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ABSTRACT 
Background: Leukemia, a cancer impacting blood-forming tissues such as bone marrow and the lymphatic system, presents in 

various forms, affecting children and adults differently. The therapeutic approach is complex and depends on the specific leukemia 

type. Effective management is crucial as it disrupts normal blood cell production, increasing infection susceptibility. Treatments like 

chemotherapy can further weaken immunity. Thus, a patient's healthcare plan should focus on comfort, reducing chemotherapy side 

effects, protecting veins, addressing complications, and offering educational and emotional support. 

Method: This article reviews studies on the combined use of drugs for treating leukemia. Employing a mix of medicines might 

decrease the chances of tumor resistance. Starting multiple drugs concurrently allows for immediate application during disease onset, 

avoiding delays. Initial chemotherapy uses a drug combination to eliminate maximum leukemia cells and restore normal blood counts. 

Afterwards, intensification chemotherapy targets any residual, undetectable leukemia cells in the blood or bone marrow. To 

recommend a drug combination to treat/manage Leukemia, under first step of RAIN protocol, we have searched articles including 

related trend drugs using Natural Language Processing. In the second step, we have employed Graph Neural Network to pass 

information between these trending drugs and genes that act as potential targets for Leukemia. 

Result:  As a result, the Graph Neural network recommends combining Tretinoin, Asparaginase, and Cytarabine. The network 

meta-analysis confirmed the effectiveness of these drugs on associated genes.  

Conclusion: The p-value between leukemia and the scenario that includes combinations of the mentioned drugs is almost zero, 

indicating an improvement in leukemia treatment. Reviews of clinical trials on these medications support this claim. 
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INTRODUCTION 
The introduction of the article is divided into two subsections. 

The first subsection discusses certain genes or proteins that have 

been identified as potential targets for the treatment of leukemia. 

The second subsection provides information about drugs that are 

currently used to treat leukemia. These drugs may target the 

genes or proteins mentioned in the first subsection, or they may 

work through other mechanisms to help fight the disease. 

Associated genes/Proteins: 
The combination of the PML protein and the RARα protein 

plays a significant role in the development of Acute 

Promyelocytic Leukemia (APL). This occurs through the 

formation of a fusion protein called PML-RARα, which is 

present in over 95% of APL patients. Due to its high prevalence, 

this fusion protein becomes a promising target for potential 

therapeutic interventions. In-depth analysis of PML/RARα's 

direct targets has provided valuable insights into the 

transcriptional abnormalities observed in APL and has paved the 

way for target-specific treatments. These treatments include all-

trans retinoic acid (ATRA) and arsenic trioxide (As2O3), both 

designed to degrade the PML-RARα protein. ATRA functions 

by promoting the transcription of RARα-target genes, thereby 

overcoming the block in cell differentiation. On the other hand, 

As2O3 induces oxidant stress and directly binds to PML, leading 

to partial differentiation and cell death in APL cells. 

Consequently, these treatments prove to be more effective in 

eradicating leukemia-initiating cells. [1]–[3]. 

The overexpression of the Leukemia inhibitory factor (LIF) 

and its receptor (LIFR) is commonly observed in different types 

of solid cancers, including leukemia. Recent research has 

identified the LIF/LIFR axis as a potential target for cancer 

treatment. The activation of signaling pathways that promote 

cancer growth, such as JAK/STAT3 as immediate effectors, and 

subsequent downstream MAPK, AKT, and mTOR, is facilitated 

by LIF/LIFR [4]–[6]. 

Formerly known as MLL, KMT2A is a gene found on 

chromosome 11q23 responsible for producing the enzyme 

histone lysine-specific N-methyltransferase 2A. This gene is 

frequently involved in recurrent translocations in acute myeloid 

leukemia (AML), acute lymphoblastic leukemia (ALL), and 

mixed lineage (biphenotypic) leukemia (MLL) [7]–[9]. 

RUNX1 is frequently impacted by chromosomal and genetic 

changes in cases of leukemia. Both inherited and acquired 

genetic abnormalities are commonly found in acute myeloid 

leukemia (AML), and the presence of RUNX1 mutations often 

indicates a poor prognosis. Consequently, there is growing 

interest in targeting RUNX1 as a potential therapy for AML. 

Researchers are exploring various strategies to combat RUNX1 

in AML, including the development of small molecules that 

specifically target the RUNX1-RUNX1T1 protein. Additionally, 

tyrosine kinase inhibitors like dasatinib and FLT3 inhibitors are 

being investigated to counteract mutations that provide growth 

advantages to leukemia cells. Epigenetic-based therapies are also 

being tested as potential approaches to targeting RUNX1 in 

AML [10], [11]. 

Around one-third of patients diagnosed with acute myeloid 

leukemia (AML) have mutations in the fms-like tyrosine kinase 

3 (FLT3) gene. It is now recommended that molecular testing for 

FLT3 mutations be conducted immediately upon diagnosis, and 

targeted treatments should be promptly integrated to achieve 

deeper remissions and accelerate consideration for allogeneic 

stem cell transplant (ASCT). The introduction of the multi-

kinase FLT3 inhibitor (FLT3i) midostaurin as part of the initial 

treatment for newly diagnosed AML patients with FLT3 

mutations, as well as the use of the more precise and potent 

FLT3i gilteritinib as standalone therapy for relapsed/refractory 

(R/R) AML patients with FLT3 mutations, has significantly 

improved patient outcomes [12], [13]. 
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Chronic myelogenous leukemia (CML) is a type of blood 

cancer that arises from a versatile stem cell in the bone marrow 

and is consistently associated with a specific genetic abnormality 

known as the BCR-ABL1 fusion gene. This genetic anomaly 

occurs when a specific gene on chromosome 9, called ABL1, 

translocates to a region of the BCR gene on chromosome 22. As 

a result, the BCR-ABL1 fusion gene leads to abnormal activity 

of a protein called kinase and uncontrolled growth of cells, which 

are key characteristics of CML. Fortunately, the development of 

medications known as tyrosine kinase inhibitors (TKIs) that 

target the BCR-ABL oncoprotein has greatly improved the 

management of CML [14]–[16]. 

BCR-ABL, a gene characterized by its abnormal presence in 

chronic myeloid leukemia (CML) cells, instigates uncontrolled 

proliferation and replication of these cells. Specifically classified 

as a tyrosine kinase, the BCR-ABL protein plays a pivotal role 

in this process. Consequently, tyrosine kinase inhibitors (TKIs) 

that target BCR-ABL have emerged as the prevailing therapeutic 

approach for managing CML [17]–[19]. 

CD19 is a protein commonly present on B-cell acute 

lymphoblastic leukemia (B-ALL) cells. Remarkable success has 

been observed in the treatment of B-ALL through the use of 

Chimeric antigen receptor (CAR) T-cells targeted at CD19. This 

approach has resulted in complete elimination of the disease in 

as many as 90% of patients with relapsed or refractory B-ALL 

[20]–[22]. 

CD34, a marker for hematopoietic stem cells, has been linked 

to a less favorable prognosis among individuals diagnosed with 

myelodysplastic syndromes (MDS) and acute myeloid leukemia 

(AML). Studies have demonstrated that CD34+CD38− cells 

possess the ability to initiate AML and B-ALL in individuals 

with compromised immune systems [23]–[25]. 

The MECOM gene, also referred to as the MDS1 and EVI1 

Complex Locus, is situated on chromosome 3q26.2. This 

particular gene has undergone extensive research due to its 

crucial involvement in the maintenance and replication of normal 

hematopoietic stem cells. However, when it is expressed 

abnormally, it can act as an oncogene. Translocations that 

involve the MECOM gene at 3q26.2 have been thoroughly 

documented and characterized in various myeloid disorders, 

such as acute myeloid leukemia (AML), myelodysplastic 

syndromes (MDS), and chronic myelogenous leukemia (CML). 

These translocations have been associated with a dismal 

prognosis [26]–[28]. 

CSF3R functions as the receptor responsible for colony-

stimulating factor 3 (CSF3), a critical factor involved in the 

growth and differentiation of granulocytes. The presence of 

CSF3R mutations has been observed in individuals suffering 

from severe congenital neutropenia, a condition that can progress 

to acute myeloid leukemia (AML) [29], [30]. 

ZBTB16, a gene associated with leukemia, has recently 

garnered attention for its involvement in acute myeloid leukemia 

(AML). In certain instances, a rare genetic rearrangement 

involving ZBTB16 and the RARA gene has been identified. This 

rearrangement leads to the creation of a fusion protein called 

ZBTB16-RARA, which is believed to have oncogenic properties 

and contribute to the progression of AML [31]–[33]. 

MEIS1 is a gene that has been linked to the development of 

leukemia. This gene plays a crucial role as a transcription factor, 

ensuring the survival of leukemia cells. Consequently, it has 

emerged as a promising target for potential molecular treatments 

in cases where leukemias express this particular transcription 

factor. Studies have revealed that suppressing MEIS1 in 

leukemia cells leads to a reduction in cell growth, triggers 

programmed cell death, and slows down the progression of overt 

leukemia in live organisms [34], [35]. 

HOXA9, a transcription factor containing a homeodomain, 

holds significant significance in the expansion of hematopoietic 

stem cells and is frequently disrupted in cases of acute leukemias. 

Numerous genetic abnormalities occurring upstream in acute 

myeloid leukemia (AML) result in the excessive expression of 

HOXA9, which is a robust indicator of an unfavorable prognosis. 

While it has been established in several instances that HOXA9 is 

vital for sustaining leukemic transformation, the precise 

molecular mechanisms by which it facilitates the development of 

leukemia are still not fully understood [36]. 

BCL2, a gene associated with leukemia, has been found to play 

a significant role in preventing cell death and resistance to 

chemotherapy in acute myeloid leukemia. This discovery has led 

researchers from the University of Rochester to investigate the 

use of BCL2 inhibitors as a potential treatment for leukemia stem 

cells. These inhibitors have shown promise in targeting and 

killing leukemia stem cells that are inactive and have slower 

metabolic rates, suggesting their potential as novel 

pharmacological modulators in cancer treatment [37]–[39]. 

DOT1L, a histone methyltransferase, plays a crucial role in the 

modification of nucleosomal histone H3 lysine 79 (H3K79) 

through mono-, di-, or trimethylation (H3K79me1, me2, or me3). 

Its significance lies in its involvement in MLL fusion-driven 

leukemogenesis, making it a promising target for the treatment 

of MLL-rearranged leukemias. Extensive research has been 

conducted, leading to significant advancements in this area. 

Additionally, EPZ-5676, a DOT1L inhibitor, has successfully 

entered clinical trials, further highlighting its potential for 

therapeutic use [40]–[42]. 

WT1, a leukemia-associated antigen (LAA), exhibits varying 

expression levels in leukemic blasts. Consequently, WT1 holds 

potential as a candidate for therapeutic interventions like 

adoptive-specific T lymphocyte treatments. The restricted 

presence of WT1 in adult tissues further implies its suitability as 

a target for combating leukemia [43], [44]. 

MYC, a proto-oncogene, plays a significant role in a variety of 

cancers, such as leukemia and lymphoma. Its abnormal 

expression in hematological malignancies leads to unregulated 

cell growth and impedes the process of cellular differentiation. 

Research conducted on leukemia cells and animal models of 

lymphoma and leukemia indicates that MYC could serve as a 

promising target for therapeutic interventions. Numerous 

therapies targeting MYC have been evaluated in preclinical 

studies and even tested in clinical trials [45]–[47]. 
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MLL is a prime focus for chromosomal translocations in acute 

leukemias that have a bleak prognosis. The frequently observed 

fusion partner of MLL, AF9 (also known as MLLT3), has the 

ability to directly interact with AF4, DOT1L, BCOR, and CBX8. 

When the direct binding between BCOR and MLL-AF9 is 

disrupted, there is a partial differentiation of cells and an increase 

in proliferation. Remarkably, the elimination of the binding 

between MLL-AF9 and BCOR completely abolished its ability 

to cause leukemia in a mouse model [48]–[50]. 

NPM1, a protein that moves between the nucleus and 

cytoplasm, is primarily found in the nucleolus and plays various 

important roles. These include controlling the duplication of 

centrosomes, the production and export of ribosomes, the 

assembly of histones, the maintenance of genomic stability, and 

the response to stress in the nucleolus. Mutations in NPM1 are 

the most common genetic changes found in acute myeloid 

leukemia (AML), occurring in approximately 30-35% of adult 

AML cases and over 50% of AML cases with a normal genetic 

makeup. It has been suggested that dysfunctional NPM1 may 

contribute to the development of AML by acting as a protein 

chaperone that prevents leukemia stem cells from differentiating 

and by regulating non-coding RNAs. In addition to traditional 

chemotherapy treatments, NPM1 shows promise as a target for 

AML therapy and should be further investigated [51], [52]. 

The MLLT10 gene is frequently rearranged in both acute 

myeloid leukemia (AML) and acute lymphoblastic leukemia 

(ALL), particularly in T-lineage ALL (T-ALL), across all age 

groups. Diagnosing and treating MLLT10 rearranged 

(MLLT10r) acute leukemia is challenging due to the complex 

nature of the disease, often presenting with an immature or mixed 

phenotype, and a lack of consensus on the best treatment 

approach. Patients with MLLT10r AML or T-ALL and an 

immature phenotype have a high risk of poor outcomes, but the 

underlying molecular mechanisms and response to targeted 

therapies are not well understood. By gaining a better 

understanding of the genomics of MLLT10r acute leukemia, 

both in clinical and molecular terms, we can improve the ability 

to predict prognosis and expedite the development of targeted 

therapies, ultimately leading to better outcomes for patients [53], 

[54]. 

TAL1, also known as T-cell acute leukemia protein 1, plays a 

crucial role in the development of blood cells and the onset of 

leukemia. Specifically, TAL1 is essential for the differentiation 

of red blood cells during hematopoiesis. However, it is typically 

suppressed in the process of thymopoiesis in humans due to 

epigenetic factors. When TAL1 is abnormally expressed in T-

cells, it becomes a significant contributor to the development of 

T-cell leukemia, which is considered a potent oncogenic event 

[55], [56]. 

IL11 receptor (IL11R) is an ideal candidate for targeted 

therapy in human leukemia and lymphoma due to its presence on 

the cell surface. A peptidomimetic prototype called BMTP-11 

has been developed, which binds specifically to the membranes 

of leukemia and lymphoma cells. When bound to the IL11R, 

BMTP-11 triggers the internalization of the ligand-receptor 

complex, leading to cell death in a dose-dependent manner. 

These findings suggest that BMTP-11 and its derivatives have 

promising potential for the treatment of these types of 

malignancies [57]. 

The expression of IL3 receptor (CD123) on CD34+CD38- 

leukemic stem cells in AML and CML has been confirmed. In 

pre-clinical AML models, it has proven to be a successful target 

for therapy. The findings also suggest that the IL3 receptor is 

highly expressed on CD34+38- Bcr-Abl (+) CML stem cells, 

presenting a promising and achievable target for intervention. 

Additionally, DT-IL3 conjugates offer a new and innovative 

approach for selectively targeting CML stem cells that are highly 

resistant to treatment [58], [59]. 

CSF2, also referred to as GM-CSF, is a crucial cytokine that 

regulates a multitude of cellular processes such as differentiation, 

proliferation, survival, and activation of white blood cells. The 

receptor responsible for GM-CSF consists of two subunits: 

CSF2RA and CSF2RB. Notably, CSF2RB serves as a common 

beta subunit for the IL3 and IL5 receptors, making it the primary 

subunit for signaling. On the other hand, CSF2RA primarily acts 

as a subunit that binds to ligands. Studies have shown that GM-

CSF signaling plays a inhibitory role in the development of t 

(8;21) acute myeloid leukemia (AML) in murine models, while 

also promoting the differentiation of leukemic blasts into 

myeloid cells [30], [58]. 

The gene RARA has been linked to the development of acute 

myeloid leukemia (AML). Through their research, scientists 

have identified specific areas of DNA called super enhancers 

(SE) that play a role in overproducing certain gene products in 

cells from children with AML. Of particular interest is an SE 

associated with the RARA gene, which was found in 64% of the 

AML samples obtained from pediatric patients. Further 

investigation revealed that AML cells containing this RARA SE 

were highly responsive to treatment with the drug tamibarotene, 

both in laboratory settings and in animal models. This treatment 

not only prolonged survival but also effectively reduced the 

burden of leukemia [31], [60]. 

JAK2, a protein tyrosine kinase, plays a crucial role in the 

signaling of cytokine receptors. Recent discoveries have revealed 

that mutations in JAK2 are associated with the development of 

acute lymphoblastic leukemia (ALL) and other blood-related 

cancers. The presence of JAK2 mutations is strongly linked to 

the formation, treatment, and prognosis of acute leukemia. 

Moreover, researchers have identified JAK2 and STAT5 as 

promising targets for therapeutic intervention in leukemic stem 

cells found in chronic myeloid leukemia (CML) [61]–[63]. 

CD22, a marker of B-lineage differentiation, has gained 

significant attention as a promising treatment target for acute 

lymphoblastic leukemia (ALL). It is highly expressed on the 

surface of B-precursor ALL cells, making it an ideal candidate 

for immunotherapy. Importantly, CD22 is found on both 

immature and mature B cells, while being absent on 

haemopoietic stem cells. This unique feature positions CD22 as 

an excellent therapeutic option for patients with relapsed or 

chemotherapy-refractory ALL [64], [65]. 

RUNX1 is a commonly affected gene in leukemia, with 

various changes occurring in its chromosomal and genetic 
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structure. These alterations include rearrangements involving 

RUNX1 or CBFβ, point mutations in RUNX1, and amplification 

of the gene. In particular, mutations in RUNX1 are frequently 

associated with acute myeloid leukemia (AML) and are linked to 

a poor prognosis. As a result, RUNX1 has emerged as a 

promising target for therapeutic interventions. Several potential 

approaches are being explored, including the development of 

small molecules that can target the RUNX1-RUNX1T1 protein, 

the use of tyrosine kinase inhibitors like dasatinib and FLT3 

inhibitors to counteract mutations that give leukemic cells a 

growth advantage, and the investigation of epigenetic therapies 

[66]. 

BMI1, a gene belonging to the Polycomb-group, is situated at 

10p12.2 and plays a significant role in the development of 

various tumors. It is frequently affected by abnormal changes in 

chromosomes in B-cell leukemia/lymphoma. Additionally, 

BMI1 is involved in the preservation of the growth potential of 

leukemic stem cells (LSCs). By targeting BMI-1, which is 

substantially elevated in leukemic cells, a substantial reduction 

in the burden of leukemia was observed [67]–[69]. 

 

Leukemia treatments: 
Cytarabine plays a crucial role in the treatment of acute 

myeloid leukemia (AML). It is administered alongside 

anthracyclines during induction therapy and at higher dosages 

during consolidation therapy for AML patients. The combination 

of cytarabine with purine nucleoside analogs, like fludarabine 

and cladribine, has been extensively studied for the treatment of 

relapsed or refractory AML patients. However, in recent years, 

there has been a significant shift towards the use of targeted 

therapies that are both novel and effective. These therapies 

include inhibitors that target mutant FMS-like tyrosine kinase 3 

(FLT3) and isocitrate dehydrogenase (IDH), as well as 

venetoclax, a B-cell lymphoma 2 inhibitor, and glasdegib, a 

hedgehog pathway inhibitor. In older patients, a combination of 

a hypomethylating agent or low-dose cytarabine with venetoclax 

has shown promising results, achieving response rates similar to 

standard induction regimens in similar populations. However, 

this combination therapy may come with reduced toxicity and 

lower risk of early mortality [70]–[72]. 

For over 40 years, daunorubicin, an anthracycline drug, has 

been widely used alongside cytarabine as a standard induction 

therapy for adult patients with acute myeloid leukemia (AML). 

This treatment approach, commonly referred to as the "3+7 

regimen," involves administering daunorubicin for three days 

followed by seven days of cytarabine. Recently, a phase 2 trial 

examined the effectiveness and safety of combining venetoclax 

with the 3+7 regimen in adult AML patients. The results 

demonstrated an impressive composite complete remission rate 

of 91% after just one cycle of treatment [73]–[75]. 

Mercaptopurine, a potent chemotherapy medication, is 

primarily utilized in the treatment of acute lymphoblastic 

leukemia (ALL), a type of cancer affecting the white blood cells. 

Additionally, it can be employed to address acute myeloid 

leukemia (AML), as well as the rare form of AML known as 

acute promyelocytic leukemia. This medication acts as a pro-

drug, resembling the structure of purine analogues, and disrupts 

the synthesis and recycling of nucleotides within the body. For 

the successful eradication of ALL, it is crucial to undergo 

maintenance therapy (MT) involving the administration of oral 

methotrexate (MTX) and 6-mercaptopurine (6-MP). The primary 

method by which this drug exerts its cytotoxic effects is through 

the integration of thioguanine nucleotides (TGNs) into the DNA 

molecule. This process may be further intensified due to the 

inhibition of the production of new purines by other metabolites 

derived from MTX/6-MP [76]–[78]. 

Vincristine, an effective chemotherapy medication, is 

frequently administered alongside other drugs for the treatment 

of acute lymphoblastic leukemia (ALL). This compound works 

by interfering with the normal functioning of microtubules, 

thereby halting the cell cycle. In order to assess the possibility of 

discontinuing pulse therapy with vincristine and dexamethasone 

beyond one year of treatment for childhood ALL, a study was 

conducted to determine if this approach would have any negative 

impact on the outcome of any risk subgroup within this 

population [79]–[82]. 

Methotrexate is a chemotherapy drug commonly used to treat 

acute lymphoblastic leukemia (ALL). This medication works by 

depleting reduced folates and inhibiting key steps in nucleotide 

synthesis, which are necessary for the production of thymidine 

and purine. Maintenance therapy, consisting of oral methotrexate 

and 6-mercaptopurine, is crucial for successfully curing ALL. 

These drugs disrupt nucleotide synthesis and salvage pathways, 

and their primary method of killing cancer cells involves 

incorporating thioguanine nucleotides into DNA. This process 

can be further enhanced by the inhibition of de novo purine 

synthesis by other metabolites of methotrexate and 6-

mercaptopurine [83]–[87]. 

Busulfan, a chemotherapy medication, is utilized alongside 

other drugs to prepare patients with leukemia for allogeneic 

marrow transplantation. For individuals with acute myeloid 

leukemia or myelodysplastic syndrome who are deemed unfit for 

intense conditioning treatments, a widely accepted reduced-

intensity conditioning regimen involves a lower dosage of 

intravenous busulfan combined with the purine analogue 

fludarabine [88]–[92]. 

Cyclophosphamide, a chemotherapy medication, has shown 

potential in enhancing the effectiveness of treatment for patients 

with acute lymphoblastic leukemia (ALL). Despite its promising 

results, there remains a lack of clarity when it comes to assessing 

the overall efficacy and safety of this drug for ALL patients [93], 

[94]. 

Doxorubicin has been proven to be a highly effective 

chemotherapy medication in the treatment of acute 

lymphoblastic leukemia (ALL) in children. However, recent 

developments in the form of bispecific antibodies (BsAbs) have 

further enhanced its effectiveness by improving its ability to 

target leukemia cell lines and patient samples. This is particularly 

beneficial as these samples often consist of varying 

immunophenotypes and represent high-risk subtypes of 

childhood leukemia. Moreover, the use of a clinically approved 
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and low-toxic PEGylated liposomal formulation of doxorubicin, 

known as Caelyx, in combination with BsAbs has shown 

promising results in increasing the cytotoxic activity against 

these leukemia cells [95]–[97]. 

Asparaginase, an enzyme known for its ability to reduce the 

levels of the amino acid L-asparagine in the bloodstream, plays 

a crucial role in the treatment of acute lymphoblastic leukemia 

(ALL). By depriving leukemic cells of this amino acid, which 

they are unable to produce themselves, asparaginase effectively 

induces cell death. Moreover, this enzyme has the unique 

capability of reconfiguring the metabolic and energy-producing 

pathways within leukemia cells, thereby triggering both anti-

leukemic and pro-survival mechanisms [98]–[100]. 

Tretinoin, also known as all-trans-retinoic acid (ATRA), is a 

medication utilized to induce remission in individuals diagnosed 

with acute promyelocytic leukemia (APL) who possess a specific 

gene mutation known as the t(15;17) translocation, resulting in 

the formation of the PML::RARα fusion gene. This medication 

is not prescribed for maintenance therapy. Researchers have 

examined the combination of arsenic trioxide and tretinoin 

(AsO/ATRA) as a potential treatment approach for APL. For 

individuals newly diagnosed with APL and exhibiting low-risk 

disease (with a white blood cell count [WBC] of ≤10,000/mcL), 

AsO/ATRA is the preferred induction regimen. Additionally, 

patients with high-risk disease (WBC >10,000/mcL) who are 

unable to tolerate anthracyclines are advised to undergo the 

AsO/ATRA induction regimen [101]–[103]. 

Imatinib, a targeted inhibitor of BCR-ABL1 kinase, has 

significantly enhanced the outlook for chronic myeloid leukemia 

(CML) patients. Examining the efficacy and safety data from 

over a decade of follow-up on CML patients treated with 

imatinib as their initial therapy, it is evident that imatinib's 

effectiveness remains consistent over time. Furthermore, long-

term use of imatinib does not lead to any concerning cumulative 

or delayed toxic effects [104], [105]. 

Idarubicin, an anthracycline medication, demonstrates 

remarkable efficacy in combating acute myeloid leukemia 

(AML). Its oral administration capability allows for the 

development of anti-leukemic treatment plans that can be 

conveniently administered via oral intake. This feature proves 

invaluable, particularly for elderly AML patients who are 

deemed unfit for conventional intensive therapies [106]–[108]. 

Etoposide, a potent anticancer medication, has demonstrated 

effectiveness as a standalone treatment for acute myeloid 

leukemia (AML). Nevertheless, the administration of high 

dosages or prolonged use of etoposide may lead to the 

development of therapy-related leukemia [109]–[111]. 

Thioguanine, a potent anti-cancer medication primarily 

utilized in leukemia treatment, is now being investigated through 

a study called Thiopurine Enhanced ALL Maintenance (TEAM). 

The objective of this study is to assess the potential enhancement 

in disease-free survival by incorporating a minute quantity of 6-

thioguanine into the maintenance therapy based on 6-

mercaptopurine/methotrexate. The study focuses on both 

pediatric and adult patients, ranging from 0 to 45 years of age, 

who have recently been diagnosed with B-cell precursor or T-

cell acute lymphoblastic leukemia. These patients are being 

treated in accordance with the intermediate risk-high group of the 

ALLTogether1 protocol [86], [112]–[114]. 

The combination of arsenic trioxide and all-trans retinoic acid 

(ATRA) has proven to be highly effective in treating acute 

promyelocytic leukemia (APL), leading to significant 

advancements in patient outcomes. As a result, APL has emerged 

as the most easily treatable form of acute myeloid leukemia 

[101], [102], [115], [116]. 

Fludarabine, an antineoplastic drug, is widely employed in the 

management of hematological malignancies, specifically chronic 

lymphocytic leukemia (CLL) and indolent B-cell lymphoma. 

Due to its ability to suppress the immune system, fludarabine has 

been incorporated into reduced intensity conditioning regimens 

[27], [117]–[119]. 

Amsacrine, an antineoplastic agent, has shown promising 

results in treating acute leukemias. However, it is important to 

note that using Amsacrine-based induction therapy in patients 

with cardiac comorbidities should not be considered as an 

alternative to the standard induction treatment for acute myeloid 

leukemia (AML) [120]–[123]. 

Mitoxantrone is a potent therapeutic agent widely employed in 

the management of acute leukemia. In various clinical 

investigations involving individuals with refractory and relapsed 

acute myeloid leukemia (AML), a combination of Mitoxantrone 

and etoposide has been utilized, yielding notable rates of 

complete remission (CR) ranging from 16% to 61% [109], [124], 

[125]. 

Cytosine arabinoside, which is commonly referred to as 

cytarabine, holds significant value as a medication for addressing 

acute myeloid leukemia (AML). It plays a crucial role in 

induction therapy when combined with anthracyclines and in 

consolidation therapy at elevated doses for AML patients³. 

Although high-dose cytarabine (ranging from 2000 to 3000 mg 

per square meter of body-surface area) can be toxic, it yields 

superior rates of relapse-free survival compared to the traditional 

dosage of 100 to 400 mg per square meter [71], [126], [127]. 

The effectiveness of Recombinant Interleukin-3 (IL-3) in 

combating leukemia has been explored through research. 

Specifically, a new fusion protein called DT388IL3 has been 

developed for this purpose. DT388IL3 is a combination of the 

catalytic and translocation domains of diphtheria toxin (DT388) 

and human interleukin 3 (IL-3), connected by a Met-His linker. 

In order to assess its potential in treating differentiated human 

acute myeloid leukemia (AML), DT388IL3 was tested in an in 

vivo model [128]–[131]. 

Transplant conditioning stands as a critical component in the 

treatment procedure for leukemia. Prior to the transplant, medical 

professionals employ chemotherapy, radiation therapy, or a 

combination of the two, aiming to eliminate as many cancerous 

cells as feasible. This phase of treatment not only weakens the 

immune system to minimize the chances of transplant rejection 

but also creates space for the introduction of fresh stem cells. 

Conditioning regimens assume an integral role in the complete 

eradication of leukemic cells [88], [132]–[134]. 
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Myeloablative conditioning is a preparative regimen employed 

prior to a stem cell transplant, aimed at achieving sufficient 

immunosuppression to prevent rejection of the transplanted graft 

and eliminate the underlying disease. When treating acute 

lymphoblastic leukemia (ALL), myeloablative conditioning 

typically involves the use of total-body irradiation (TBI) or 

busulfan. TBI-based regimens are particularly effective in 

eradicating leukemia cells in hard-to-reach areas, and as a result, 

cyclophosphamide and TBI are currently the preferred 

myeloablative regimen for ALL [132], [135]–[137]. 

The preparative regimen, also referred to as the conditioning 

regimen, plays a crucial role in the hematopoietic cell transplant 

(HCT) procedure. Its primary objectives are twofold: to ensure 

adequate immunosuppression to prevent the rejection of the 

transplanted graft and to eliminate the disease for which the 

transplant is being conducted. There are two main types of 

preparative regimens: standard-intensity and reduced-intensity. 

The standard-intensity regimen involves the administration of 

high doses of chemotherapy, sometimes combined with high 

doses of radiation, and is commonly known as a myeloablative 

regimen. On the other hand, the reduced-intensity regimen 

employs lower doses of chemotherapy, possibly with lower 

doses of radiation, and is commonly referred to as a non-

myeloablative regimen [138]. 

Anthracyclines, which are chemotherapy drugs derived from 

various strains of Streptomyces bacteria, enjoy extensive usage 

in the treatment of a wide range of cancers. These include 

leukemias, lymphomas, as well as cancers affecting the breast, 

stomach, uterus, ovary, and lung, among other locations. The 

mechanism of action for anthracyclines involves the infliction of 

DNA damage upon cancer cells, ultimately leading to their 

demise before they can undergo cell division. Numerous 

variations of anthracycline drugs are employed in chemotherapy, 

with certain medications exhibiting remarkable efficacy in 

targeting specific cancer types [139]. 

Filgrastim is a pharmaceutical drug employed to bolster the 

production of white blood cells in individuals undergoing 

chemotherapy for acute myeloid leukemia (AML). Its purpose is 

twofold: to expedite recovery from fever and to minimize the risk 

of infection in patients with neutropenia resulting from specific 

types of chemotherapy, including those prescribed for AML 

[140]. 

Prednisolone, a potent steroid, serves a dual purpose in 

medical applications - combating leukemia cells and alleviating 

allergic reactions caused by certain chemotherapy medications. 

Its primary function is to curtail inflammation and modulate the 

body's immune response. Prednisone, a popular glucocorticoid, 

has emerged as the standard treatment for individuals diagnosed 

with acute lymphoblastic leukemia (ALL). Typically 

administered for a duration of four consecutive weeks, it is 

complemented by a combination of other chemotherapy drugs 

[121], [141], [142]. 

Tyrosine kinase inhibitors (TKIs) are a class of drugs widely 

recognized as the standard treatment for chronic myeloid 

leukemia (CML). These medications function by deactivating 

the tyrosine kinase, which is produced by the BCR-ABL1 gene 

present in leukemia cells. By doing so, they effectively halt or 

slow down the abnormal production of white blood cells in the 

bone marrow. Notable examples of TKIs employed in the 

management of CML encompass Imatinib (Gleevec), Dasatinib 
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(Sprycel), Nilotinib (Tasigna), Bosutinib (Bosulif), Ponatinib 

(Iclusig), and Asciminib (Scemblix) [15], [17], [143]–[145].  

Azacitidine, a prescribed medication, serves as an effective 

remedy for specific leukemia forms, such as acute myeloid 

leukemia (AML) and myelodysplastic syndromes (MDS). This 

medication is specifically formulated to impede the excessive 

growth of leukemia cells while simultaneously promoting the 

production of healthy and fully functioning cells in the bone 

marrow. The primary objectives of this therapy encompass 

elevating blood cell counts, mitigating the susceptibility to 

infections, reducing the dependency on blood transfusions, and 

minimizing the risk of bleeding. Notably, Azacitidine is highly 

 
Figure 1: The effects of proposed drug combinations on the management of Leukemia incidents. 

 

 
Figure 2: PRISMA (2020) flow diagram indicating the stages of sieving articles in this RAIN protocol 
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recommended as the initial course of treatment for elderly AML 

patients who are unsuitable candidates for intensive treatment 

regimens [146]–[148]. 

Clofarabine, a second-generation purine analog, is a highly 

effective medication prescribed for the treatment of acute 

lymphoblastic leukemia (ALL) in children and young adults, 

specifically those aged between 1 and 21 years, who have 

undergone at least two unsuccessful treatment methods. 

Typically administered as a last resort, this potent drug exerts its 

therapeutic effects by strongly impeding DNA synthesis while 

exhibiting a favorable pharmacologic profile [149], [150].  

Aclarubicin is a pharmaceutical utilized for the therapeutic 

management of acute non-lymphocytic leukemia, a malignancy 

affecting the blood and bone marrow. In the context of acute 

myeloid leukemia (AML), this medication has been administered 

as an induction therapy for patients who have shown resistance 

to initial chemotherapy or have experienced a relapse [151], 

[152]. 

Dasatinib, a second-generation BCR-ABL1 kinase inhibitor, is 

an effective medication prescribed for the treatment of specific 

forms of leukemia, such as chronic myeloid leukemia (CML) and 

Philadelphia chromosome-positive acute lymphoblastic 

leukemia (ALL). It is particularly approved as an initial therapy 

Table 1: p-value between scenarios and Leukemia 

Scenario Drug Combinations p-value 

S1 Tretinoin 1.0193E-02 

S2 S1 + Asparaginase 8.7631E-05 

S3 S2 + Cytarabine 3.4965E-05 
 

Table 2: p-values between Leukemia and human proteins/genes after implementing scenarios 

Association 

 Name 

S0 S1 S2 S3 Association 

 Name 

S0 S1 S2 S3 

LIF 2E-06 1 1 1 BCL2 8E-05 1 1 1 

PML 2E-06 1 1 1 DOT1L 8E-05 0.97 0.99 1 

LIFR 1E-05 0.9 1 1 TXK 8E-05 1 1 1 

KMT2A 1E-05 0.99 1 1 WT1 8E-05 1 1 1 

EMB 2E-05 0.8 0.8 0.8 NM 8E-05 0.99 0.99 0.99 

RUNX1 2E-05 1 1 1 MYC 9E-05 1 1 1 

ASPG 2E-05 0 1 1 MLLT3 9E-05 0.92 1 1 

FLT3 2E-05 1 1 1 NPM1 9E-05 1 1 1 

ASRGL1 3E-05 0 1 1 ERVK-20 1E-04 0 0 0 

CD33 3E-05 1 1 1 MRPL28 1E-04 0.99 0.99 1 

ABL1 4E-05 0.98 1 1 MLLT10 1E-04 0.68 0.68 0.95 

IL6ST 4E-05 0.99 0.99 0.99 ERVK-18 1E-04 0 0 0 

OSM 4E-05 0.99 0.99 0.99 TAL1 1E-04 0.98 1 1 

LRPPRC 4E-05 0.99 0.99 0.99 ERVW-1 1E-04 0.72 0.72 0.93 

CENPV 5E-05 0.73 0.73 0.73 IL11 1E-04 0.98 0.98 1 

BCR 5E-05 1 1 1 SUB1 1E-04 0.99 0.99 1 

CD19 5E-05 0.31 1 1 IL3 1E-04 1 1 1 

CD34 5E-05 1 1 1 POLD4 1E-04 0 0.73 0.99 

MECOM 6E-05 1 1 1 POLE4 1E-04 0 0.73 0.99 

CSF3 6E-05 1 1 1 CSF2 1E-04 1 1 1 

CNTF 7E-05 1 1 1 RARA 1E-04 1 1 1 

ZBTB16 7E-05 1 1 1 JAK2 1E-04 0.95 0.95 0.98 

MEIS1 7E-05 1 1 1 CD22 1E-04 0 0.97 1 

HOXA9 7E-05 0.99 0.99 1 RUNX1T1 1E-04 0.99 1 1 

ANPEP 7E-05 1 1 1 BMI1 1E-04 0.96 0.99 1 
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for CML and for adult patients who no longer derive benefits 

from alternative leukemia medications, such as imatinib 

(Gleevec), or for those who are unable to tolerate them due to 

adverse reactions [153]–[155].  

Tetradecanoylphorbol Acetate (TPA) is a highly effective 

tumor promoter frequently utilized in the field of biomedical 

research to activate the signal transduction enzyme protein 

kinase C (PKC)². Furthermore, TPA has demonstrated 

remarkable potential as a powerful inducer of differentiation in 

human promyelocytic leukemia cells¹. Notably, TPA has proven 

successful in treating patients with myelocytic leukemia, 

resulting in therapeutic effects and temporary remission. 

However, further investigation is required to determine the 

optimal dosing regimens of TPA and assess whether it can lead 

to long-lasting or even permanent remissions of myelocytic 

leukemia [156]–[158]. 

Venetoclax, a pharmaceutical medication, has obtained 

official approval for the treatment of newly diagnosed acute 

myeloid leukemia (AML). Specifically designed for individuals 

aged 75 years and older, as well as adults who are unable to 

undergo intensive induction chemotherapy, this drug is 

administered alongside azacitidine, decitabine, or low-dose 

cytarabine. Furthermore, Venetoclax has exhibited considerable 

potential in addressing AML cases characterized by heightened 

Bcl-2 levels [73], [107], [159].  

Objectives:  

Despite the existence of various studies on useful drugs for 

leukemia, the reasons shown in Figure 1 have led to lack of 

comprehensive statistical research on the subject. The use of 

artificial intelligence, on the other hand, has been considered in 

various medical applications in recent years, from protein folding 

[160], medical imaging[161], [162], cohort studies[163], until 

core fundamental changes in neural networks[164]. 

 The goal of this research is suggesting drug combinations to 

manage/treat Leukemia using the RAIN protocol, which 

employs artificial intelligence to recommend drug combinations 

for managing or treating diseases [165]. The RAIN protocol has 

been used in recent years to propose medicinal compounds for 

diseases such as cancers [165]–[170].  

 

 
Figure 3: The general structure of the GNN model to suggest an 

effective drug combination in the management of disease using 

human proteins/genes as interface features. 

 

METHOD 
The RAIN protocol comprises three distinct stages. Initially, 

artificial intelligence is employed to propose an optimal drug 

combination for the treatment and management of a specific 

disease. Subsequently, a comprehensive analysis is conducted 

through Natural Language Processing, systematically reviewing 

recent articles and clinical trials to assess the effectiveness of 

various permutations of the suggested combination. Figure 2 

presents the distribution of articles in each step of the STROBE 

 

(a) (b) 

 

 

(c) 

 
Figure 4: Drug structure for (a) Tretinoin, (b) Asparaginase, (c) Cytarabine from https://www.drugbank.com/  
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checklist. Finally, in the third stage, the effectiveness of drugs 

and their associated human proteins/genes is evaluated using 

Network meta-analysis. 

Stage I: Graph Neural Network 
The RAIN protocol incorporates the GNN (Graph Neural 

Network) approach to foster collaboration among associations 

towards a specific goal. This strategy utilizes a network meta-

analysis to identify associations with known p-values, which are 

then transformed into cooperations with limited significance. 

The proposed model consists of two main steps: the forward and 

backward steps. During the forward step, the GNN algorithm 

calculates combined p-values between associations and the 

target, ultimately selecting the association with the lowest 

combined p-value. In the subsequent backward step, p-values 

between interface features and the target are updated based on 

the chosen associations. The significance of these cooperative 

associations is determined by multiplying their combined p-

values. This iterative process continues until the significance 

falls below a predetermined threshold. A visual representation of 

this process can be observed in Figure 3. 

Stage II: A comprehensive Systematic Review 
This stage outlines a procedure for validating the results 

obtained from a GNN model by conducting a systematic 

evaluation of recommended medications. To carry out this 

evaluation, a systematic review is performed using various 

databases including Science Direct, Embase, Scopus, PubMed, 

Web of Science, and Google Scholar. Instead of manually 

searching within these databases, a semantic search technique 

based on Natural Language Processing (NLP) is employed. This 

technique utilizes MeSH to search for each term individually, 

resulting in a wider and more precise selection of articles within 

a shorter timeframe. 

Information sources: 

In order to validate the proposed drug combination suggested 

by our in-house GNN model, we conducted a comprehensive 

systematic review utilizing NLP techniques. Our review 

encompassed multiple databases such as Science Direct, 

Embase, Scopus, PubMed, Web of Science, and Google Scholar, 

with the aim of identifying relevant studies. The primary 

objective was to analyze data from a large-scale clinical trial, 

thereby affirming the efficacy of the suggested drug 

combination. To accomplish this, we extracted keywords from 

both the GNN model outputs and the Leukemia subscription. 

Search strategy  

The utilization of a natural language processing method 

enables the execution of a semantic search across diverse 

databases, specifically targeting publication titles and abstracts. 

This advanced technique facilitates the inclusion of MeSH 

phrases as potential search keywords, as their semantic value 

proves to be highly valuable in the search process. 

Study selection: 

In the initial stage of the process, the elimination of redundant 

research is prioritized. Subsequently, a comprehensive list of the 

remaining research titles is compiled during the evaluation phase 

in order to systematically filter the research. In the screening 

phase, which is the first step of the systematic review, a thorough 

assessment of the titles and abstracts of the remaining research is 

conducted, and certain studies are excluded based on predefined 

selection criteria. 

In the subsequent step, known as the competency evaluation, 

the full text of the research that survived the screening phase is 

meticulously reviewed in accordance with the selection criteria, 

resulting in the elimination of several studies that are not 

relevant. To ensure objectivity and minimize personal bias in the 

selection of resources, an expert and a Question-Answering (QA) 

agent utilizing Natural Language Processing (NLP) 

independently carry out the research and data extraction process. 

The expert is required to provide a comprehensive explanation 

for any study that was not chosen. Meanwhile, the QA agent 

assigns a score to each article based on specific questions, and 

articles with the lowest scores are excluded. These questions 

involve determining the effectiveness of different drugs for the 

treatment of leukemia, with each drug being substituted in the 

intelligent system's output. In cases where there is disagreement 

between the expert and the QA agent, the expert will review the 

contentious research.  

Quality evaluation:  

In order to assess the quality of remaining publications in a 

specific research field, a checklist is commonly employed. The 

STROBE method is frequently utilized to evaluate the quality of 

observational studies. This checklist is structured into six 

comprehensive sections, namely title, abstract, introduction, 

methodology, results, and discussion. It encompasses a total of 

32 fields, each of which corresponds to a distinct aspect of a 

study's methodology. These fields include elements such as the 

study's title, problem statement, objectives, type, population, 

sampling method, sample size, variable and procedure 

definitions, data collection methods, statistical analysis 

techniques, and results. The maximum score attainable during 

the quality assessment phase using the STROBE checklist is 32. 

Articles that receive a score of 16 or higher are regarded as being 

of moderate or high quality. 
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Figure 5: p-values between affected human proteins/genes and 

Leukemia 

 
Figure 6: p-values between affected human proteins/genes and 

Leukemia after implementing Scenario 4. 
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Stage III: Network meta-analysis 
In the third phase, a network meta-analysis is applied to 

investigate the impact of potential synthetic drug combinations 

on human proteins/genes. This approach allows for the 

evaluation of multiple drugs within a single study, combining 

both direct and indirect data from randomized controlled trials 

that link diseases and drugs through proteins/genes. By utilizing 

proteins/genes as a connecting element in a network, this analysis 

helps to determine the relative effectiveness of commonly 

prescribed drugs in real-world clinical settings. The evaluation 

of each drug's efficacy is based on input biological data. 

 

 

RESULTS 

Stage I: Graph Neural network 
The recommended drug combination by the GNN consists of 

Tretinoin, Asparaginase, and Cytarabine. The significance of this 

combination is demonstrated in Table 1, which displays the p-

values associated with the combination of these drugs. For 

instance, when considering the p-value between Leukemia and 

Tretinoin (Scenario 1), the value is 0.01. However, this value 

decreases significantly to 0.000088 when Asparaginase is added 

(Scenario 2). Moreover, the p-value further decreases to 3E-5 in 

the third scenario, indicating that the proposed drug combination 

has a positive impact on managing the disease. 

Table 2 provides insights into how the p-values between 

Leukemia and human proteins/genes change under different 

scenarios. The 'S0' column showcases the p-values between 

Leukemia and the respective affected human proteins/genes. 

When Tretinoin is introduced (S1 column), the combined p-

values are shown. It is interesting to note that in the 'S3' column, 

the p-values between Leukemia and human proteins/genes reach 

1, implying a decrease in the significance of the target 

proteins/genes. 

Stage II: A comprehensive Systematic Review 
The impact of the mentioned medications on leukemia 

treatment was thoroughly investigated at this stage. A rigorous 

selection process was followed, adhering to the PRISMA 

principles and the RAIN framework, to gather relevant articles 

until July 2022. A total of 251 potentially relevant articles were 

identified and imported into the EndNote reference management 

Table 3: properties of proposed drugs as effective drugs to Leukemia management. 
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Tretinoin DB00755 *  C20H28O2 

Tretinoin attaches to three types of retinoic acid 

receptors, known as alpha, beta, and gamma. The first 

two types have been linked to specific cancers, while 

the third type is related to the impact of retinoids on 

skin and bone tissues. 

Asparaginase DB00023  * C1377H2208N382O442S17 

Asparagine is a non-essential amino acid that helps 

with cell growth and DNA, RNA, and protein 

synthesis. Lymphoblastic leukemic cells can't produce 

asparagine on their own and rely on external sources. 

L-asparagine from E. coli can deplete plasma levels of 

asparagine in leukemic cells, leading to reduced cell 

growth and the activation of cell-death mechanisms. 

Normal cells can synthesize asparagine and are less 

affected by treatment with the enzyme asparaginase. 

Cytarabine DB00987 *  C9H13N3O5 

Cytarabine is a drug that damages DNA and 

incorporates into it. It is toxic to many proliferating 

cells and is most effective against cells undergoing 

DNA synthesis. It works by inhibiting DNA 

polymerase and can also incorporate into both DNA 

and RNA. 
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system. After removing duplicates (178 articles), the remaining 

131 papers were subjected to title and abstract review, using 

predefined inclusion and exclusion criteria. Consequently, 40 

studies were excluded during the screening phase. Moving on to 

the eligibility evaluation, 120 studies met the criteria and their 

full texts were thoroughly reviewed. Subsequently, 47 studies 

were eliminated based on their adherence to the inclusion and 

exclusion criteria. In the quality evaluation stage, the remaining 

16 studies were assessed using the STROBE checklist scores and 

methodological quality, resulting in the exclusion of 15 studies 

due to poor quality. Ultimately, 35 cross-sectional studies were 

included in the final analysis. The full texts of these articles were 

meticulously examined, and each article was scored using the 

STROBE checklist (refer to Figure 3). For further details and 

characteristics, please refer to Table 3 [171]–[205]. Additionally, 

the structures of the drugs used in the studies are displayed in 

Figure 4, while Table 4 provides an overview of the drug 

properties [171]–[205]. 

 

 
Figure 7: radar chart for p-values between Leukemia and 

affected proteins/genes, after consumption of each drug. 

Stage III: Network Meta-Analysis 
Figure 5 exhibits the p-values for human proteins/genes 

affected by Leukemia, whereas Figure 6 presents the p-values 

following the implementation of the third scenario. The efficacy 

of drugs chosen by the drug selection algorithm is demonstrated 

in Figure 7 through a radar chart, indicating the p-values between 

Leukemia and human proteins/genes after the administration of 

the selected drugs. Figure 8 illustrates the p-values between 

associations and targets using different interface features. P-

values lower than .01 and .05 are depicted in green and blue, 

respectively. Each colored line represents the effectiveness of the 

corresponding drug in the given scenario. 

 

Table 4: some important research studies for proposed 

drugs in Leukemia managements 
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Heraudet L. et al., 2022  
 

* * 

Moriya K. et al., 2022 
 

* * 

Iannuzzi A. et al., 2022 
 

* * 

Yohannan B. et al., 2022 * 
 

* 

Canter C. et al., 2022 * 
 

* 

Pardo Gambarte L. et al., 2022 * 
 

* 

Kantarjian HM. et al., 2022 * 
 

* 

Takahashi S. et al., 2022 * 
 

* 

Zhao J. et al., 2022 * 
 

* 

Lin N. et al., 2021 
 

* * 

Oh BLZ. et al., 2021 
 

* * 

Jabbar N. et al., 2021 * 
 

* 

Sun Y. et al., 2021 * 
 

* 

Traylor JI. et al., 2021 * 
 

* 

Takahashi S. et al., 2021 * 
 

* 

Schneider P. et al., 2020 
 

* * 

Jabbour E. et al., 2020 
 

* * 

Trobisch A. et al., 2020 
 

* * 

Pedrosa F. et al., 2020 
 

* * 

Kutny MA. et al., 2019 * 
 

* 

Le Y. et al., 2018 
 

* * 

Wu C. et al., 2018 
 

* * 

Salzer WL. et al., 2018 
 

* * 

Araújo NS. et al., 2018 * 
 

* 

Jillella AP. et al., 2018 * 
 

* 

Fracchiolla NS. et al., 2018 * 
 

* 

Mar BG. et al., 2017 
 

* * 

Teiken K. et al., 2017 
 

* * 

Horibe K. et al., 2017 
 

* * 

Song M. et al., 2017 * 
 

* 

Brandwein JM. et al., 2017 * 
 

* 

Song JH. et al., 2014 * * 
 

Castelli R. et al., 2010 * * 
 

Corey SJ. et al., 2005 * * 
 

Langebrake C. et al., 2002 * * 
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Figure 8: p-values between associations and target, using 

different interface features. (a) Overall, (b) after first drug from (a) 

is used, (c) after first drugs of (a) and (b) are used. 

 

DISCUSSION 
Prescription drug information plays a crucial role in 

investigating the potential interactions, adverse effects, and risks 

associated with medications. To discern such details, various 

trustworthy online platforms like Medscape, WebMD, Drugs, 

and Drugbank were consulted to facilitate a comprehensive 

comparison of different drugs. Through these reliable databases, 

a thorough analysis of drug combinations was conducted, 

ultimately revealing the existence of certain interactions among 

specific medication pairs. However, it is important to note that 

the investigated websites have not identified any substantial 

interactions between Tretinoin, Asparaginase, and Cytarabine at 

present. 

 

CONCLUSION 
Leukemia is a form of cancer that impacts the body's blood-

forming tissues, such as the bone marrow and lymphatic system. 

Typically, it affects the white blood cells, which serve as 

powerful infection fighters and normally grow and divide in an 

organized manner as needed by the body. By utilizing a 

combination of drugs, the treatment of leukemia can be 

enhanced. For acute leukemias, induction chemotherapy is often 

the initial step, followed by intensification or consolidation 

chemotherapy. Through the implementation of the RAIN 

protocol, our Graph Neural Network has recommended a 

combination of Tretinoin, Asparaginase, and Cytarabine to 

specifically target human genes and proteins associated with 

leukemia. Findings indicate a notable advancement in the 

treatment of leukemia. 
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