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Abstract 12 

Background and objectives: Circulating proteins are integral to many biological processes. 13 

We aimed to assess differences in the plasma proteome between people of different dietary 14 

groups defined by degree of animal food consumption.  15 

Methods: The UK Biobank recruited middle-aged adults (mostly 40 to 69 years) throughout 16 

the UK between 2006-2010. Relative concentrations of 1463 plasma proteins were quantified 17 

using the Olink Proximity Extension Assay on blood samples from 49,326 participants, who 18 

were also asked to report their ethnicity and consumption of red and processed meat, poultry, 19 

fish, dairy and eggs. We defined six diet groups among the white British participants (23,116 20 

regular meat eaters, 23,323 low meat eaters, 484 poultry eaters, 1074 fish eaters, 722 21 

vegetarians, and 54 vegans), and two diet groups among the British Indians (390 meat eaters 22 

and 163 vegetarians). We used multivariable-adjusted linear regressions to assess differences 23 

in protein concentrations between diet groups, with correction for multiple testing.  24 

Results: We observed significant differences in many plasma proteins by diet group (683 25 

proteins in white British participants, 1 in British Indians), in particular many proteins that 26 

are majority expressed in the digestive system. Of the biggest differences, compared with 27 

regular meat eaters, the non-meat eaters had significantly higher FGF21 (e.g. +0.40 SD in 28 

vegetarians), GUCA2A (+0.33), FOLR1 (+0.32), IGFBP2 (+0.31) and DSG2 (+0.30); all 29 

groups except the vegans had lower HAVCR1 (-0.38 in vegetarians). The observed 30 

differences were generally similar in direction in both ethnicities. 31 

Discussion: In this first comprehensive assessment of plasma proteins by diet group, we 32 

identified many differences in proteins between groups defined by animal food consumption; 33 

this variation in protein levels suggests differences in various biological activities, including 34 
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gastrointestinal tract and kidney function, which may relate to differences in future disease 35 

risk. 36 

Keywords: vegetarians, vegans, proteomics  37 
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Introduction 38 

Proteins are essential for many bodily functions including supporting cell and tissue growth 39 

and structural integrity, and for enabling a range of enzymatic, biochemical, signalling and 40 

transport functions across different systems in the human body. Proteomics describes the 41 

large-scale study of multiple proteins and their interconnected pathways, the investigation of 42 

which allows a more comprehensive understanding of disease mechanisms [1]. Protein 43 

expression can be altered by environmental factors [2], including diet, which is an important 44 

exogenous source of dietary protein, and which provides the nine essential amino acids that 45 

cannot be synthesised endogenously but are nonetheless necessary for protein synthesis in the 46 

human body. Previous studies have shown that differences in dietary habits can substantially 47 

impact dietary intakes of protein and both dietary intakes and circulating concentrations of 48 

amino acids [3]. However, there is scant evidence on how diet may affect the proteome, 49 

partly due to the limited availability of proteomics data in large scale studies, and no prior 50 

studies have investigated how vegetarian and vegan diets may influence the proteome.  51 

Nonetheless, protein levels have an established role in the aetiology of multiple diseases [4], 52 

and the examination of dietary influences on the proteome may offer unique insights into 53 

understanding how vegetarian and vegan diets may affect future disease risk.  54 

The aim of this study is to provide a detailed description of circulating protein concentrations 55 

in people with varying degrees of animal food consumption, using data from the UK 56 

Biobank. 57 

 58 

Methods 59 

Study Population 60 
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The UK Biobank is a prospective cohort study of around 500,000 middle-aged people 61 

(recruitment target 40-69 years), recruited from across the United Kingdom between 2006 62 

and 2010. The scientific rationale and design of the UK Biobank have been described in 63 

detail previously [5]. In brief, participants were identified from National Health Service 64 

registers, and were invited to join the study if they lived within travelling distance (~25 km) 65 

of one of the 22 assessment centres in England, Wales and Scotland. People who consented 66 

to participate in the study attended a baseline visit at the assessment centre where they 67 

completed a touchscreen questionnaire which asked about their lifestyle (including diet, 68 

alcohol consumption, smoking status, physical activity), socio-demographic characteristics 69 

and general health and medical history. All participants were also given a verbal interview, 70 

and had their physical measurements and blood samples taken by trained staff. Permission for 71 

access to patient records for recruitment was approved by the Patient Information Advisory 72 

Group (now the National Information Governance Board for Health and Social Care) in 73 

England and Wales and the Community Health Index Advisory Group in Scotland, and all 74 

participants gave informed consent to participate using a signature capture device at the 75 

baseline visit.  76 

 77 

Ethnicity classification 78 

On the touchscreen questionnaire, participants were asked to self-identify their ethnicity as 79 

‘White’, ‘Mixed’, ‘Asian or Asian British’, ‘Black or Black British’, ‘Chinese’, ‘Other ethnic 80 

group’, ‘Do not know’, or ‘Prefer not to answer’, with further sub-categories under each 81 

option. Participants were included for our analyses if they self-identified as ‘White’, or as 82 

‘Asian or Asian British’ and subsequently as ‘Indian’, hereafter referred to as ‘white British’ 83 

and ‘British Indian’. The white British population was included as it made up the majority of 84 
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the participants in UK Biobank, while the British Indian population was included because of 85 

the large proportion of vegetarians in this population group (25% compared to less than 2% 86 

in the overall population). The number of vegetarians in the other ethnic groups was too small 87 

to allow valid comparisons by diet groups, and therefore people of other ethnic groups were 88 

excluded from these analyses. 89 

 90 

Diet group classification 91 

Participants were classified into diet groups based on self-reported dietary data from the 92 

touchscreen questionnaire completed at recruitment. Participants were asked to report their 93 

frequency of consumption of processed meat (including processed poultry), unprocessed red 94 

meat (beef, lamb or mutton, pork), unprocessed poultry (such as chicken or turkey), oily fish, 95 

and other types of fish, with the possible responses ranging from “never” to “once or more 96 

daily”. Participants were also asked whether they never consumed dairy and eggs or foods 97 

containing eggs. Based on their responses to these questions, the white British participants 98 

were classified into six diet groups: regular meat eaters (red and processed meat consumption 99 

>3 times per week), low meat eaters (red and processed meat consumption ≤3 times per 100 

week), poultry eaters (participants who ate unprocessed poultry but no red and processed 101 

meat), fish eaters (participants who ate fish, but not red and processed meat, or poultry), 102 

vegetarians (participants who did not eat any meat or fish), and vegans (participants who did 103 

not eat any meat, fish, dairy products or eggs). The British Indian participants were classified 104 

into two diet groups: meat eaters (ate any combination of red or processed meat or poultry) 105 

and vegetarians; the numbers of fish eaters and vegans were low in the British Indians, and 106 

thus were not included in these analyses.  107 

 108 
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Assay for plasma proteins 109 

Non-fasting blood samples were collected from all UK Biobank participants by trained 110 

personnel (either a phlebotomist or a nurse) except in a small proportion (0.3%) of 111 

participants who declined, were deemed unable to, or where the attempt was abandoned for 112 

technical or health reasons. Proteomic profiling was conducted using the Olink Proximity 113 

Extension Assay on blood plasma samples in 54,306 participants selected as part of the UK 114 

Biobank Pharma Proteomics Project (UKB-PPP). The samples were shipped on dry ice to 115 

Olink Analyses Service, Uppsala, Sweden for analysis; details of the selection procedures for 116 

inclusion in UKB-PPP and the technical details of the proteomics assays have been described 117 

elsewhere [6]. In brief, the Olink Explore 1536 platform used in this study is an antibody-118 

based assay which measures the relative abundance of 1,472 protein analytes, including 1,463 119 

unique proteins, distributed across four 384-plex panels: inflammation, oncology, 120 

cardiometabolic, and neurology. The Olink Explore platform is based on proximity extension 121 

assays that are highly sensitive and reproducible with low cross-reactivity. Relative 122 

concentrations of the 1,463 unique proteins were readout by next-generation sequencing. 123 

Measurements are expressed as normalized protein expression (NPX) values which are log-124 

base-2 transformed. Protein values below the limit of detection (LOD) were replaced with the 125 

LOD divided by the square root of 2 [7]. Protein concentrations were subsequently inverse 126 

rank normal transformed. All results for differences in protein concentrations by diet groups 127 

may be interpreted as SD differences.  128 

 129 

Inclusion and exclusion criteria  130 

Of the 54,306 participants selected for proteomic profiling, 52,705 participants remained after 131 

the quality control procedures. Participants were further excluded if they were not of white 132 
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British or British Indian ethnicity (n=2964), could not be classified into one of the pre-133 

specified diet groups (n=414), or had missing information for fasting time (n=1). After the 134 

exclusions, 49,326 participants (48,773 white British and 553 British Indian) were included 135 

in the analyses. A participant flow chart of the inclusion criteria is shown in Supplementary 136 

figure 1.  137 

 138 

Statistical analyses 139 

Baseline characteristics of UK Biobank participants included in these analyses were tabulated 140 

by six diet groups in the white British population and by two diet groups in the British Indian 141 

population, as mean (SD) for continuous variables and number (%) for categorical variables. 142 

We used multivariable-adjusted linear regressions to estimate differences in protein 143 

concentrations by diet group, separately by ethnicity, using regular meat eaters as a reference 144 

group in the white British participants, and meat eaters as a reference group in the British 145 

Indians. The model was adjusted for age at recruitment (5 year categories), sex, region 146 

(London, North-West England, North-East England, Yorkshire, West Midlands, East 147 

Midlands, South-East England, South-West England, Wales, Scotland), fasting status (0–1, 2, 148 

3, 4, 5, 6–7, ≥8 hours), body mass index (BMI; <20, 20.0–22.4, 22.5–24.9, 25.0–27.4, 27.5–149 

29.9, 30.0–32.4, 32.5–34.9, ≥35 kg/m2, unknown), alcohol consumption (<1, 1–7, 8–15, ≥16 150 

g/d, unknown), smoking status (never, previous, current <15 cigarettes/day, current ≥15 151 

cigarettes/d, unknown) and physical activity (<10, 10-49.9, ≥50 excess metabolic equivalent 152 

of task, hr/wk, unknown). Wald tests were used to assess overall heterogeneity between diet 153 

group in each ethnicity, and for pairwise comparisons of each of the other diet groups 154 

compared to the reference group (regular meat eaters in white British participants/meat eaters 155 

in British Indians). Heterogeneity between vegetarians and vegans in the white British 156 
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population was assessed based on post-estimation linear combinations of parameters for all 157 

proteins.  158 

To account for multiple testing while considering the high correlations between the 159 

circulating proteins, we conducted a principal component analysis of the circulating proteins 160 

in the complete proteins dataset before exclusions for these analyses, and determined that the 161 

first 639 principal components explained 95% of the total variation in the exposure data. 162 

Consequently, the effective number of independent tests [8] was determined to be 639, and 163 

the statistical significance level was set to be p-value 0.05/639 = 0.000078. For the top 164 

proteins identified (the top 10 significant proteins in each pairwise comparison against the 165 

reference group, based on ranking of p-values), we conducted additional sensitivity analyses 166 

to evaluate the extent to which the associations may be influenced by key covariates 167 

including BMI, smoking and alcohol consumption, by presenting models with and without 168 

adjustment of these variables. Additionally, we also restricted the analyses to people who 169 

self-reported to be in good and excellent health. All analyses were performed using Stata 170 

version 17.0 (StataCorp, TX, USA). All figures were generated using R version 4.2.1, the 171 

forest plots using “Jasper makes plots” package version 2-266 [9].  172 

 173 

Integrating publicly available information on gene expression 174 

To further understand the biological context for the proteins of interest, we extracted single 175 

cell mRNA expression from the Human Protein Atlas [10] to describe expression for any 176 

proteins that were significantly different in one or more comparisons. Normalized expression 177 

levels were extracted for genes in 30 different human tissues and 82 cell-types. Gene 178 

expression specificity at the cell or tissue type level was calculated as the ratio of each gene 179 

cell-type or tissue expression to the total expression of each gene across all cell or tissue 180 
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types. We subsequently identified genes for proteins that were majority expressed (more than 181 

50% of total expression) in at least one cell or tissue type, and mapped these to their likely 182 

candidate cell and tissue of origin where possible. 183 

 184 

Results  185 

Baseline characteristics  186 

The baseline characteristics of the study population are shown by ethnicity and diet group in 187 

Table 1. Compared with white British regular meat eaters, the non-meat eaters were on 188 

average slightly younger, more likely to be women, and to reside in London. They were less 189 

likely to be overweight, reported lower alcohol consumption, lower current smoking, and 190 

more physical activity. Compared with British Indian meat eaters, the vegetarians were more 191 

likely to be women and reported lower alcohol consumption, lower current smoking and 192 

slightly lower physical activity, but BMI was not noticeably different between the two 193 

groups. Fasting time was not meaningfully different by diet group in both ethnicities.  194 

 195 

Differences in plasma proteins by diet group 196 

The plasma proteins that were significantly different in white British vegetarians and vegans 197 

compared with regular meat eaters are shown as volcano plots in Figure 1. Significant 198 

differences in proteins in white British low meat eaters, poultry eaters and fish eaters 199 

compared with regular meat eaters, and in British Indian vegetarians compared with meat 200 

eaters are shown as volcano plots in Supplementary figures 2-6.  Overall, 683 plasma 201 

proteins were significantly different by diet group (based on p-heterogeneity < 0.000078) in 202 

the white British participants, including 535 plasma proteins that were significantly different 203 
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in one or more pairwise comparisons between regular meat eaters and at least one of the other 204 

diet groups. This includes 296 proteins (23 higher, 273 lower) in low meat eaters compared 205 

with regular meat eaters, 59 (9 higher, 50 lower) in poultry eaters, 157 (104 higher, 53 lower) 206 

in fish eaters, 219 (194 higher, 25 lower) in vegetarians and 15 (12 higher, 3 lower) in 207 

vegans; and 2 proteins were significantly different between vegetarians and vegans (AHSP 208 

and FOLR2 were both higher in vegans). The proteins identified are involved in a range of 209 

different biological pathways. Of the 535 plasma proteins that were significantly different in 210 

one or more pairwise comparisons, 97 are majority expressed (protein mRNA >50% of total 211 

body mRNA expression) in one tissue type, while the other proteins have limited tissue 212 

specificity. In particular, these included 39 proteins that are majority expressed in the 213 

digestive system (including 16 in the liver, 8 in the pancreas, 8 in the small intestine), 30 in 214 

the nervous system (27 in the brain), and 12 in the respiratory system (7 in the lung) 215 

(Supplementary figure 7).  216 

In the British Indian population, only 1 protein (SUMF2, which is higher in vegetarians) was 217 

significantly different when comparing vegetarians and meat eaters, likely owing to the much 218 

smaller number of British Indians in the study. However, the differences in many proteins 219 

were directly consistent between the two ethnicities, as illustrated by the forest plots of top 220 

proteins by diet group and ethnicity, with the six diet groups in the white British participants 221 

and the two diet groups in British Indians (Figures 2-3, Supplementary figures 8-10). The 222 

complete results of all proteins are shown in Supplementary tables 1.  223 

Generally, in the multivariable-adjusted model, many proteins showed a gradient effect in 224 

magnitude of differences across diet groups by degree of animal food exclusion, from regular 225 

meat eaters to vegans. Figure 2 shows the top 10 proteins in white British vegetarians (based 226 

on the ranking of pairwise p-values in vegetarians compared with regular meat eaters), and 227 

Figure 3 shows the top 10 proteins in white British vegans. Of the top proteins in vegetarians 228 
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(Figure 2), compared with regular meat eaters, vegetarians and vegans both had significantly 229 

higher FGF21 (+0.40 SD in vegetarians; +0.74 SD in vegans), GUCA2A (+0.33; +0.79), 230 

FOLR1 (+0.32; +0.61) and IGFBP2 (+0.31; +0.55) after correction for multiple testing, 231 

whereas vegetarians but not vegans had significantly higher ART3 (+0.34), LAYN (+0.32), 232 

PCSK9 (+0.32), and lower CDHR2 (-0.26), HAVCR1 (-0.38) and CNDP1 (-0.39). In 233 

addition to the aforementioned proteins, vegans also had substantially higher FOLR2 (+0.69), 234 

GAS6 (+0.68), DSG2 (+0.68), THY1 (+0.62), MANSC1 (+0.58), but lower EGFR (-0.55) 235 

than regular meat eaters (Figure 3); the differences in these proteins were directionally 236 

consistent but less extreme in the vegetarians. 237 

The top 10 proteins in white British low meat eaters, poultry eaters and fish eaters compared 238 

with regular meat eaters are shown in Supplementary figures 8, 9 and 10 respectively. Of 239 

these top proteins, none was uniquely different in one diet group only when compared with 240 

regular meat eaters. Similar to the observations in vegetarians, all three groups had 241 

substantially higher DSG2 and lower HAVCR1 compared with regular meat eaters; in both 242 

low meat eaters and poultry eaters HAVCR1 is the protein that exhibited the largest 243 

magnitude in difference across all proteins, while in fish eaters FGF23 showed the biggest 244 

difference. In addition, low meat eaters and poultry eaters both had lower OSM and CD99L2, 245 

the latter of which was higher in vegetarians. Low meat eaters, fish eaters and vegetarians all 246 

had lower ACP5 than regular meat eaters; this protein was lower but not significantly 247 

different in poultry eaters. In sensitivity analyses of the top proteins with different levels of 248 

covariate adjustment and limited to people of good and excellent health, results were similar 249 

(Supplementary tables 2).  250 

 251 

Discussion 252 
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In this large British cohort, we observed differences in the levels of many proteins by diet 253 

group. This is the first comprehensive study on plant-based diets and plasma proteomics, and 254 

many of the substantial differences reported here are novel. In particular, we saw substantial 255 

differences in some proteins potentially associated with disease states such as HAVCR1 and 256 

DSG2 (associated with kidney disease [11] and inflammatory bowel disease, IBD [12], 257 

respectively), as well as proteins associated with nutritional status including IGFBP2 [13, 258 

14], and possibly FGF21 [15] and the folate receptors FOLR1 and FOLR2 [16]. The 259 

magnitudes of differences in many proteins showed a gradient effect across the diet groups, 260 

and were directionally consistent between the white British and British Indian populations.  261 

In terms of tissue mRNA expression, most of the proteins identified are not majority 262 

expressed in one specific tissue type, which suggests that they may be involved in a range of 263 

biochemical pathways and processes. Of the 97 proteins that were significantly different by 264 

diet group and also majority expressed in one tissue type, many were identified to be those 265 

expressed in the digestive system, which may signify dietary impact on digestive functions. 266 

We also see a number of proteins with high expression in the brain and lung, which may 267 

benefit from further research. Overall, the substantial differences in the protein 268 

concentrations observed likely reflect physiological differences between the different diet 269 

groups, as well as differences in underlying disease pathology and future disease risk.   270 

No previous studies were found that examined plasma proteomics in vegetarians and vegans. 271 

A few previous studies have reported on proteomic profiles by other dietary patterns, 272 

including the Dietary Approaches to Stop Hypertension (DASH) diet, the Healthy Eating 273 

Index and the Mediterranean diet, as well as other data derived dietary patterns [17–20]. 274 

Whilst vegetarian and vegan diets share some common features with these other healthy 275 

dietary patterns, such as higher intakes of fruit, vegetables and whole grains, the diets are also 276 

inherently different in many other aspects. For example, while both the DASH diet and 277 
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Mediterranean diet recommend reducing red and processed meat consumption, they generally 278 

do not pose any restrictions on consumption of fish and fish products, or dairy products 279 

(particularly low-fat versions). In contrast, vegetarian and vegan diets are defined by the 280 

complete exclusion of animal food groups. Therefore, it is not surprising that while studies on 281 

the DASH diet also reported higher FOLR2 [17] and DSG2 [18] in people with higher 282 

adherence, we generally do not find similarities in the results.  283 

 284 

FGF21 285 

There are only a limited number of studies examining vegetarian and vegan diets with 286 

individual proteins. In support of our findings, higher concentrations of FGF21 in vegetarians 287 

and vegans have been shown in a small study of 36 each of omnivores, vegetarians and 288 

vegans [21]. FGF21 has  been hypothesised to be high in vegans as a downstream effect of 289 

low intake of methionine [15], an essential amino acid that is known to be limiting in vegan 290 

diets [3].  Studies of FGF21 administration in rodents have found favourable effects on 291 

adiposity, lipid profiles, and non-alcohol fatty liver disease, but possible adverse effects on 292 

bone homeostasis [22]; randomised trials of FGF21 analogues also support the reduction in 293 

triglycerides [23] and improvement of fibrosis in patients with non-alcoholic steatohepatitis 294 

[24]. Consistent with these observations, we have previously reported lower BMI and body 295 

fat [25], more favourable lipid profiles [26] and lower heart disease risk [27], but also lower 296 

bone mineral density [25] and higher fracture risk [28] in vegetarians and vegans when 297 

compared with meat eaters; another study has reported lower odds of non-alcohol fatty liver 298 

disease in vegetarians than non-vegetarians [29].   299 

 300 

GUCA2A 301 
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GUCA2A was substantially higher in all diet groups compared to regular meat eaters, with 302 

the exception of low meat eaters. GUCA2A activates the Guanylate Cyclase C receptor, 303 

which has a role in the maintenance of gut physiology including the increase of water 304 

movement into the intestinal lumen [30]. Previous studies have found that fasting plasma 305 

levels of GUCA2A are significantly lower in patients who have been diagnosed with Crohn’s 306 

disease compared with healthy controls [31], and that loss of GUCA2A expression may be an 307 

important determinant of colorectal cancer [32]. Consistent with the observations in this 308 

study, a previous EPIC-Oxford study reported a higher frequency of bowel movements in 309 

vegetarians and vegans [33].  310 

 311 

FOLR1 and FOLR2 312 

We found both FOLR1 and FOLR2 to be higher in non-meat eaters, with vegans having 313 

particularly high levels. As folate receptors, FOLR1 and FOLR2 both bind to and import folic 314 

acid into cells, and are usually downregulated with repletion of folate, however, this process 315 

may also be mediated by homocysteine in a positive direction [16]. While vegetarians and 316 

vegans typically have high folate, they may also have high homocysteine due to low vitamin 317 

B12 intakes [34, 35], though no other studies have reported on folate receptor expression in 318 

vegetarians and vegans for comparison.  319 

 320 

IGFBP2 321 

Similar to our findings, a previous study in EPIC-Oxford has found that compared with meat-322 

eaters, both vegetarians and vegans had higher concentrations of IGFBP2, a binding protein 323 

for IGF-1 [13]. The  mechanism for higher IGFBP2 in vegetarians and vegans is not well 324 

established but has been suggested to be related to lower dietary intakes of essential amino 325 
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acids [13], protein (especially from dairy) [14], or lower total energy intake [36], which are 326 

all characteristic of vegetarian and vegan diets [3, 25, 37].   327 

 328 

DSG2 329 

Low and non-meat eaters, particularly vegans, had higher DSG2 in the current study. DSG2 330 

belongs to the family of desmosomal cadherins, which includes both desmogleins (DSGs) 331 

and desmocollins (DSCs), with DSG2 and DSC2 being the major isoforms in humans, and 332 

the only isoforms expressed in the intestinal epithelium [12]. Consistently, the current study 333 

also showed that DSC2 was higher in non-meat eaters particularly vegans. Though the two 334 

proteins are structurally and functionally similar, laboratory evidence in mouse models 335 

suggest that DSG2 may have a more prominent role in the maintenance of the integrity of the 336 

intestinal epithelial barrier than DSC2 [38]. In humans, several small studies on IBD patients 337 

have found that lower intestinal protein levels of DSG2 in IBD patients, suggesting a role of 338 

the protein in IBD pathogenesis [12].  339 

 340 

HAVCR1 341 

HAVCR1 has been recognised as a biomarker of kidney injury and possibly an early 342 

diagnostic marker of kidney disease [11]. In mice, high-fat diets or the saturated fatty acid 343 

palmitate have been shown to upregulate expression of HAVCR1 in the proximal tubules of 344 

the kidney [39–41]. In humans, vegetarians and vegans tend to have lower intake of saturated 345 

fat, which is consistent with the observation of lower HAVCR1 in the non-meat eaters 346 

(though not significantly so in vegans) in the current study. Additionally, high protein diets, 347 

especially diets high in protein from animal sources, have been suggested to have adverse 348 

effects on kidney health [42]. A previous study suggested a lower risk of chronic kidney 349 
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disease in vegetarians after accounting for baseline risk of diabetes and hypertension [43]. 350 

Furthermore, as HAVCR1 is expressed on the surface of immune cells, it is also believed to 351 

have a role regulating immune responses via activation and proliferation of immune cells 352 

[11].   353 

 354 

PCSK9 355 

The observation of higher PCSK9 in vegetarians is of interest. PCSK9 is a well-established 356 

drug target for treating hypercholesterolaemia, whereby PCSK9 inhibitors lowers low-357 

density-lipoprotein cholesterol (LDL-C) concentrations by preventing the binding of PCSK9 358 

to LDL receptors, which subsequently enables the LDL receptors to bind and remove LDL-C 359 

from the bloodstream instead [44, 45]. As a result, higher PCSK9 is often accompanied by 360 

high LDL-C, whereas the vegetarians in the current [26] and other studies [46] typically have 361 

significantly lower LDL-C, likely partly due to vegetarians having lower saturated fat intake 362 

[47]. It may therefore be plausible that the relatively higher PCSK9 expression in people with 363 

low LDL-C may be related to maintaining the minimum level of LDL-C necessary to support 364 

cellular function and structural integrity, but further studies are needed to confirm this.  365 

 366 

Other proteins 367 

The functions of many other proteins identified are not well established. CNDP1 is a 368 

dipeptidase, and one previous study reported higher CNDP1 in people on high protein diets 369 

[48], which would be consistent with our observation of lower CNDP1 in non-meat eaters 370 

(not statistically significant in vegans) who generally have lower protein intake. Several of 371 

the proteins identified such as ART3, GAS6, THY1 and EGFR are involved in a range of 372 

signalling pathways and progression of tumour tissues [49–52], while other proteins 373 
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including LAYN and CDHR2 are believed to have roles in cell adhesion [53, 54]. AHSP, 374 

which was significantly higher in vegans than vegetarians, has a role in stabilising 375 

haemoglobin and its loss of function has been linked to inherited anaemia [55], but its 376 

relevance for nutritional anaemia is unclear. Overall, the reasons that these proteins appear to 377 

be influenced by diet and their implications require further research. As the first study on diet 378 

group and a large panel of circulating proteins, the current study focused on the biggest 379 

differences by diet groups, and many other differences were observed that could not be 380 

described in detail, but still deserve further investigation. The study demonstrates the utility 381 

of investigating protein differences by diet groups; future research should measure these and 382 

other proteins using multiple technologies in relation to dietary factors, to replicate and 383 

expand on our findings.   384 

 385 

Strengths and limitations 386 

The key strength of this study was that it showed for first time differences in circulating 387 

proteins between people of different habitual diet groups in a large population, and many of 388 

the findings were completely novel. We have defined six diet groups in the white British 389 

population and two diet groups in the British Indian population, which allowed a detailed 390 

comparison by both dietary habits and ethnicity.  Of the limitations, as with all observational 391 

studies, some level of self-selection bias may be present, which limits the generalisability of 392 

the findings. While we have adjusted for several important confounders, residual 393 

confounding by other dietary and non-dietary factors may still be present, though sensitivity 394 

analyses showed that results were consistent across all adjustment models.  We are also 395 

unable to infer causality due to the cross-sectional nature of the studies.  396 

 397 
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Conclusions 398 

In this large population-based cohort in the United Kingdom, many differences in circulating 399 

protein concentrations were observed between different diet groups. These proteins are 400 

involved in a range of different biological pathways and processes, particularly related to 401 

gastrointestinal tract and kidney function. These differences likely reflect physiological 402 

differences between the different diet groups, and the implications of these differences for 403 

future disease risk require further investigation.  404 
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Table 1: Baseline characteristics of white British and British Indian participants by diet groups in UK Biobank.  

 White British participants  British Indian participants 
 Regular meat 

eaters 
Low meat 

eaters 
Poultry eaters Fish eaters Vegetarians Vegans  Meat eaters Vegetarians 

 N=23,116 N=23,323 N=484 N=1,074 N=722 N=54  N=390 N=163 
Age at recruitment 57.2 (8.2) 57.2 (8.0) 56.6 (8.1) 54.4 (8.2) 52.9 (8.1) 55.0 (7.8)  53.9 (8.6) 54.7 (7.7) 
Sex          
  Women 9,810 

(42.4%) 
14,861 
(63.7%) 

389 (80.4%) 756 (70.4%) 483 (66.9%) 28 (51.9%)  170 (43.6%) 102 (62.6%) 

  Men 13,306 
(57.6%) 

8,462 
(36.3%) 

95 (19.6%) 318 (29.6%) 239 (33.1%) 26 (48.1%)  220 (56.4%) 61 (37.4%) 

Region of assessment 
centre 

         

  London 2,558 
(11.1%) 

2,797 
(12.0%) 

80 (16.5%) 191 (17.8%) 121 (16.8%) 8 (14.8%)  208 (53.3%) 88 (54.0%) 

  North-West England 3,957 
(17.1%) 

3,577 
(15.3%) 

77 (15.9%) 136 (12.7%) 108 (15.0%) 13 (24.1%)  24 (6.2%) 8 (4.9%) 

  North-East England 2,830 
(12.2%) 

3,011 
(12.9%) 

58 (12.0%) 93 (8.7%) 67 (9.3%) 3 (5.6%)  12 (3.1%) 4 (2.5%) 

  Yorkshire 3,792 
(16.4%) 

3,764 
(16.1%) 

68 (14.0%) 193 (18.0%) 111 (15.4%) 10 (18.5%)  35 (9.0%) 10 (6.1%) 

  West Midlands 1,957 (8.5%) 1,929 (8.3%) 38 (7.9%) 83 (7.7%) 60 (8.3%) 6 (11.1%)  59 (15.1%) 22 (13.5%) 
  East Midlands 1,863 (8.1%) 1,889 (8.1%) 38 (7.9%) 84 (7.8%) 60 (8.3%) 4 (7.4%)  15 (3.8%) 15 (9.2%) 
  South-East England 1,764 (7.6%) 1,790 (7.7%) 28 (5.8%) 69 (6.4%) 57 (7.9%) 5 (9.3%)  17 (4.4%) 9 (5.5%) 
  South-West England 1,698 (7.3%) 1,871 (8.0%) 38 (7.9%) 103 (9.6%) 60 (8.3%) 4 (7.4%)  10 (2.6%) 3 (1.8%) 
  Wales 882 (3.8%) 1,084 (4.6%) 23 (4.8%) 53 (4.9%) 35 (4.8%) 0 (0.0%)  5 (1.3%) 3 (1.8%) 
  Scotland 1,815 (7.9%) 1,611 (6.9%) 36 (7.4%) 69 (6.4%) 43 (6.0%) 1 (1.9%)  5 (1.3%) 1 (0.6%) 
Fasting time (hours) 3.8 (2.5) 3.7 (2.3) 3.8 (2.2) 3.6 (2.3) 3.7 (2.4) 3.8 (3.0)  4.1 (2.4) 4.1 (2.5) 
Body mass index 
(kg/m2) 

         

  <20 358 (1.5%) 548 (2.3%) 35 (7.2%) 65 (6.1%) 45 (6.2%) 5 (9.3%)  6 (1.5%) 3 (1.8%) 
  20.0–22.4 5,911 

(25.6%) 
7,659 

(32.8%) 
219 (45.2%) 503 (46.8%) 338 (46.8%) 29 (53.7%)  121 (31.0%) 52 (31.9%) 

  22.5-24.9 10,239 9,936 159 (32.9%) 379 (35.3%) 251 (34.8%) 13 (24.1%)  180 (46.2%) 71 (43.6%) 
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(44.3%) (42.6%) 
   ≥25 6,513 

(28.2%) 
5,105 

(21.9%) 
68 (14.0%) 123 (11.5%) 87 (12.0%) 7 (13.0%)  80 (20.5%) 35 (21.5%) 

  Unknown 95 (0.4%) 75 (0.3%) 3 (0.6%) 4 (0.4%) 1 (0.1%) 0 (0.0%)  3 (0.8%) 2 (1.2%) 
Alcohol consumption           
  <1g/d 3,600 

(15.6%) 
4,540 

(19.5%) 
151 (31.2%) 255 (23.7%) 169 (23.4%) 27 (50.0%)  156 (40.0%) 139 (85.3%) 

  1-7g/d 5,075 
(22.0%) 

6,721 
(28.8%) 

152 (31.4%) 293 (27.3%) 200 (27.7%) 9 (16.7%)  96 (24.6%) 18 (11.0%) 

  8-15g/d 4,986 
(21.6%) 

5,521 
(23.7%) 

76 (15.7%) 235 (21.9%) 166 (23.0%) 7 (13.0%)  52 (13.3%) 6 (3.7%) 

  ≥16g/d 9,439 
(40.8%) 

6,525 
(28.0%) 

105 (21.7%) 291 (27.1%) 186 (25.8%) 11 (20.4%)  84 (21.5%) 0 (0.0%) 

  Unknown 16 (0.1%) 16 (0.1%) 0 (0.0%) 0 (0.0%) 1 (0.1%) 0 (0.0%)  2 (0.5%) 0 (0.0%) 
Smoking status          
  Never 11,729 

(50.7%) 
12,933 
(55.5%) 

268 (55.4%) 597 (55.6%) 422 (58.4%) 29 (53.7%)  291 (74.6%) 148 (90.8%) 

  Previous 8,557 
(37.0%) 

8,178 
(35.1%) 

179 (37.0%) 389 (36.2%) 237 (32.8%) 20 (37.0%)  42 (10.8%) 10 (6.1%) 

  Current < 15 cigs/d 707 (3.1%) 690 (3.0%) 14 (2.9%) 29 (2.7%) 21 (2.9%) 1 (1.9%)  21 (5.4%) 2 (1.2%) 
  Current 15 or more   
  cigs/d 

2,038 (8.8%) 1,438 (6.2%) 21 (4.3%) 55 (5.1%) 37 (5.1%) 3 (5.6%)  31 (7.9%) 3 (1.8%) 

  Unknown 85 (0.4%) 84 (0.4%) 2 (0.4%) 4 (0.4%) 5 (0.7%) 1 (1.9%)  5 (1.3%) 0 (0.0%) 
Physical activity (MET 
hrs/wk) 

         

  <10  4,735 
(20.5%) 

4,352 
(18.7%) 

78 (16.1%) 163 (15.2%) 128 (17.7%) 8 (14.8%)  95 (24.4%) 45 (27.6%) 

  10-49.9  9,066 
(39.2%) 

9,883 
(42.4%) 

183 (37.8%) 482 (44.9%) 324 (44.9%) 29 (53.7%)  127 (32.6%) 51 (31.3%) 

  ≥50  4,089 
(17.7%) 

3,963 
(17.0%) 

124 (25.6%) 214 (19.9%) 137 (19.0%) 10 (18.5%)  53 (13.6%) 10 (6.1%) 

  Unknown 5,226 
(22.6%) 

5,125 
(22.0%) 

99 (20.5%) 215 (20.0%) 133 (18.4%) 7 (13.0%)  115 (29.5%) 57 (35.0%) 

Numbers shown are mean (SD) or number (%).  
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Figure 1: Volcano plots of proteins in white British vegetarians (top) and vegans (bottom) compared 
with regular meat eaters. 
 

The red dotted line signifies p-value threshold for statistical significance. Each dot represents one 
protein, which were colour-coded by whether the protein is majority expressed (>50%) in one tissue 
type. Results were based on the multivariable model adjusted for age at recruitment, sex, region, 
fasting status, body mass index, alcohol consumption, smoking status and physical activity.  
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Figure 2: Top 10 proteins in vegetarians by diet group and ethnicity.  

The top 10 proteins were selected by ranking the p-values of proteins comparing white British 
vegetarians with regular meat eaters, and sorted by betas in white British vegetarians, where the betas 
represent SD differences. Results were based on the multivariable model adjusted for age at 
recruitment, sex, region, fasting status, body mass index, alcohol consumption, smoking status and 
physical activity. 
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Figure 3: Top 10 proteins in vegans by diet group and ethnicity.  

The top 10 proteins were selected by ranking the p-values of proteins comparing white British vegans 
with regular meat eaters, and sorted by betas in white British vegans, where the betas represent SD 
differences. Results were based on the multivariable model adjusted for age at recruitment, sex, 
region, fasting status, body mass index, alcohol consumption, smoking status and physical activity. 

 

 

 


