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Abstract 
Background: Assessment of breast cancer (BC) risk generally relies on mammography, family history, 

reproductive history, and genotyping of major mutations. However, assessing the impact of environmental 

factors, such as lifestyle, health related behavior or external exposures, is still challenging. DNA methylation 

(DNAm), capturing both genetic and environmental effects, presents a promising opportunity. Previous 

studies have identified associations and predicted the risk of BC using DNAm in blood, however, these 

studies did not distinguish between genetic and environmental contributions to these DNAm sites. In this 

study, associations between DNAm and BC are assessed using paired twin models, which control for shared 

genetic and environmental effects, allowing testing for associations between DNAm and non-shared 

environmental exposures and behavior. 

Results: Pre-diagnosis blood samples of 32 monozygotic (MZ) and 76 dizygotic (DZ) female twin pairs 

discordant for BC were collected at the mean age of 56.0 years, with the mean age at diagnosis 66.8 and 

censoring 75.2 years. We identified 212 CpGs (p<6.4*10-8) and 15 DMRs associated with BC risk across all 

pairs using paired Cox proportional hazard models. All but one of the BC risk associated CpGs were 

hypomethylated and 198/212 CpGs had their DNAm associated with BC risk independent of genetic effects. 

According to previous literature, at least five of the top CpGs were related to estrogen signaling. Following 

a comprehensive two-sample Mendelian Randomization analysis, we found evidence supporting a dual 

causal impact of DNAm at cg20145695 (gene body of NXN, rs480351) with increased risk for estrogen-

receptor positive BC and decreased risk for estrogen-receptor negative BC.  

Conclusion: While causal effects of DNAm on BC risk are rare, most of the identified CpGs associated with 

the risk of BC appear to be independent of genetic effects. This suggests that DNAm could serve as a 

valuable biomarker for environmental risk factors for BC, and may offer potential benefits as a 

complementary tool to current risk assessment procedures.  
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Background 
Breast cancer (BC) risk assessment tools rely on physiological or genetic screening methods such as 

mammography, family history and information on reproductive history. In addition to assessment of major 

mutations, polygenic risk scores are increasingly used to assess overall genetic risk. However, accurately 

quantifying the impact of environmental factors, including health-related behaviors and occupational 

exposures, can be challenging, and these factors are often not included in the risk assessment models. In 

recent years, DNA methylation (DNAm) has emerged as a promising biomarker for BC risk assessment. 

BC has been linked to DNAm in blood, as evidenced by specific DNAm sites [1–19] and overall average 

DNAm levels [20] associating with BC. In addition, the studies conducted by Kresovich [2021], Xiong [2022] 

and Chung [2023] and colleagues [4,16,21] have shown that blood-derived DNAm can be used to predict an 

individual's risk of developing BC. This presents an opportunity for blood-derived DNAm to serve as a 

complementary measure to current standard BC risk assessment tools [22,23]. However, these predictors, 

as well as earlier work on DNAm and overall BC risk [2,4,6,14,16,17,19] have not differentiated between 

genetic and environmental risk factors for BC. 

Health-related behaviors and environmental exposures are major factors that can increase the risk of BC 

[24], and many of these factors have been shown to affect DNAm as well; e.g. alcohol use [25–27], obesity 

[28,29], physical inactivity [30], hormonal exposure [31], and reproduction-related factors [29,31–33]. In 

addition, genetic variants, including those linked to BC risk, may affect DNAm. 

Twin pairs discordant for disease provide a valuable approach for investigating the impact of environmental 

factors. Within monozygotic (MZ) twin pairs the genetic components are fully controlled for as the co-twins 

are genetically identical at the germline. Genetic effects are also partially controlled for in the within-pair 

comparison of dizygotic (DZ) twin pairs, in which the twins share on average 50% of their segregating 

genetic background. Moreover, the twin design effectively controls for age and all shared environmental 

influences, especially in early life, regardless of whether they are DZ or MZ twin pairs. Although the 

discordant MZ twin pair design does not capture de-novo mutations it dramatically boosts the statistical 

power and allows robust investigation of the relationship between environmental BC risk and DNAm, while 

completely controlling for genetic confounding. 

In this study, the objective was to investigate the potential of DNAm as a biomarker for environmental BC 

risk, and further to assess causality. To accomplish this, we leveraged a cohort of BC discordant twin pairs 

from the Finnish Twin Cohort with DNAm data collected prior to BC diagnosis. Then, we aimed to validate 

the findings by examining an independent BC discordant twin pair dataset from the Danish Twin Study. 

Finally, we used two-sample Mendelian Randomization analysis to find further evidence for causality. 
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Methods 

The Finnish Twin Cohort 
The Finnish Twin Cohort (FTC), consisting of twins from like-sexed pairs born before 1958, was established 

in 1975, recruitment was completed by May 1, 1976, and the follow-up period lasted until December 31, 

2018. To obtain cancer diagnosis data during the study period, the FTC was linked to the Finnish Cancer 

registry. Information on death and emigration was obtained from the Finnish population registry. Starting 

in the 1990s, blood samples were collected from a subset of individuals and DNA was extracted and stored 

in the Biobank of the Finnish Institute for Health and Welfare. DNAm data was subsequently generated 

from these samples. 

A group of 108 pairs of female twins who showed discordance for BC at the end of the follow-up period 

were selected from among all pairs with DNA from the FTC. Of them, 32 pairs were MZ, and 76 pairs were 

DZ (Table 1). Among the cases, BC was either their first or only cancer diagnosis, while the controls 

remained cancer-free during the follow-up. The follow-up period was considered to end for cases at the 

time of diagnosis and for controls either at death (n=18) or latest at the end of the study in 2018 (n=90). 

Data on epidemiological risk factors for BC were obtained from a health-related questionnaire collected in 

1975 (Table 2), while information on the number of children and age at first birth was obtained from the 

Finnish Population Register for individuals born 1950 onwards (Table 2) [34]. The association between 

these variables and BC discordance was examined using conditional logistic regression for MZ and DZ twin 

pairs together (Table 2).  

The Danish Twin Study  
The Danish sample is selected from two Danish twin cohorts in the Danish Twin Study (DTS), including the 

Longitudinal Study of Aging in Danish Twins (LSADT) study and the Middle Age Danish Twins (MADT) study. 

Details about these twin cohorts are described previously in [36,37]. Only included those twins that have 

both DNAm (1180 samples) and the information about BC diagnosis were included, which was retrieved 

through the link between the twin registry and the cancer registry in the NorTwinCan database [38]. Eighty-

six twins in LSADT were measured twice in 1997 and 2007, respectively, for their DNAm and only the early 

measurement in 1997 were included to increase the sample size for the analysis of pre-diagnosis DNAm. 

Among these twins, 11 twin pairs (eight MZ and three DZ pairs) that are discordant for BC and of whom the 

methylation was measured prior to the diagnosis were included in the analysis. The end of follow-up was 

defined the same way as for the Finnish dataset. 

DNA methylation data 
Among the 108 pairs from the FTC, DNAm was measured for four pairs using the Illumina Infinium 

HumanMethylation450 (450K) platform and for 104 pairs the Illumina Infinium MethylationEPIC (EPIC) 
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platform (Illumina, San Diego, CA, USA), (Table 1). Twins in a pair shared the same platform technology and 

were sampled and processed at the same time. Preprocessing of the DNAm data was done using the meffil 

R package [39]. Sample quality was assessed based on the following criteria: (1) mean difference between X 

and Y (technical noise in female samples) chromosome signals was less than -2, (2) mean methylated signal 

did not deviate from the regression line (mean methylated signal linear regressed over mean unmethylated 

signal) by more than three standard deviations, (3) sample was not an outlier based on Illumina control 

probes, (4) percentage of probes with only background signal was less than 20, and (5) percentage of 

probes with less than three beads was less than 20. All samples that met all the above criteria passed the 

quality control. In addition, ambiguous mapping and poor-quality probes based on Zhou et al. (2017, [40]) 

and probes binding to sex chromosomes were removed to address ambiguity of the DNAm signal based on 

X-chromosome inactivation [41,42]. Following the quality control, the DNAm data underwent 

preprocessing in two separate batches due to use of two different types of microarray platforms, EPIC and 

450K. 

The preprocessing was performed by functional normalization using the first 15 principal components of 

the control probes, to eliminate unwanted technical variation using the meffil R package [39]. Additionally, 

to reduce probe bias, beta-mixture quantile normalization [43] using the wateRmelon R package [44] was 

applied. Next, the CpG probes exclusively present on the EPIC platform were merged with the set of probes 

common between the EPIC and 450k platforms. Finally, the beta values were scaled based on the standard 

deviation of each CpG probe across all samples. For the annotation of the CpG sites the latest version of the 

Illumina Infinium Methylation EPIC manifest v1.0 B5 was used (Illumina, San Diego, CA, USA). 

After performing quality control and preprocessing, a total of 52333 probes were removed due to their 

insufficient quality, and 9918 probes were removed due to their binding to sex chromosomes. A final set of 

778861 probes were retained, consisting of 336849 probes (43%) shared by the 450K and EPIC data and 

442012 probes exclusive to the EPIC platform. 

In the DTS data, DNAm was measured from the buffy coat samples stored at -80°C in 24 hours after the 

blood was collected using the 450K platform (Illumina, San Diego, CA, USA). Quality control for sample and 

probe exclusion were conducted with the MethylAid [45] and Minfi [46] R packages. More detailed steps of 

quality control and criteria for excluding samples and probes are described in the previous study [47]. After 

further excluding any CpG sites that had a missing rate of >10% across the whole 1180 samples, 451471 

CpG sites remained in the survival analysis.  

Survival modelling 
To investigate the association between DNAm and BC risk, a survival analysis was conducted using Cox 

proportional hazard regression models in the R package survival [48]. To ensure that all CpG sites meet the 
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model assumptions, the proportional hazard assumption for the within-pair difference in methylation beta 

value was examined by Schoenfeld residuals and tested using the cox.zph() function for the significant CpG 

sites. For the analysis, four different Cox Proportional Hazard models were applied. The equations for all 

four models are the same, only the cohorts tested with these models different, e.g. MZ twin pairs, DZ twin 

pairs, MZ and DZ twin pairs together, and twin pairs from the DTS (Equation 1).  

(1) 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑡𝑒𝑟𝑚 (𝑎𝑔𝑒 𝑎𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑖𝑛𝑔|𝐵𝐶 𝑠𝑡𝑎𝑡𝑢𝑠) ~ 𝑤𝑖𝑡ℎ𝑖𝑛𝑝𝑎𝑖𝑟 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

+  𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑚𝑒𝑎𝑛 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 +  𝑓𝑟𝑎𝑖𝑙𝑡𝑦 𝑡𝑒𝑟𝑚 (𝑝𝑎𝑖𝑟 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟) 

The survival term in this model refers to the survival outcome observed during the follow-up period. To 

adjust for the methylation levels specific to each twin pair, the mean beta values for each pair were 

included as an explanatory variable. The pair identifier is considered as a random effect. Additionally, based 

on the study design the pairs were matched on potential confounding variables, such as chip platform, age 

at entry, age at sampling, sex, and early life environment. 

The discovery cohort involved 108 twin pairs that were sampled before the onset of BC diagnosis (Model 

1). Using Bonferroni method for multiple testing correction, p-values < 6.4*10-8 were considered significant. 

The statistically significant CpG sites were followed up in zygosity-specific analyses of MZ pairs (n=32, 

Model 2) and DZ pairs (n=76, Model 3), to assess the role of genetic vs environmental effects on the 

significant methylation sites. CpG sites with the same effect direction compared with Model 1 and p < 0.05 

were considered as validated. 

To replicate the findings in an independent twin sample, the same survival model was fitted using the DTS 

data of 11 twin pairs discordant for BC (Model 2R). The CpG sites were considered as replicated when the 

direction of the effect was the same as in Model 1 and p-value < 0.05.  

Sensitivity analyses 
To evaluate the possible effect of unmeasured confounding variables on the association between DNAm 

and survival outcomes, E-values were computed for each significant CpG site using the HR of such in the 

EValue R package [49,50]. E-values for HR > 1 follow equation 2 [49]: 

(2) 𝐸𝑣𝑎𝑙𝑢𝑒 = 1/𝐻𝑅 + 𝑠𝑞𝑟𝑡(1/𝐻𝑅 ∗ (1/𝐻𝑅 − 1)) 

E-values for HR < 1 follow equation 3 [49]: 

(3) 𝐸𝑣𝑎𝑙𝑢𝑒 = 𝐻𝑅 + 𝑠𝑞𝑟𝑡(𝐻𝑅 ∗ (𝐻𝑅 − 1)) 

DMR analysis 
Differentially methylated regions (DMR) were identified using the ipDMR() function [51] of the ENmix R-

package [52]. Hereby neighboring CpG sites within a maximum distance of 500 base pairs were identified, 
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and their combined p-values were calculated using the p-values derived from Model 1. Using a Benjamini-

Hochberg FDR < 0.001, all significant pairs of CpG sites were selected. These significant CpG pairs were then 

merged into broader regions using an approach like single linkage clustering, where neighboring CpG sites 

within a maximum distance of 500 base pairs were linked together. The association between each broader 

region and the survival outcome was then calculated by summarizing the associations of all CpG sites 

present in such region, based on the individual CpG sites p-values derived from Model 1. A DMR was 

considered significant if it contained three or more CpG sites with unidirectional methylation association 

and had a Benjamini-Hochberg FDR < 0.001 combined across all CpG sites. 

Mendelian Randomization  
To test whether DNAm at the identified CpG sites is causal for BC risk a two-sample Mendelian 

randomization (MR) analysis was performed. We established valid genetic instrumental variables (IVs) for 

the BC–associated DNAm from Model 1, with the following criteria: The identified SNP to be used as IV 1) 

associates with DNAm at give CpG site of interest (associated with BC under Model 1) with genome-wide 

significance, 2) does not directly associate with breast cancer, and 3) does not associate with confounders 

of BC risk or DNAm. First, for the 212 BC–associated CpG sites (Model 1) 18 cis-meQTL SNPs with genome 

wide significance (p < 6.9*10-8) were identified using the MeQTL EPIC Database 

(https://epicmeqtl.kcl.ac.uk/) [53].  

Second, summary statistics from two BC genome-wide association studies (GWAS) were used to eliminate 

any IVs that directly associate with BC. The first set of summary statistics were derived from the IEU GWAS 

project (https://gwas.mrcieu.ac.uk/) [54], comprising 212402 female individuals (6.53% cases) from the UK 

Biobank (UKBB) made publicly available by the University of Bristol under a non–commercial government 

license [55], and the other set was from the FinnGen study release R9 [64] under access-rights received on 

26th September 2023, encompassing 222080 female individuals (9.27% cases). Among these, GWAS 

summary statistics were available for 13 and 12 out of the 18 meQTL SNPs, respectively, and none of these 

exhibited statistically significant genome wide association with BC. Additionally, none of the 12 meQTL 

SNPs available in the FinnGen estrogen receptor positive (ER+) BC GWAS on 213307 female individuals 

(5.66% cases) and estrogen receptor negative (ER-) BC GWAS on 209695 female individuals (4.03% cases) 

had genome-wide significant association with these BC subtypes. 

Third, to eliminate IVs that associate with potential confounders, a phenome-wide association analysis was 

performed using the PhenoScanner V2 (www.phenoscanner.medschl.cam.ac.uk) [56]. No association with 

any of the available trait or disease was observed for the 13 SNPs, however, one SNPs associated with the 

level of monocytes and granulocytes, a potential confounder of DNAm, resulting to 12 suitable IVs. 
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To assess the relationship between exposure (DNAm at the given CpG site) and the outcome (risk for BC), 

Wald’s ratio testing was employed for each individual SNP (Supplementary Figure 1), which estimated the 

causal effect of DNAm on BC risk at the given CpG site. Subsequently, Egger MR analysis was performed to 

test pleotropic effects on BC risk across the identified IVs. To test for the directionality from DNAm to BC 

(BC overall, ER+ and ER- BC) risk the MR Steiger test was performed [57]. An association was considered 

significant if both the Wald’s ratio test and the MR Steiger had nominal p-values < 0.05 and the MR Steiger 

test indicated directionality from DNAm on BC risk. The MR analysis was carried out using the R package 

TwoSampleMR [58]. 

Results 

Discovery  
Altogether 108 BC discordant FTC twin pairs (n= 32 MZ and n=76 DZ pairs) sampled prior to BC diagnosis 

were used as the discovery sample (Table 1 and 2). The average age of study entry was 33.8 years (SD = 9.5 

years) and the average age for blood sample collection was 56.0 years (SD = 9.9 years). For cases, the age at 

diagnosis was on average 66.8 years (SD = 6.6 years), and for controls, the end of follow-up was at an 

average age of 75.2 years (SD = 9.5 years). The mean time between blood sampling and diagnosis was 10.8 

years (SD = 6.7). The association between these variables and BC discordance was examined using 

conditional logistic regression for MZ and DZ twin pairs together. None of these variables showed a 

significant association with BC discordance (Table 2). 

The first survival model (Model 1) included MZ and DZ pairs, and matched for familial effects. This discovery 

analysis resulted in 212 DNAm sites significantly associated (p < 6.4*10-8) with future BC (Figure 1A, and 

Supplementary Table 1). Among these CpG sites, all except one (cg00550725, in FAM82B, more commonly 

known as RMDN1) showed negative association, as indicated by Hazard Ratio (HR) below one, implying that 

lower DNAm levels associated with higher hazards of BC. The BC–associated hypomethylated CpG sites had 

HRs ranging from 0.01 to 0.49, while the hypermethylated CpG site had an HR of 3.07. TDRD1 was the only 

gene with two significant BC–associated CpG sites (cg14779973 and cg27547703). 

A sensitivity analysis was conducted by calculating E-values for the 212 significant CpG sites in Model 1 

(Supplementary Table 1). The E-values were high for all CpG sites, indicating that unknown or unmeasured 

covariates are unlikely to account for the association between DNA methylation at these CpG sites and BC.  

In addition to the 212 individual CpG sites, 15 DMRs were significantly associated with BC in Model 1 

(Supplementary Table 2). Among these, three DMRs (in genes SCMH1, PXDNL and GNAS, all relevant for BC 

biology) contain CpG sites that were also significant as single hits in Model 1. Out of the 15 DMRs, 14 have 

lower DNAm (average HR<1) in the BC diagnosed twin compared with their co-twin.  
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Validation  
To explore whether the 212 BC–associated CpG sites are likely due to environmental effects, we performed 

within-pair analysis including only MZ twin pairs, which rules out the potential genetic confounding in the 

observed associations (Model 2). Altogether 198 CpG sites (93%) showed the same effect direction and met 

nominal significance (p < 0.05) for association with BC (Supplementary Table 1, Figure 1B). 

We next assessed the associations in Model 3 containing DZ twin pairs only, which resulted in all the 212 

CpG sites having the same effect direction as in Model 1 and 2, and meeting nominal significance (p < 0.05) 

for the association with BC (Supplementary Table 1). However, on average the 212 CpG sites had higher 

effect sizes in the Model 2 compared with Model 3 (beta = 1.31, p = 0.001), suggesting that a higher level of 

genetic matching results in higher effect size (Figure 1C).  

Replication with the Danish Twin study 
We aimed at replicating the findings from the FTC in the DTS containing 11 twin pairs discordant for breast 

cancer (eight MZ and three DZ pairs). The mean age at the diagnosis of these 11 twin pairs was 78.1 

(SD=9.6 years) and the mean age at the DNAm profiling was 71.3 (SD=6.6 years). The DTS datasets included 

98 out of the 212 CpG sites identified in the discovery analysis performed in FTC Model 1. The remaining 

sites were not present in the DTS data, which was generated using the smaller 450K methylation platform. 

Out of these 98 CpG sites 22 had the same effect direction in the DTS (Model2R) as in the FTC data (Model 

1 and Model 2). However, only one of these CpG sites (cg16376218, within SLC25A39) met nominal 

significance (p < 0.05) for the association with BC (Supplementary Table 1, Figure 1D). 

Mendelian randomization 
Our study design, DNAm measured before BC diagnosis and the within-pair comparisons ruling out 

confounding by shared genetic and environmental effects, suggests that the observed BC–associated 

DNAm patterns precede BC. We next aimed at assessing if there is additional evidence for direct causation 

by performing a two-sample MR analysis. Altogether 12 genome-wide significant meQTLs met the criteria 

(see Methods) for IVs and were used in the two-sample MR to test for causality for BC in general, and for 

ER+ and ER- subtypes. The MR analysis was performed using Wald’s Ratio testing for individual IVs. Egger 

regression analysis across all available IVs revealed no pleiotropy, and the Steiger MR test showed that 

directionality went from DNAm to BC risk for all IVs. 

No causal effects were observed for BC risk in general for the 12 CpG sites (Supplementary Table 3). Using 

the 11 out of 12 IVs available for ER+ and ER- BC (Supplementary Table 3), DNAm at cg20145695 (NXN, 

rs480351) only showed significant causal effect. Higher methylation increased the risk for ER+ BC (ORER+= 

1.51 (CI95 = 1.02-2.24), p = 0.04) and decreased the risk for ER- BC (ORER-= 0.72 (CI95 = 0.52-0.98), p = 0.04), 
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showing that DNAm at this site has effects opposing each other depending on the BC subtype. 

(Supplementary Table 3). 

Discussion 
Here we studied the association between BC risk and DNAm in blood samples taken prior to cancer 

diagnosis. We found that 212 CpG sites and 15 DMRs in blood were associated with the risk of BC using a 

discordant twin study design, matched for familial confounders. Among the 15 DMRs we identified, three 

contain CpG sites that also associate individually with BC risk. These CpG sites are located in the genes 

SCMH1, PXDNL, and GNAS. We validated the majority of the BC risk associated CpG sites (198/212) within 

MZ pairs, and with significantly higher effect sizes than within DZ pairs, suggesting that these 198 CpG sites 

associate with BC independent of genetic factors and are likely attributed to environmental BC risk. Only 

one of these significant sites (cg16376218 in SLC25A39) replicated in the Danish Twin Study. 

Our study validated one previously observed BC–associated CpG site (cg21769444, NUDT3) [18]. NUDT3 

associated long noncoding RNA, NUDT3-AS4, appears to promote cell growth in BC. It acts as a sponge for 

microRNA miR-99s, competing with AKT1/mTOR mRNAs for binding. This competition prevents miR-99s 

from degrading AKT1/mTOR mRNAs, leading to increased expression of AKT1 and mTOR proteins. 

Overexpression of these proteins is linked to the abnormal PI3K/AKT/mTOR pathway contributing to 

increased cancer cell proliferation, a common feature in many cancers including BC [59]. The dysregulation 

caused by NUDT3-AS4 via DNAm may therefore contribute to increased BC risk. 

Most of the identified DNAm sites associated with BC risk independent of genetic effects, and may reflect 

within-pair differences in exposures to environmental BC risk factors, such as alcohol consumption, 

exposure to sex hormones [24], and risk factors previously identified in twin studies such as age at first 

birth, number of children and age at menopause [60] and BMI [61]. Identification of genes related to 

estrogen signaling (TDRD1 [62], SCMH1 [31], PXDNL [63], GNAS [64] and RMDN1 [65]) suggests that subtle 

within-pair differences in hormonal exposures may have resulted in the observed within-pair differences in 

DNAm patterns associated with future BC diagnosis. In particular, identification of BC–associated DNAm in 

SCMH1, which has been associated with lifetime exposure to sex hormones [31], reinforce this. However, 

based on the available phenotype data, we could not demonstrate clear differences in hormone exposure 

(nor other risk factors) between the twin with BC and her healthy sister. However, it is important to 

recognize that e.g. hormonal exposure due to environmental factors may not be determined by individual 

factors alone, but rather by the complex combination of multiple factors over time [66], and thereby would 

be difficult to address using the given phenotype data. There may also be other contributing risk factors, 

which we have not been able to assess. Investigation of the role of individual risk factors contributing to 

DNAm changes prior to disease onset requires larger and targeted studies. 
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All of the observed DNAm differences within the pairs discordant for BC have originated prior to BC 

diagnosis, and they are mostly driven by environmental effects. We were able to test for direct causation 

for only 12 of the 212 significant sites as for the rest of the significant CpG sites we could not identify 

suitable IVs for the MR analysis. For the available IVs only in one CpG site, cg20145695, DNAm could be 

causally linked to BC. DNAm at cg20145695 increased the risk for ER+ BC and decreased the risk for ER- BC. 

This CpG site is located within the gene NXN coding for nucleoredoxin. Nucleoredoxin interacts with protein 

flightless-1 homolog [67], which has been demonstrated to enhance genome accessibility at estrogen 

receptor targets in MCF7 BC cell lines [68]. Changes in NXN expression through methylation at cg20145695, 

could modulate the activity of protein flightless-1 homolog, which impact the accessibility of estrogen 

targets on the genome. Thereby, the cell's sensitivity to estrogen signaling could potentially be impacted, 

distinguishing ER+ from ER- BC, and may explain our finding on NXN methylation resulting in opposite risks 

for ER+ and ER- BC. 

Notable strengths of this study were embedded into the study design. The within-pair comparisons account 

for both known and unknown factors that could confound DNAm analysis, including genotype, age, and 

familial effects shared by the co-twins that differ for BC diagnosis. The DNAm data used for analysis was 

collected on average 11 years prior to BC diagnosis, which effectively minimizes the potential confounding 

of BC as a disease and its treatment on the DNAm increasing the power to detect true associations. 

However, we saw a limited reproducibility of our findings in the DTS. The DTS is characterized by a 

considerably smaller sample size, and it thereby likely lacks the statistical power required for robust 

replication. Previous studies in unrelated cases and controls are prone to genetic confounding, which could 

explain the lack of replication with our study. 

The limited availability of IVs in this study constrained the comprehensive testing for the impact of DNAm 

on BC risk. However, we did find causal evidence for a single CpG site with its methylation causing the 

opposite risk for ER+ and ER- BC. This is in line with the notion that the risk for distinct BC subtypes, 

especially the hormone receptor-positive versus hormone receptor-negative BC are impacted by varying 

environmental risk factors [69]. In addition to the limited number of suitable IVs for causality analyses, the 

blood samples for DNAm were collected on average 11 years prior to diagnosis. This extended timespan 

might be too long to observe strong causal effects of DNAm on BC risk. An alternative explanation could be 

that DNAm is associated with the risk of the disease through confounding arising from exposures that 

simultaneously influence both BC risk and DNAm, albeit through different pathways. While understanding 

the relationship between DNAm and BC risk is crucial for a broader understanding of disease etiology, it is 

important to note that this limitation does not impact the utility of DNAm as a biomarker for BC risk. 
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Conclusion  
This study demonstrated the presence of BC–associated DNAm patterns in blood on average 11 years 

before the actual BC diagnosis, independent of familial factors, likely due to individual environmental 

exposures. Furthermore, these findings suggest that DNAm could be a promising addition to BC risk 

assessment toolset for identifying individuals who have a higher likelihood of developing BC. Importantly, 

our study reveals DNAm at a single CpG site to simultaneously increase the risk for ER+ and decrease the 

risk for ER- BC. Future studies in larger prospective cohorts are warranted to clarify which environmental 

factors are most relevant, and increase the risk for BC through DNAm.  
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Tables 

Table 1: Description of Finnish Twin Cohort variables used in the survival models 
 Monozygotic pairs (n=32) Dizygotic pairs (n=76) 

DNA methylation platform per pair   

450K 2 2 

EPIC 30 74 

Age at sampling in years   

Mean 57.09 55.54 

SD 10.56 9.64 

Min 38.60 38.12 

Max 79.19 78.91 

Age at study entry in years   

Mean 34.18 33.62 

SD 10.43 9.20 

Min 19.44 18.52 

Max 54.56 60.49 

Age at diagnosis/ censoring in years Casesa Controlsb Casesa Controlsb 

Mean 66.67 75.55 66.80 75.06 

SD 9.53 9.98 9.12 9.27 

Min 46.79 60.07 47.53 46.60 

Max 87.21 94.76 86.52 91.73 

Time to diagnosis in years     

Mean 9.58 - 11.26 - 

SD 6.67 - 6.61 - 

Min 0.53 - 0.87 - 

Max 21.40 - 23.10 - 

Reason for censoring     

Breast cancer 32 (100%) - 76 (100%) - 

Death - 4 (13%) - 14 (18%) 

End of study - 28 (87%) - 62 (82%) 

 
a: Cases refer to the co-twins with breast cancer diagnosis 
b: Controls refer to co-twins that remained cancer free during the follow-up 
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Table 2: Description and Comparison of the available breast cancer risk factors for FTC data 
Risk factor Monozygotic pairs (n=32) Dizygotic pairs (n=76) All pairs (n=108) 

 Cases Controls Cases Controls OR (95%CI) p-value 

Oral contraceptive use a       

Never 18 (67%) 19 (63%) 36 (48%) 40 (55%) 1 (reference)  

Ever 9 (33%) 11 (37%) 39 (52%) 33 (45%) 1.45 (0.68, 3.13) 0.34 

No data 5 2 1 3   

Age at first birth in years b       

Mean 26.69 26.55 25.48 25.39 1.01 (0.91, 1.11)c 0.90 

SD 5.96 5.15 4.62 5.34   

No data, incl. nulliparous women c 16 12 15 22   

Number of children incl. nulliparous women b       

Mean 1.03 1.13 1.76 1.41 1.23 (0.96, 1.58)c 0.10 

SD 1.40 1.02 1.34 1.43   

No data 2 1 0 0   

Number of nulliparous women 14 11 15 22 0.72 (0.35, 1.47)d 0.37 

BMI in kg/m2 a       

Mean 21.72 21.49 22.29 22.78 0.97 (0.86, 1.09)c 0.56 

SD 2.89 2.60 3.56 3.58   

No data 5 2 3 4   

Alcohol use in gram ETOH/day a       

Mean 3.12 2.57 3.90 4.17 0.98 (0.88, 1.09)c 0.67 

SD 3.51 2.19 3.61 4.12   

No data 5 2 1 3   

Leisure time physical activity MET hours/day a       

Mean 0.76 0.96 1.38 1.09 1.04 (0.89, 1.22)c 0.64 

SD 0.72 1.22 2.61 1.44   

No data 5 2 7 10   

Social class a       

 Upper white-collar 1 (4%) 3 (10%) 3 (4%) 4 (5%) 1 (reference)  

 Lower white-collar 10 (37%) 14 (47%) 30 (40%) 28 (38%) 1.64 (0.39, 6.87) 0.50 

 Skilled workers 6 (22%) 5 (17%) 22 (29%) 22 (30%) 1.90 (0.38, 9.65) 0.44 

 Unskilled workers 3 (11%) 2 (7%) 9 (12%) 4 (5%) 4.21 (0.63, 28.09) 0.14 

 Farmers 0 1 (4%) 3 (4%) 8 (11%) 0.51 (0.06, 4,32) 0.53 

 Other (students, retired, unknown) 7 (26%) 5 (17%) 8 (11%) 7 (9%) 2.69 (0.36, 20.39) 0.34 

No data 5 2 1 3   

Education a       

Primary school or less 11 (41%) 14 (47%) 45 (60%) 44 (60%) 1 (reference)  

Middle school 8 (30%) 6 (20%) 12 (16%) 14 (19%) 1.14 (0.43, 3.07) 0.80 

Highschool graduate 8 (30%) 10 (33%) 17 (23%) 15 (20%) 1.09 (0.29, 4.04) 0.90 

Other 0 0 1 (1%) 0 -  

No data 5 2 1 3   

Relationship status a       

Not in relationship (single, divorced, 
widowed) 

15 (56%) 10 (33%) 24 (32%) 27 (37%) 1 (reference)  

In relationship (married or unmarried) 12 (44%) 20 (67%) 51 (68%) 46 (63%) 0.89 (0.45, 1.74) 0.73 

No data 5 2 1 3   

 
a: Based on 1975 questionnaire. 
b: Based on data from the Finnish Population Registry. 
c: Per 1 increase of unit respectively 
d: Compared to non-nulliparous  
MET: Metabolic equivalent is a standardized measure for physical activity, as explained in Jetté et al., 1990. One MET equal to 210 ml O2/kg/hour 
and represents the oxygen consumption while sitting at rest. [35] 
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Figures: 
 

 

  

Figure 1: Results on the survival modeling for individual CpG sites associated with breast 

cancer; A) Volcano plot of Model 1 (MZ+DZ) with CpG sites significantly associated with 

breast cancer marked in red; B) Comparison between Model 1 (MZ+DZ) and Model 2 

(MZ) with significant CpG sites from Model 1 validated in Model 2 marked in red; C) 

Comparison between Model 2 (MZ) and Model 3 (DZ) with a regression line in blue 

(regression coefficient = 1.31, p=0.001); D) Comparison between Model 1 (MZ+DZ, 

Finnish data) and Model 2R (MZ+DZ, Danish data) with replicated CpG site in red. 
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Figure 1: Results on the survival modeling for individual CpG sites associated with breast 

cancer; A) Volcano plot of Model 1 (MZ+DZ) with CpG sites significantly associated with 

breast cancer marked in red; B) Comparison between Model 1 (MZ+DZ) and Model 2 (MZ) 

with significant CpG sites from Model 1 validated in Model 2 marked in red; C) Comparison 

between Model 2 (MZ) and Model 3 (DZ) with a regression line in blue (regression 

coefficient = 1.31, p=0.001); D) Comparison between Model 1 (MZ+DZ, Finnish data) and 

Model 2R (MZ+DZ, Danish data) with replicated CpG site in red.
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