200

thick airways.201

Individuals in the SYMPT branch are similar in most aspects to NORM1 and NORM2 branches202

(mild airway obstruction, low percent emphysema, infrequent exacerbations), yet this group has a203

larger proportion of current smokers and airway inflammation symptoms, such as cough, phlegm,204

and chronic bronchitis.205

We examined the relation between the five branches and other previously proposed COPD206

subtypes. As emphysema is a common feature of COPD, recent works have distinguished classified207

phenotypes as emphysema-predominant (EPD, defined in individuals with GOLD>1 as CT-quantified208

densitometric emphysema ≥10% at -950 Hounsfield units), non-emphysema-predominant (NEPD,209

CT emph. <5%) and intermediate emphysema (IE, CT emph. between 5% and 10%) [44]. The210

breakdown of each branch into separate classes shows that the SEV branch contains the largest fraction211

of EPD individuals (46%, see Supplementary Figure 3), a smaller fraction of NEPD individuals212

(23%), and negligible components of other states. Comparatively, the MOD branch is composed213

of a substantial proportion of NEPD individuals (22% overall, 62% within GOLD>1 stages) and214

only 8% of EPD phenotypes. Furthermore, MOD has the largest proportion (20%) of individuals215

in preserved FEV1/FVC ratio and impaired spirometry (PRISm). The remaining three branches216

(SYMPT, NORM1, NORM2) are composed mainly of individuals without significant COPD features217

and therefore contain negligible proportions of subjects with GOLD stage ≥ 2.218

2.4 The joint subtypes have distinct transcriptomic signatures and path-219

way activations220

We analyzed the transcriptomic differences between the SEV, MOD, and SYMPT branches using the221

combined NORM1 and NORM2 branches as the reference group (see Methods). Through differential222

expression (DE) analysis, we identified a set of DE genes for each contrast (see Supplementary Table223

4). For each set, we performed gene set enrichment analysis (GSEA) [45] using the 50 hallmark224

pathways of MSigDB [46] to find the over- or under-expressed biological pathways in each branch. The225

results are shown in Fig. 3, where it is evident that the SEV and MOD groups differ markedly in the226

expression of multiple biological pathways. Among the most significant pathways (FDR p-adj.<0.05),227

Interferon Alpha (IFN-α) Response is highly over-expressed in the SEV and SYMPT branches and228

under-expressed in the MOD branch. The Oxidative Phosphorylation pathway is upregulated in both229

the SEV and MOD branches, while the Reactive Oxygen Species (ROS) pathway is upregulated only230

in the SEV branch and downregulated in the MOD branch. The majority of GSEA leading genes231

in the MOD branch are antioxidant agents. Among these, differential expression analysis reveals232
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Figure 3: Gene set enrichment analysis of the differentially expressed genes between each branch and
the NORM1 and NORM2 branches. Opaque points represent pathways that are significant (FDR
p.adj.<0.05), while transparent points are non-significant. NES=normalized enrichment score.

downregulation of the antioxidant enzymes GPX3, G6PD, GSR, and TXNRD2 [47, 48].233

2.5 The joint subtypes are associated to distinct disease outcomes and234

risks235

Next, we examined the associations between the joint subtypes and a set of COPD-related clinical236

outcomes. We collected data from the LFU dataset, in which COPDGene participants self-reported237

health updates via a survey every 6 months during the whole duration of the study (see Methods).238

Given that respiratory exacerbations are associated with COPD progression, we examined their239

temporal patterns among subjects from various branches. The temporal exacerbation patterns of the240

branches closely mirror the cross-sectional behavior observed during Phase 2 (Fig. 4 (a)), with the241

individuals in the SEV and MOD branches experiencing a higher rate of exacerbations throughout242

the entire time period. Interestingly, individuals who reported zero exacerbations in Phase 2, yet were243

classified in the SEV (163) and MOD (124) branches, demonstrated a significantly higher likelihood244

of experiencing one or more exacerbation events following Phase 2 — 42% and 50%, respectively —245

compared to the NORM1 and NORM2 branches ( 8%) and the SYMPT branch (16%). This finding246

suggests that branch membership can provide insights into the potential for future exacerbations,247

even when the present data does not explicitly indicate it. Moreover, to address potential confounding248
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Figure 4: Prospective analysis of the branches. (a) Temporal trends of exacerbations among
COPDGene subjects, categorized by their respective branches. Each row represents a subject, and
different colored areas within these rows denote the number of exacerbations experienced by that
subject during a 6-month timeframe. The color intensity corresponds to the number of exacerbations,
with darker or larger areas indicating a higher number of exacerbations. (b) Incidence rate ratio
(IRR) of exacerbations between each branch and the reference group, NORM2. (c) Distribution of
FEV1 % of predicted levels categorized by branch (color), and by study phase (light=P2, dark=P3).
(d) Distribution of relative changes in FEV1 % of predicted categorized by branch. (e) Kaplan Meier
curves of mortality, categorized by branch. (f) Hazard ratio (HR) of mortality between each branch
and the reference group, NORM2.

factors, we used a Poisson regression model to analyze the incidence of exacerbations in the LFU data,249

adjusting for the age, sex, and race of each participant (see Methods). The calculated incidence rate250

ratios of each branch, using NORM2 as the reference, demonstrate that these insights are consistent251

even when adjusting for demographic differences between the subpopulations (Fig 4 (b)).252
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Next, we assessed the change in FEV1 % of predicted values over the five years between the Phase253

2 and Phase 3 visits (Figs 4 (c) and (d)). The SEV and MOD branches showed the largest decline in254

FEV1 % of predicted, whereas the other three branches had a smaller decrease within the selected255

time frame. Finally, we estimated the mortality risk associated with each branch(see Fig. 4 (e) and256

(f) and Methods). The SEV and MOD branches demonstrate respectively a 5-fold and 2-fold average257

hazard ratio compared to the NORM2 branch, while the other branches do not exhibit increased risk.258

2.6 The joint subtypes are robust to retraining and data resampling259

To quantify the stability of the VAE space with respect to resampling of the training data, we260

performed two different robustness tests. In the first test, we evaluated the stability of the PIPs261

to random re-samplings of the training data. We retrained the VAE 100 times with different262

train/test splits (80%/20%, selected randomly) and generated 100 new sets of embeddings of the263

whole population (“resampled” embeddings). Each of these sets of embeddings correspond to the264

PIPs that would be generated by the VAE under scenarios where different subsets of the data were to265

be held out. In the ideal case, the resampled embeddings should provide similar information as the266

original embeddings, indicating that the identified patterns of variability are general and robust to267

noise. Therefore, we measured the overall similarity between the original and each resampled set of268

embeddings using the distance correlation measure (dCorr) [49]. dCorr is an extension of the Pearson269

correlation to multivariate settings and it ranges between 0, indicating statistical independence, and270

1, suggesting a linear relationship between the two variables (see Methods for further details). We271

measured a distribution of correlation values of 0.900± 0.006, indicating a strong similarity between272

the generated profiles.273

As a second test, we tested the stability of the branch assignments to random resamplings of the274

training data. For each of the resampled embeddings described above, we constructed a principal275

graph (using the same settings) and assigned each point to a branch of the new graph (resampled276

branches). To measure the robustness of each of the original branches (SEV, MOD, SYMPT, NORM1,277

and NORM2), we defined the cluster purity measure as the proportion of subjects of each branch that278

were classified within the same branch in a resampled graph (see Methods). A high cluster purity279

indicates that individuals within the same cluster tend to be classified in the same cluster also in the280

resampled configurations. For each branch, we evaluated its purity against each resampled branch281

classification. In this way we obtained a set of 100 purity values per branch. For comparison, we282

repeated a similar operation by running the k-means algorithm on both the original VAE embeddings283

and each resampled embedding. For each embedding, we set a number of clusters equal to the number284

of branches identified within that embedding. Finally, we evaluated the purity values of each of the285

clusters retrieved in the original VAE embedding. Since the selection of non-terminal branches in286

the trajectory analysis has no equivalent operation in the clustering case, for the comparison we287

selected the 5 clusters with the highest median purity values. Additionally, to emulate the selection288

of the 50% highest confidence points along the trajectories, for each cluster we selected the 50% data289

points that are closest to the cluster centroid (‘core set’ of the cluster). The identified branches yield290

high purity values, approximately 90% for all branches (Supplementary Figure 1 (g), red boxes),291

outperforming both the standard k-means clusters (light blue boxes) and their core sets (dark blue292

boxes). This finding indicates that the branches are more robust to random resampling compared to293

the k-means clusters, suggesting that the principal graph description better reflects the continuous294

nature of the underlying data distribution.295

3 Discussion296

In this study, we proposed a novel approach to COPD subtyping, bridging the often-separate realms297

of clinical phenotyping and omics-driven profiling. Our main contributions are: (1) we showed that298

by integrating clinical and molecular data through variational autoencoders we retain domain-specific299

information while simultaneously capturing variability across multiple domains; (2) we showed that300
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trajectory analysis in the joint clinical and molecular space of COPD features identifies more robust301

subgroups compared to standard clustering approaches; (3) we identified 5 joint subtypes with302

distinctive clinical and transcriptomic features and disease outcomes.303

The rationale of this work is that when clinical features aren’t explicitly included in the discovery304

phase of subtyping, it can be challenging to ensure that the derived molecular subtypes hold clinical305

relevance [10]. Adding to previous work in multi-omic integration [19, 50], we designed a variational306

autoencoder architecture to integrate blood gene expression and clinical variables in COPD. While307

previous studies have focused on finding associations between clinical and molecular variables in specific308

contexts, such as CT imaging data [51], our integrative methodology describes this connection at a309

larger scale. Instead of focusing on a specific feature domain, we generated a comprehensive description310

of the COPD heterogeneity across multiple domains, including transcriptomics, demographics, lung311

function, lifestyle, CT measures, medical history, comorbidities, and symptoms.312

Linear multi-omics integration methods, such as MOFA [22], assume a linear relationship among313

the features. In contrast, variational autoencoders offer flexibility in capturing complex, non linear314

interactions between features coming from different domains. The VAE architecture at the core of315

our methodology is designed to perform an implicit 2-step integration process. The first step consists316

in integrating features within the same domain (clinical or molecular). Then, the domain-specific317

higher-level features are subsequently integrated together to encode the Personalized Integrated318

Profile of a subject.319

Several recent works have suggested that COPD manifestations are usually distributed as a320

continuum rather than discrete subgroups [18, 3], possibly stemming from the superposition of321

multiple endotypes [52]. In the absence of clearly-separated subpopulations, subjects with intermediate322

or hybrid COPD conditions are only loosely associated to their subtypes, and even slight noise323

perturbations can cause these subject to “switch” to adjacent groups. To address this issue, we used324

the elPiGraph trajectory learning algorithm [36] to map the main trajectories of the VAE latent space.325

Trajectory analysis yields an explicit linear ordering of individuals along each branch, generalizing326

the previously proposed concepts of "treatable traits" [52] and “disease axes” [53, 3]. We selected327

subjects with more extreme conditions to define subgroups, reducing the susceptibility to group328

switching. This approach improves the subtypes’ robustness compared to standard clustering-based329

classifications, since in the latter the points with the highest confidence are those nearest to the330

centroid, and therefore reflect more average, rather than extreme, features.331

Our analysis identified five joint subtypes with distinct phenotypic characteristics, severity, disease332

outcomes, and transcriptomics signatures. Three of these five subtypes present multiple COPD-like333

features. The subtype with the most severe COPD manifestations, SEV, includes the largest fraction334

of individuals with emphysema. The SEV group has the largest overlap with the established definition335

of emphysema-predominant phenotypes (>10% CT-quantified emphysema), a subtype previously336

associated to larger annual FEV1 loss and higher risk of mortality [44]. Conversely, MOD individuals337

with moderate-to-severe COPD (GOLD≥2) have large overlap with the non-emphysema-predominant338

subtype of COPD (<5% CT-quantified emphysema). Individuals within the MOD subtype, despite339

their relatively younger average age and lower disease severity, experience frequent exacerbations340

and lose lung function at a comparable rate to the SEV group, consistent with prior observations341

linking exacerbations to loss of lung function [54, 55, 56, 57]. Notably, the fraction of frequent342

exacerbators in MOD (≥2 exac. per year, as defined in [42]) is composed predominantly (83%) of343

mildly obstructed individuals (GOLD≤2 or PRISm). The association between frequent exacerbations344

and milder airflow obstruction in certain COPD subgroups has been demonstrated previously, both345

within COPDGene (Phase 1) [54] and within the ECLIPSE study [42]. Individuals in the MOD346

subtype may be representative of earlier-stage COPD mechanisms where frequent exacerbations347

precede the development of severe airflow obstruction. An alternative possibility is that they represent348

a distinct trajectory of COPD characterized by airway inflammation and frequent exacerbations349

without emphysematous lung destruction.350

Subjects in the SYMPT subtype are mostly current smokers (∼70%) with only slight spirometric351

abnormalities and relatively favorable disease progression, yet they suffer from multiple respiratory352
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symptoms, including chronic bronchitis, coughing and wheezing. SYMPT individuals are reminis-353

cent of the previously investigated subtype of symptomatic smokers with preserved lung function354

(FEV1:FVC≥0.70) [58, 59]. In agreement with the findings in [58], using LFU measurements we355

found that subjects within this subtype experience higher exacerbation frequency compared to the356

NORM2 baseline. However, in our prospective analysis we did not observe a substantial difference in357

loss of lung function between the SYMPT and the NORM1 and NORM2 subtypes.358

Besides recapitulating previously observed patterns of phenotypic variation, the joint subtypes359

display marked transcriptomic differences. We measured a distinct pattern where multiple biological360

pathways exhibit an opposite directionality of activation between the SEV and MOD branches.361

Immune pathways, which are among the top enriched processes, have been consistently associated to362

COPD [11, 60, 61]. Among the most significant differences, we found several pathways related to363

immune response and regulation, including Interferon Alpha response, IL6/JAK/STAT3 Signaling364

and TNF-α Signaling via NF-κB. COPD patients who experience frequent exacerbations have been365

reported to exhibit reduced IFN-α levels in response to viral infection compared to individuals366

with lower exacerbation rates [62]. As such, downregulation of the IFN-α in the MOD branch367

might indicate compromised antiviral immunity, potentially leading to a higher susceptibility to368

exacerbations. ROS overproduction is known to suppress the activity of these enzymes [63, 64, 65, 66],369

and prolonged depletion of antioxidant capacity has been observed several days after the onset of370

exacerbation in COPD patients. Furthermore, previous reports have supported the role of the371

IL6/JAK/STAT3 signaling pathway in pulmonary inflammation and COPD severity [67, 68].372

One limitation of this study is that we rely exclusively on expression data in blood for inferring373

the molecular processes associated to each subtype. The integration of diverse omics types and374

tissues [19], especially from the lung and airways, will be crucial for delineating more detailed375

disease subtypes that capture the diversity of COPD processes and their relationship with its clinical376

manifestations. Another limitation of our study is the lack of replication of our results in independent377

cohorts. Independent validation of this analysis is challenging since there are currently no other378

cohorts that have collected the data required in enough subjects with advanced COPD. In the future,379

with the additional generation of multi-omics data in NIH-funded studies such as SPIROMICS [69]380

through the Trans-Omics in Precision Medicine (TOPMed) program [70], it will be possible to pursue381

independent validation. In the meantime, we have pursued the next-best option, namely an extensive382

robustness analysis using resampling approaches. A crucial objective left for future work is the383

generation of distilled models that can reproduce our results in reduced datasets. Finally, cell type384

proportions play a dual role in gene expression analyses, serving both as a potential manifestation of385

the disease and a potential confounder [71]. This dual nature hinders the interpretability of gene386

expression results. Leveraging single cell RNA-seq data offers a way forward [72, 73]. By providing a387

higher resolution view of individual cell populations and their associated gene expression patterns, it388

becomes possible to discern between disease-associated shifts in cell populations and gene expression389

changes within specific cell types. Therefore, another promising future direction for this work is its390

application to single cell RNA-seq datasets.391

4 Methods392

4.1 Processing of clinical and phenotypic data393

In the initial phase of preparing the input data for the VAE, we chose all the subjects who had394

available clinical data and RNA-seq expression profiles, obtaining 3,628 samples. We classified each395

feature as either numerical or categorical, and we devised different processing strategies to handle396

the two groups of features. Among the categorical features, we excluded those with more than 10%397

of missing values across all subjects or where the most frequent category was present in more than398

80% of subjects. The latter criterion was devised to avoid including features that are not sufficiently399

informative of patient heterogeneity. Similarly, we excluded the numerical features with more than400

10% missing values or with constant values. We then imputed the remaining missing values in the401
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categorical features by considering the most frequent category for each feature across all subjects.402

The numerical missing values were imputed through KNN imputation with k equal to 10. As further403

selection, we selected one representative variable among the groups of redundant categorical variables,404

i.e., those with high similariy values (adjusted Rand score > 0.95). The resulting set of clinical405

features selected for training the VAE is summarized in Supplementary Table 1.406

4.2 Processing of expression data and differential expression analysis407

From the raw read counts matrix we removed low expressed transcripts by selecting transcripts with408

at least 1 CPM in more than 10 samples. Next, we processed the data with the DeSeq2 algorithm409

[74], and removed batch effects with the function “removeBatchEffect” of the package limma [75].410

Finally, to make the computations more manageable, and to perform a preliminary feature selection,411

we selected only the genes that were loosely associated to at least one clinical feature in the dataset.412

We assessed the significance of the relationships between each gene and each clinical feature, using413

Spearman’s correlation for numerical features and the Kruskal Wallis test for categorical ones. Genes414

with at least one FDR-adjusted p-value below 0.001 were retained, yielding 5,979 transcripts.415

To perform differential expression (DE) analysis we executed the DE pipeline of DeSeq2 starting416

from the raw data. In brief, after basic data filtering we set up a design matrix with covariates417

including sequencing batch, age, sex, race, and white blood cell proportions. As contrasts we choose418

the membership to each of the three COPD branches (SEV, MOD, SYMPT) against the joined419

population of the reference branches NORM1 and NORM2. From the three contrasts we obtained420

three DE summary statistics. Next, we performed Gene Set Enrichment Analysis [76] with the421

GSEApy python package [77]. Specifically, we ranked the genes by their negative log p-value score422

multiplied by the sign of their log fold change (logFC). In this way, the genes that are significantly423

upregulated in the contrast (low p-value, positive logFC) appear at the top of the ranking, while the424

genes that are downregulated (low p-value, negative logFC) will appear at the bottom, providing a425

coarse measure of their general state of differential activation.426

4.3 Conditional Variational Autoencoder design427

In order to find a shared latent space for expression and clinical features, we designed a conditional428

VAE architecture with an “X” shape, similar to the X-VAE model described in [29], shown in Fig. 1429

(d). The network takes as input a vector of concatenated RNA-seq read counts and clinical features430

that have been normalized to be in the unit range.431

The architecture consists of four subnetworks: two encoders Encoderφ1 and Encoderφ2 , and two432

decoders Decoderθ1 and Decoderθ2 . Each data mode x1 and x2, along with the conditional variable433

c, is separately passed through an encoder network.434

Each encoder network, Encoderφi(xi, c) is composed of L layers where each layer l is defined as:435

h
(i)
l = ReLU(BatchNorm(W

(i)
l h

(i)
l−1 + b

(i)
l )) i ∈ {1, 2} (1)

with436

h
(i)
0 = ReLU(BatchNorm(W

(i)
0 [xi; c] + b

(i)
0 )) i ∈ {1, 2} (2)

Here, h(i)l denotes the l-th layer’s activations, BatchNorm is a batch normalization transformation,437

W
(i)
l ∈ φi and b

(i)
l ∈ φi are the weight matrix and bias terms of the l-th layer, ReLU is the activation438

function, and [·; ·] is the concatenation operator.439

These encoders transform their inputs into latent representations:440

h1 = Encoderφ1
(x1, c) (3)

h2 = Encoderφ2
(x2, c) (4)
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The two latent representations h1 and h2 are then concatenated to form a shared representation441

h = [h1;h2]. Two separate linear layers are used to project this representation into the parameters of442

a Gaussian distribution, forming the mean vector µ(h) and the vector of standard deviations σ(h) of443

the latent distribution of the latent vector z.444

µ(h), σ(h) = Linearµ(h),Linearσ(h) (5)

For the decoder part, the sampled latent variable z is concatenated with the conditional variable445

c and passed through the decoder networks to generate the reconstructed data x̂1 and x̂2.446

x̂1 = Decoderθ1(z, c) (6)

x̂2 = Decoderθ2(z, c). (7)

Similarly, a decoder Decoderθi(z, c) is composed of L layers447

h
(i)
l = ReLU(BatchNorm(V

(i)
l h

(i)
l−1 + d

(i)
l )) i ∈ {1, 2} (8)

with448

h
(i)
0 = ReLU(BatchNorm(V

(i)
0 [z; c] + d

(i)
0 )) i ∈ {1, 2}. (9)

As before, V (i)
l ∈ θi and d

(i)
l ∈ θi are the weight matrix and bias terms of the l-th layer.449

Furthermore, the last layers of each decoder do not include a ReLU activation function to allow for450

negative outputs.451

4.3.1 The Evidence Lower Bound and Maximum Mean Discrepancy Loss452

The training objective of our multimodal VAE is to maximize the Evidence Lower Bound (ELBO),453

which in this case is a convex combination of the data-type-specific ELBO terms, governed by a454

parameter α1. The reconstruction loss for each mode is calculated differently due to the nature455

of their data. For the numerical data mode x1, the Mean Squared Error (MSE) is used. For the456

mixed data mode x2, which contains numerical and categorical data, the loss is a convex combination457

(controlled by a parameter α2) of the MSE for the numerical part and the Categorical Cross-Entropy458

for the categorical part. Furthermore, instead of the standard Kullback-Leibler (KL) divergence used459

in the original formulation of VAE [35], we employ the Maximum Mean Discrepancy (MMD) measure460

to regularize the model as proposed in the InfoVAE formulation [78]. Similarly to KL divergence,461

MMD is a distance measure between two probability distributions. However, MMD only depends on462

a set of statistics evaluated from the two distributions, and therefore it does not require the explicit463

evaluation of their analytical form. In the Gaussian case, MMD calculation is done by embedding464

the distributions in a Reproducing Kernel Hilbert Space (RKHS) identified by their average and465

standard deviation, and by computing the distance between these statistics [79]. The ELBO LMMD466

has the form467

LMMD(x1, x2, c, θ, φ) =α1 · Eqφ(z|x1,x2,c)[MSE(x1,Decoderθ1(z, c))]

+ (1− α1) ·
(
Eqφ(z|x1,x2,c)[α2 ·MSE(x2num ,Decoderθ2num

(z, c))

+ (1− α2) · CCE(x2cat ,Decoderθ2cat (z, c))]
)

− γ ·MMD(qφ(z|x1, x2, c), pθ(z|c)) (10)

Here, x2num represents the numerical part and x2cat represents the categorical part of the sec-468

ond data mode x2. The expected values Eqφ(z|x1,x2,c) are approximated by a single sampling of469

z ∼ N (µ(h), σ(h)). Decoderθ2num
(z, c) and Decoderθ2cat (z, c) are the reconstructed numerical and470
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categorical parts of the data respectively, and CCE denotes the average Categorical Cross-Entropy471

loss across all the categorical variables. MMD(qφ(z|x), pθ(z)) measures the dissimilarity between the472

approximate posterior qφ(z|x) and the prior pθ(z) in terms of their mean embeddings in the RKHS.473

4.3.2 Optimization474

Optimization was performed with the ADAM optimizer [80]. In all our tests the full dataset is split475

in 80% training samples, 10% validation samples and 10% test samples. To identify the optimal476

hyperparameters (number and size of hidden layers, the learning rate, and training batch size), we477

performed hyperparameter optimization with ASHA (Asynchronous Successive Halving Algorithm), a478

scheme for parallel optimization equipped with greedy early stopping strategies to rule out inefficient479

hyperparameter configurations [81]. In the final optimal configuration the encoder subnetwork for480

processing the expression data has 2 hidden layers of dimensions 1024 and 512 neurons, while the481

encoder subnetworks for processing the clinical data has 1 hidden layer of dimension 64 neurons. The482

decoder networks are constrained to mirror the encoder structure in reverse. The mini-batch size is483

128.484

4.4 Prediction of future outcomes from PIPs485

The prediction task was performed by training a set of random forest (RF) classifiers using multiple486

input embeddings and output disease outcomes, as listed in the main text.487

The embeddings of MOFA [22] were calculated by running the mofapy python package, feeding488

the expression and clinical data as input and by setting 30 as the number of hidden factors. The489

MOFA embeddings were defined as the estimated means of the factors obtained after fitting the490

model.491

For ease of comparison of performances, we considered a set of binary outcomes. COPD outcomes492

that are measured as continuous variables were transformed to binary variables by thresholding. The493

selection of thresholds was guided by practical considerations to ensure a balanced representation494

of positive and negative examples. The considered target variables are the following: (1) ∆FEV1495

% of pred. (P3<P2): subjects with more than 10% decrease of FEV1 percent predicted between496

Phase 2 and Phase 3 (positive class) compared to subjects with more than 10% increase (negative497

class) (N=331); (2) inc. bronchitis (P3): incident chronic bronchitis in Phase 3, restricted to498

individuals without chronic bronchitis in Phase 2 (N=1,087); (3) exacerbations (P3): frequency499

of exacerbations in Phase 3 greater than 0 (N=1,251); (4) ∆ exacerbation frequency (P3>P2):500

frequency of exacerbations in Phase 3 greater than Phase 2 (N=1,251); (5) severe exacerbations501

(P3): presence of severe exacerbations in Phase 3 (N=1,250); (6) ∆ severe exacerbations (P3>P2):502

presence of severe exacerbations in Phase 3 in subjects who did not experience severe exacerbations503

in Phase 2 (N=1,164); (7) ∆mMRC (P3>P2): increased mMRC dyspnea score in Phase 3 compared504

to Phase 2 (N=1,183); (8) ∆SF-36 (P3<P2): decrease of SF-36 score between Phase 2 and Phase505

3 (N=1,251); (9,10) mortality (3/5yr): all-cause mortality at 3 and 5 years (N=3,361/3,347). We506

set up each RF classifier with 100 decision trees. For a more robust performance assessment that507

is not too sensitive to a specific train/test split of the dataset, we conducted a stratified 5-fold508

cross-validation, repeated 3 times. For each split, we performed three steps: (1) we normalized the509

whole dataset according to the statistics obtained from the current training set; (2) since most clinical510

outcomes have highly unbalanced class distributions, we performed SMOTE oversampling [82] of511

the minority class, using the imblearn python package [83]; (3) we trained the classifier with the512

resulting data. The values shown in Table 1 are the summary statistics obtained by the 5-fold splits513

repeated 3 times, for a total of 15 performance values for each prediction. The significance values are514

obtained by performing t-tests between the performance values obtained by the best embedding and515

the second-best embedding.516
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4.5 Construction of principal graph517

To build the principal graph describing the distance relationships between observations in the518

embedding space, we used the elPiGraph method [36]. We used default parameters, except for the519

maximum number of nodes which was set to 30 to increase resolution. Also we set the “collapse”520

argument to True, in order to merge the small and noisy branches within their main branch. All the521

2D embeddings shown in Fig. 2 are evaluated with a modified version of the elPiGraph function522

“visualize_eltree_with_data”. In brief, this function first produces a 2D embedding of the principal523

graph using the Kamada-Kawai layout algorithm [84]. Next, it distributes all the data points across524

the branches according to their calculated projections. Finally, to improve clarity each point is525

scattered randomly in the direction orthogonal to the branch by an extent controlled by a fixed526

parameter.527

4.6 Processing of LFU and mortality data528

To visualize the trends in Fig. 4 (a), we considered all the long-term follow-up (LFU) survey data529

that were compiled after Phase 2 of the COPDGene study (as of August 2022). Since the time points530

refer to the time the survey was compiled, we considered as the interval range of each data point the531

6 months prior to the compile date, unless another survey was compiled by the same subject less532

than 6 months earlier. In that case, the time interval is the time span occurring between the two533

surveys. To analyze the risk of increased exacerbations over time, we set up a Poisson regression534

model, controlling for the age, sex, and race covariates. The model was fit through the glmfit R535

function, using a log link function. We also tested an alternative mixed effect model where subject536

identity was included as a random effect, obtaining similar results. To estimate mortality at 3 and 5537

years, we considered the COPDGene all-cause mortality data as of October 2022. To implement the538

Cox proportional hazard model of mortality we used the lifelines python package [85].539

4.7 Evaluation of distance correlation (dCorr)540

The similarity between two sets of N vectors embedded in two spaces can be estimated by modeling541

each vector set as the N realizations of a multivariate random variable. From this standpoint, the542

similarity between the two sets is equivalent to the level of statistical dependency between the two543

variables. dCorr is an extension of the Pearson correlation to multivariate settings and it ranges544

between 0 (statistical independence) and 1 (linear dependency) [49]. Furthermore, dCorr is invariant545

to rigid transformations applied to either of the two spaces (e.g. rotations). This makes it an ideal546

tool for assessing the similarity between the two sets of vector embeddings. dCorr is estimated as547

follows [86]:548

let X and Y be two d-dimensional vector sets. Define aij and bij to be the Euclidean distances549

between the ith and jth elements of X and Y , respectively. We then form the centered distance550

matrices A and B as follows:551

Aij = aij − āi. − ā.j + ā.., Bij = bij − b̄i. − b̄.j + b̄..,

where552

āi. =
1

n

n∑
k=1

aik, ā.j =
1

n

n∑
k=1

akj , ā.. =
1

n2

n∑
k,l=1

akl,

b̄i. =
1

n

n∑
k=1

bik, b̄.j =
1

n

n∑
k=1

bkj , b̄.. =
1

n2

n∑
k,l=1

bkl,

The distance covariance (dCov) and distance correlation (dCorr) are defined as553
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dCov(X,Y ) =

√√√√ 1

n2

n∑
i,j=1

AijBij ,

dCorr(X,Y ) =
dCov(X,Y )√

dCov(X,X) · dCov(Y, Y )
.

The distance covariance correlation was evaluated with the python package hyppo [87].554

4.8 Evaluation of the branch purity with respect to data resamplings555

Let us consider a set of n data points with branch labels Y = {y1, y2, ..., yn}, where each yi
belongs to one of K branches. In a resampled embedding we produce a new branch assignment
Y ′ = {y′1, y′2, ..., y′n}, where each y′i belongs to one of K ′ branches, with K not necessarily equal to
K ′. The purity of branch k in the original labeling Y with respect to the resampled branch labels Y ′
is defined as

Purity(k;Y, Y ′) =
1

Nk
max

k′=1,...,K′
|{i : yi = k} ∩ {i : y′i = k′}|

where Nk = |{i : yi = k}| and |.| denotes the cardinality of a set. This value measures the number of556

items in the k-th branch that belong to the most common resampled branch. Purity is a fraction557

between 0 and 1, where higher values indicate stronger alignment between the original and resampled558

branch assignments.559

5 Data Availability560

All COPDGene data for the analysis are available in dbGaP accession number phs000179.v6.p2. The561

data generated in this study has been deposited in the Zenodo repository, accessible via the DOI:562

10.5281/zenodo.10431493.563

6 Code Availability564

The code used to reproduce the analyses in this study is available in the GitHub repository accessible565

via the following URL: https://github.com/reemagit/joint_subtyping_vae.566
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