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Abstract 

Background: Sepsis is a life-threatening condition caused by a dysregulated response to 

infection, affecting millions of people worldwide. Early diagnosis and treatment are critical for 

managing sepsis and reducing morbidity and mortality rates. 

Materials and Methods: A systematic design approach was employed to build a model that 

predicts sepsis, incorporating clinical feedback to identify relevant data elements. XGBoost was 

utilized for prediction, and interpretability was achieved through the application of Shapely 

values. The model was successfully deployed within a widely used Electronic Medical Record 

(EMR) system. 

Results: The developed model demonstrated robust performance pre-operations, with a 

sensitivity of 92%, specificity of 93%, and a false positive rate of 7%. Following deployment, 

the model maintained comparable performance, with a sensitivity of 91% and specificity of 94%. 

Notably, the post-deployment false positive rate of 6% represents a substantial reduction 

compared to the currently deployed commercial model in the same health system, which exhibits 

a false positive rate of 30%. 
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Conclusions: These findings underscore the effectiveness and potential value of the developed 

model in improving timely sepsis detection and reducing unnecessary alerts in clinical practice. 

Further investigations should focus on its long-term generalizability and impact on patient 

outcomes. 

 

Keywords: Sepsis, Early detection, Machine learning, XGBoost, Model interpretability, 

Machine learning deployment 

 

1. Introduction 

Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to 

infection that impacts millions of people around the world [1]–[3]. Early diagnosis and treatment 

are crucial in managing sepsis, a life-threatening medical condition leading to increased 

morbidity and mortality rates [4]. There are some established scoring systems for assessing the 

risk of sepsis [5]–[8]. These systems assign risk scores based on a set of predefined criteria. Due 

to the complexity of sepsis and its nonlinear association with patient characteristics (e.g., vitals 

and labs), these tools are limited in terms of distilling predictive insights from the patient profile. 

Therefore, there has been a growing interest in using machine learning algorithms as decision-

support tools for sepsis detection [9]–[12]. While there is an abundance of articles on the topic, 

there is still a need for improving the interpretability of models and investigating model 

deployment in operation in hospitals. 

 

Machine learning as a concept was introduced in 1959 by Arthur Samuel in the quest to grant 

computers the ability to learn without being explicitly programmed [13].  It has been proven to 
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be very beneficial in many medical and healthcare delivery applications including the early 

detection of diseases, robotic-assisted surgeries, extracting insights from clinical text (e.g., 

reports, physician notes, etc.), and labeling medical images with potential diagnosis [14]–[20]. 

Predictive modeling in particular can serve as a decision-support tool in clinical settings [21]–

[25]. Generating predictive scores for patients can lead to better prioritization of healthcare 

delivery, early appropriate interventions, and streamlining patient care workflows in general.  

 

Machine learning models have been increasingly considered for predictive modeling research in 

healthcare. However, most published articles have not reported successful implementations of 

proposed models, leading to a huge gap between theory and practice. This fact emphasizes the 

inevitable need for practical research that addresses the predictive model lifecycle from 

conceptualization to operationalization. In this study, we present an end-to-end machine learning 

model for the early detection of sepsis, enlightening the adoption and integration of the proposed 

model within the clinical workflow. 

 

This study presents an operationalizable machine-learning model that consolidates clinical data 

from different sources (e.g., vitals, labs, medications, etc.) to detect sepsis early, allowing for 

early interventions and administration of the health of patients. In this paper, we make four main 

contributions: 

• It proposes a framework for identifying, mapping to the database, and examining with 

clinical subject matter experts a list of sepsis predictive data elements.  

• It proposes an operationalizable machine-learning model for the early detection of sepsis 

with high sensitivity and specificity.  
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• It integrated the prediction model with the clinical workflow through the integration of 

the model with a widely adopted EMR system in the U.S.  

• It provides an interpretability and explainability analysis of the machine learning model. 

 

2. Materials and Methods  

2.1. Research Methodology Overview 

We adopted a systematic approach for conducting the research and building the models in this 

paper. The institutional review board (IRB) of Virtua Health approved this study. Virtua Health 

IRB waived the requirement for consent because the research involved no more than minimal 

risk to subjects, could not practically be carried out without the waiver, and the waiver will not 

adversely affect the rights and welfare of the subjects. This requirement of consent was waived 

on the condition that, when appropriate, the subjects will be provided with additional pertinent 

information about participation. Figure 1 illustrates the overall process. We began by evaluating 

the performance of a commercially available sepsis prediction model that was integrated in 

Virtua Health’s EMR system. We identified issues present in this commercially available model, 

and used that as a launching point for developing a new sepsis prediction model. After 

pinpointing these problems, we conducted a comprehensive analysis of sepsis prediction models 

in the literature and extensive discussions with the clinical team. Based on these investigations, 

we identified a list of potential predictive data elements for sepsis, validated the list with clinical 

subject matter experts, mapped the data elements to the clinical database, and developed SQL 

queries to retrieve the data from the various sources (i.e., tables) in the database. Then, we 

cleaned, preprocessed, transformed, and performed feature engineering on the retrieved dataset. 

Based on the resulting dataset, we developed and trained the machine learning model. The model 
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was evaluated through error and classification performance analyses. After that, we prepared the 

model artifacts for cloud deployment and integration with the EMR system. Then, we collected 

post-deployment performance data to evaluate the deployed version of the model. Finally, we set 

up the monitoring pipeline for the model in operation.  

 

 

Figure 1. Research methodology workflow. 

 

2.2. Data Identification and Collection  
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To construct the sepsis prediction model, we conducted a literature review to determine potential 

data elements [10], [26], [27]. We compiled an initial list of data elements from various 

categories such as demographics, vitals, labs, medications, and lines, drains and airways (LDAs). 

Then, we consulted with clinical subject matter experts to gain insight into the data and solicit 

feedback and additional data elements from their perspectives. We performed a mapping analysis 

on the final list of data elements, in which we examined the correspondence of the data elements 

to the data items in the EMR’s front end (i.e., Epic hyperspace). We also generated a related list 

of tables and columns in the backend database from these mappings. This analysis is essential for 

obtaining the appropriate data elements for predictive modeling. Next, we used advanced SQL 

queries to extract the data from different sources in the Clarity database of the Epic EMR. We 

collected data for patients who were 18 years or older and who were admitted as inpatients at one 

of Virtua Health’s five hospitals (Virtua Marlton Hospital, Virtua Mount Holly Hospital, Virtua 

Our Lady of Lourdes Hospital, Virtua Voorhees Hospital, and/or Virtua Willingboro Hospital). 

We restricted the patient population to those who were admitted to the inpatient hospitals 

between January 2020 and July 2022. The initial cohort for model training and validation 

consisted of 17,750 inpatient encounters (70% for training the model and 30% for validation). 

See Section 3.1 for descriptive statistics of the dataset. The model’s post-deployment 

performance was evaluated by collecting model scores and patient final DRGs from the Clarity 

database. The sepsis label was assigned to patients based on their DRGs. Patients with DRGs 

870, 871, or 872 were considered septic. DRG 870 is for Septicemia or Severe Sepsis with 

Mechanical Ventilation (MV) >96 Hours. DRG 871 is for Septicemia or Severe Sepsis without 

MV >96 hours and with Multiple Chronic Conditions (MCC). DRG 872 is for Septicemia or 

Severe Sepsis without MV >96 hours and without MCC.  
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2.3. Variable Selection and Data Processing  

Data processing was performed on the retrieved dataset to prepare it for machine learning 

modeling. We adopted several steps of analysis and processing including data encoding, 

imputation, aggregation, and scaling.   

 

The original dataset contained around 86 variables spanning several categories such as 

demographics, vitals, initial sepsis screening, labs, medications, LDAs, and comorbidities. 

Demographic variables are Age, Gender, Is_Married, Emergency Department (ED) Length of 

Stay, and Inpatient Length of Stay. Vitals variables are Temperature, Respiratory Rate, Systolic 

Blood Pressure, Diastolic Blood Pressure, Mean Arterial Pressure, Heart Rate, and Oxygen 

Saturation. Initial sepsis screening in the ED variables are Level of Consciousness, Are there 

Two or More Signs of Sepsis, and History of Sepsis. LDA variables are the Count of Central 

Venous Catheters, Count of Closed Suction Drains, Count of Endotracheal Tubes, Count of 

Feeding Tubes, Count of Incisions, Count of Peripheral IVs, Count of PICCs, Count of PORTs, 

Count of Pressure Ulcers, Count of SWAN-GANZ Catheters. Labs are Absolute Lymphocyte 

Manual Count, Absolute Neutrophil Manual Count, Base Excess Arterial, Calcium, Chloride, 

CO2, Creatinine, FiO2, Glucose, HCO3, Hematocrit Automated Count, Hemoglobin, 

Hemoglobin A1C, Lactate, Lymphocyte Automated Count, Magnesium, Mean Corpuscular 

Hemoglobin Concentration, Monocyte Automated Count, Neutrophil Automated Count, 

Nucleated RBC Automated Count, PaCO2, pH Blood, Phosphate, Platelet Automated Count, 

POC Glucose, Potassium, Procalcitonin, RBC Automated Count, RBC Distribution Width 

Automated Count, RBC Morphology, Reticulocyte, and WBC Automated Count.  Counts of the 
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following medications: Alpha Beta Blockers, Analgesic Antipyretics, Antianginals, Antifungals, 

Antihypertensives, Beta-Adrenergic Agents, Beta Blockers, Beta Blockers Cardiac Selective, 

Betalactam Antibiotics, Cephalosporins, Coronary Vasodilators, Fluoroquinolones, 

Glucocorticoids, Leukocyte Stimulators, Narcotic Analgesics, Penicillins, Proton Pump 

Inhibitors, Sodium Saline, and Vancomycin and Glycopeptides. Comorbidities are Chronic 

Kidney Disease, Chronic Liver Disease, Congestive Heart Failure, COPD, Coronary Artery 

Disease, Diabetes, HIV, Hypertension, and Obesity. 

 

Some variables in the dataset are categorical. For example, the Is_Married variable can take two 

possible values: Yes or No, and the Gender variable can have values such as Male and Female. 

Therefore, we performed data encoding to transform the categorical values into numerical values 

for machine learning modeling. This step is because all machine learning algorithms operate on 

numerical data and computations. In this study, we applied label encoding, which is a common 

technique in machine learning literature. This technique assigns a distinct numerical value to 

each value of a categorical variable. A specific example of encoding the Is_Married variable is to 

assign 1 to the value “Yes” and 0 to the value “No”. 

 

Many variables in the data set were collected hourly, and the data collection resulted in data 

sparsity. To address this challenge, we calculated the mean value of each variable. For example, 

for a given encounter, we aggregated the features’ data before the sepsis onset or recording time, 

resulting in a one average value per feature. The purpose of this dataset was to develop a sepsis 

recognition model. We hypothesized that a model that can recognize septic characteristics hidden 

in the large dataset, obtained by the aggregation process, can help identify sepsis before onset if 
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the model is applied to patient profile regularly. The model may detect that a patient’s profile at a 

certain time during the stay resembles a septic profile and will generate an alarm. As shown in 

the Results section, the recognition model was evaluated on its ability to identify sepsis at a 

specific number of hours before onset. A simulation analysis was conducted to determine this 

performance. In summary, the sepsis model was trained on the aggregated dataset that was 

further processed to handle null values and the scaling issue as discussed below. 

 

As stated previously, the original dataset has many null values due to the hourly collection 

schema that was used, resulting in sparsity. Even after aggregating the dataset using averages, 

some variables still have a large proportion of missing values. Therefore, we decided to eliminate 

only the extremely sparse variables. We experimented with different thresholds and settled on 

90%. This means that any variable that has 90% or more missing values is removed from the 

dataset. This threshold might seem high, but we reasoned that for some patients, a variable that is 

mostly null for the whole population might be very valuable in detecting sepsis if it has a value 

for those specific patients. In other words, we allow the model to learn from the patterns of 

missing values in the dataset. The machine learning algorithm that we chose for the sepsis 

prediction model can handle datasets with null values well. 

 

To avoid the bias and inefficiency caused by the heterogeneity of scales among the variables in 

the aggregated dataset, we applied a MinMax transformation to standardize all variables to a 

common range of (1, 5) as shown in Equation 1. 

 ���� �  
�� � �����

����� � ��	
�
� �max � ��
� � ��
 (1) 
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where ���� denotes the standardized variable, � denotes the original variable, ���� and 

���� denote the minimum and the maximum values of the original variable respectively, ���  

and ��� denote the upper and lower bounds of the standardized range (i.e., 5 and 1 respectively). 

 

2.4. Model Development  

We used predictive modeling  [28]  to assign sepsis risk scores to patients based on their features. 

For sepsis prediction, the sepsis score and the patient’s characteristics have a complex and 

nonlinear relationship, which necessitates the application of an advanced machine learning 

algorithm. In this paper, we employed the Extreme Gradient Boosting algorithm (XGBoost). 

 

XGBoost is a state-of-the-art algorithm for predictive modeling that employs the tree-boosting 

framework [29]. Tree boosting is a machine learning technique that combines multiple weak 

learners into a strong learner. The weak learners are usually decision trees that have a limited 

depth or number of leaves. The idea is to train the trees sequentially, each one trying to correct 

the errors of the previous ones. The final prediction is obtained by a weighted vote of the 

individual trees. In this paper, we used the XGBoost package in Python, which is a scalable and 

efficient implementation of tree boosting. XGBoost has several advantages over other boosting 

methods, such as regularization, parallelization, and handling of missing values. We tuned the 

hyperparameters of XGBoost using grid search. Grid search is a method for finding optimal or 

near-optimal combinations of hyperparameters for machine learning algorithms. 

Hyperparameters are parameters that set the configuration of the learning process and cannot be 

updated or adjusted using the training data itself. The hyperparameters that were changed, 

through hyperparameter tuning, from default values in the XGBoost package in Python are 
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presented below in a key-value format: { “colsample_bytree”: 0.1, “gamma”: 4, “learning_rate”: 

0.08, “max_delta_step”: 5.24, “max_depth”: 0, “min_child_weight”: 97, “n_estimators”: 255, 

“reg_alpha”: 18, “reg_lambda”: 2, “sampling_method”: “gradient_based”, “tree_method”: 

“hist”}.  

 

2.5. Explainability Analysis  

To interpret the predictions of our machine learning model, we applied SHAP (SHapley Additive 

exPlanations), a framework that computes feature importance values for each prediction [30]. 

SHAP values are derived from Shapley values, which are a fair allocation of the payoffs among 

the players in a cooperative game. In our context, the features were the players and the prediction 

outcomes were the payoffs. SHAP allowed us to measure how each feature influences the 

prediction, in a positive or negative direction, and also capture the feature interactions. 

 

2.6. Model Deployment  

We implemented the model into the clinical workflow to enhance its usability by clinicians. For 

this purpose, we hosted the model on Epic Nebula (Epic Systems, Verona, WI USA) and 

integrated it with the EMR system (Epic Systems, Verona, WI USA) (see Figure 2). The model 

artifacts were configured and tested using the Epic Slate Environment (Epic Systems, Verona, 

WI USA). This integration allowed for seamless data transfer from the Chronicles database to the 

model in the cloud for sepsis scoring and score delivery back to the system for alert generation 

and dashboard visualization. Input data was provided to the model through workbench reports 

that were customized for the sepsis model. We configured a batch job to execute the model every 

hour. 
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Figure 2. Model deployment and operationalization. 

 

3. Results and Discussion  

In this study, we built a model to predict sepsis in the hospital by training a model on 

retrospective EMR data, consisting of elements related to demographics, labs, vitals, etc. 

Importantly, each case was known to either include a sepsis diagnosis or did not. Table 1 presents 

the fundamental characteristics of the population. The population in the sepsis prediction model 

training dataset consisted of f 17,750 observations, representing a diverse group of individuals. 

The average age in the dataset was 54.83 years, with a standard deviation of 25.27 years, 

indicating a wide range of age groups. In terms of sex, the dataset shows a relatively equal 

distribution, with males accounting for 44% and females for 56% of the population. About 34% 
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of the individuals in the dataset were married. The dataset also included information on hospital 

stays, with an average inpatient length of stay (LOS) of 207.16 hours, accompanied by a high 

standard deviation of 988.76 hours, suggesting significant variation in this measure. Additionally, 

the dataset includes data on ED visits, with an average LOS of 4.26 hours and a standard 

deviation of 3.53 hours. These characteristics and other clinical data elements reflect the diverse 

demographics and healthcare experiences captured in the training dataset, providing valuable 

information for the machine learning algorithm to learn and make predictions. 

 

Table 1. Demographics of the population in the training dataset. 

Characteristic  Value 
mean (std) 

Total number of observations 17,750 

Age 54.83  (25.27) years 

Gender  Male: 44%; Female: 46% 

Is Married? 34% 

Inpatient Length of Stay (LOS) 207.16  (988.76) hours 

Emergency Department LOS 4.26 (3.53) hours 

 

 

We trained a sepsis prediction model using the XGBoost algorithm and used it to predict whether 

a case included a sepsis diagnosis in our held-out testing dataset. We then compared the model’s 

prediction of sepsis or no sepsis to the known sepsis or no sepsis diagnosis from the EMRs. 

Figure 3 displays the confusion matrix of the sepsis prediction model on the test dataset, 

generated using a sepsis score threshold of 0.05 (a score above 0.05 means sepsis and below 
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means no sepsis).  The counts of true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN) predictions are presented in Figure 3. The sepsis prediction model 

demonstrated a sensitivity (true positive rate) of 92%, indicating 92% of the sepsis cases in the 

test dataset were correctly identified by the model. The sepsis prediction model demonstrated a 

specificity (true negative rate) of 93%, indicating 93% of the non-sepsis cases in the test dataset 

were correctly identified by the model. The false positive rate, calculated as 1 - specificity, was 

7%. This signifies that the model incorrectly predicted sepsis in 7% of the cases that were truly 

negative for sepsis. While a lower false positive rate is desirable, the combination of high 

sensitivity and specificity suggests that the model performs well in accurately predicting sepsis 

and distinguishing it from non-sepsis cases. Overall, the high sensitivity and specificity achieved 

by the sepsis prediction model in Figure 4 contribute to its accurate identification of sepsis cases. 

A high sensitivity ensures that a significant number of true positive sepsis cases are correctly 

detected, while a high specificity guarantees a low number of false positive predictions. These 

attributes are crucial in enabling healthcare professionals to promptly identify sepsis cases and 

administer appropriate interventions efficiently, thereby enhancing patient care and outcomes. 
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Figure 3. Confusion matrix of the sepsis prediction model. Sensitivity is 92% and specificity is 
93% with a 7% false positive rate. Colorbar represents the count of cases. 

 

The ROC curve is a graphical representation of the performance of a binary classification model,

such as the sepsis prediction model in this context. It demonstrates the trade-off between the true

positive rate (sensitivity) and the false positive rate (1-specificity) for various classification

thresholds. In the case of sepsis prediction, the ROC curve showcases the model’s ability to

correctly identify patients who have sepsis (true positives) while minimizing the number of false

positives. Figure 4 presents the receiver operating characteristic (ROC) curve of the sepsis

prediction model, showcasing its performance prior to implementation. The curve is derived

from the testing dataset, which comprises 30% of the available data used for model development.
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The area under the curve (AUC) for this model is an impressive 0.97, indicating a high level of

accuracy and discrimination   (correctly predicting cases of sepsis and correctly predicting cases

with no sepsis) in predicting sepsis. With an AUC of 0.97, the sepsis prediction model

demonstrated exceptional performance in distinguishing between sepsis and non-sepsis cases.

The higher the AUC value, the better the model’s ability to differentiate between the two classes.

This implies that the model exhibits a high sensitivity in identifying sepsis cases while

maintaining a low false positive rate. Consequently, this model holds promising implications for

accurately predicting sepsis, providing healthcare professionals with a valuable tool for early

intervention and improved patient outcomes. 

 

Figure 4. Receiver operating curve of the sepsis prediction model: Pre-deployment performance 
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Figure 5. Highly important features and their corresponding Shapley values. The grey color 
depicts the missing values (NaN) in a certain feature. 
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After developing a model with high sensitivity and specificity, we investigated which features 

(predictors) contribute most to the sepsis prediction score. We approached this by computing 

Shapley values. Figure 5 provides valuable insights into the Shapley values of features and their 

correlation with the sepsis score. The Shapley values represent the contribution of each feature to 

the final prediction. The feature range values are visually depicted through a color spectrum from 

blue to red, indicating low to high values, respectively. The grey color represents missing values 

(i.e., NaN). The x-axis represents the Shapley values, while the alignment of the feature violin 

plots illustrates how the feature values influence the sepsis risk score. Positive Shapley values 

indicate that corresponding feature values drive the sepsis scores towards 1, implying a greater 

likelihood of sepsis in patients with such values. Notably, Figure 5 highlights that Lactate is the 

most important predictor in this dataset, as higher Lactate values correspond to a higher risk of 

being septic. The figure goes on to list the top 20 most important features and their contribution 

to the sepsis score. By examining Figure 5, healthcare professionals and researchers can gain 

insights into the factors that significantly influence the prediction of sepsis. Understanding the 

impact of specific features on the sepsis risk score enables healthcare providers to identify 

critical indicators and prioritize appropriate interventions for patients who may be at a higher risk 

of developing sepsis. For example, it may be worth prioritizing acquiring lab results on lactate 

and neutrophil count in a timely manner so that the model can assess the risk of sepsis early.  

 

A major aim of this study was to investigate the performance of a sepsis predictive model in 

operation in the hospital. Figure 6 illustrates the performance of the sepsis prediction model after 

deployment in operational settings. Post-deployment performance was based on a data collected 

from the system (Five hospitals) during operations (three-week period), comprising records of 
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1,896 patients, including 98 septic and 1,798 non-septic cases. It displays the sensitivity and 

specificity of the model at various thresholds ranging from 0.02 to 1, with increments of 0.01. 

The performance of the model in operations aligns closely with its pre-deployment performance, 

exhibiting a sensitivity of 91% and a specificity of 94% at a 0.05 threshold. These high values 

indicate the model’s ability to accurately identify both septic and non-septic patients. Moreover, 

the model achieves a low false positive rate of 6%, implying that only a small portion of non-

septic patients are incorrectly flagged as septic. This low false positive rate has significant 

implications for patient outcomes, as it reduces the burden of nurse fatigue and minimizes the 

need for clinicians’ continuous checking due to false alarms. Comparatively, the false positive 

rate of 6% achieved by our sepsis model is substantially lower than that of a commercially 

available model adopted within the organization (30%). In other words, with our new sepsis 

predictive model, we reduced the number of false positive cases by 80%. This remarkable 

reduction demonstrates the superiority of our model in terms of minimizing unnecessary alerts 

and ensuring that healthcare providers can focus their attention on patients who genuinely 

require intervention for sepsis. The high performance of the sepsis prediction model, with its low 

false positive rate and high sensitivity, not only improves patient outcomes but also enhances the 

efficiency of healthcare professionals. Importantly, our model which was trained on a large 

retrospective dataset, maintains high specificity when running in the hospital setting. 
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Figure 6. Operations performance of the sepsis prediction model. 91% sensitivity and 94% 
specificity at a 0.05 risk threshold. 

 

4. Conclusions  

In conclusion, the systematic design approach employed in this study, integrating clinical 

feedback and utilizing XGBoost with interpretability techniques, led to the successful 

development and deployment of a robust sepsis detection model. The model demonstrated high 

sensitivity and specificity pre-operations. Importantly, it maintained comparable performance 

after deployment, with a significantly reduced false positive rate compared to the currently 

deployed commercial model. These results highlight the potential value of the developed model 

in improving sepsis management and reducing alert fatigue in clinical practice.  
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Future research should address several important areas. Firstly, investigations should focus on 

assessing the generalizability of the model across different healthcare settings and patient 

populations, considering variations in clinical practices and data availability. Secondly, long-term 

studies are needed to evaluate the impact of the model on patient outcomes, such as mortality 

rates, length of hospital stay, and resource utilization. Additionally, efforts should be made to 

enhance the interpretability of the model further, enabling clinicians to better understand and 

trust its predictions. Moreover, further studies exploring the integration of the model with clinical 

decision support systems or real-time monitoring tools could provide valuable insights into its 

practical implementation and effectiveness. 
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