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Abstract12

Background: Timely and informed public health responses to infectious diseases such13

as COVID-19 necessitate reliable information about infection dynamics. The case ascer-14

tainment rate (CAR), the proportion of infections that are reported as cases, is typically15

much less than one and varies with testing practices and behaviours, making reported cases16

unreliable as the sole source of data. The concentration of viral RNA in wastewater sam-17

ples provides an alternate measure of infection prevalence that is not affected by human18

behaviours. Here, we investigated how these two data sources can be combined to inform19

estimates of the instantaneous reproduction number, R, and track changes in the CAR over20

time.21

Methods: We constructed a state-space model that we solved using sequential Monte22

Carlo methods. The observed data are the levels of SARS-CoV-2 in wastewater and reported23

case incidence. The hidden states that we estimate are R and CAR. Model parameters are24

estimated using the particle marginal Metropolis Hastings algorithm.25

Findings: We analysed data from 1 January 2022 to 31 March 2023 from Aotearoa26

New Zealand. Our model estimates that R peaked at 2.76 (95% CrI 2.20, 3.83) around 1827

February 2022 and the CAR peaked around 12 March 2022. Accounting for reduced CAR,28

we estimate that New Zealand’s second Omicron wave in July 2022 was similar in size to the29

first, despite fewer reported cases. We estimate that the CAR in the BA.5 Omicron wave30

in July 2022 was approximately 50% lower than in the BA.1/BA.2 Omicron wave in March31

2022. The CAR in subsequent waves around November 2022 and April 2023 was estimated32

to be comparable to that in the second Omicron wave.33

Interpretation: This work on wastewater-based epidemiology (WBE) can be used34

to give insight into key epidemiological quantities. Estimating R, CAR, and cumulative35

number of infections provides useful information for planning public health responses and36

understanding the state of immunity in the population. This model is a useful disease37

surveillance tool, improving situational awareness of infectious disease dynamics in real-38

time, which may be increasingly useful as intensive pandemic surveillance programmes are39

wound down.40

Funding: New Zealand Ministry of Health, Department of Prime Minister and Cabinet,41

the Royal Society Te Apārangi, Imperial College London, and University of Oxford.42
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Research in Context43

Evidence before this study44

There has been a substantial increase in the number of publications focusing on wastewater-45

based epidemiology (WBE) in recent years, particularly during the COVID-19 pandemic. We46

searched PubMed for “wastewater based epidemiology” and found fewer than 10 papers per47

year prior to 2014 with a drastic increase to 463 in 2022. Approximately 52% of the WBE48

publications are related to COVID-19 (“wastewater based epidemiology” AND (“SARS-CoV-49

2” OR “COVID-19”)). Many studies have focused on detecting SARS-CoV-2 in wastewater50

systems but only 10 have estimated the reproduction number (“wastewater based epidemiology”51

AND (“SARS-CoV-2” OR “COVID-19”) AND “reproduction number”). No previous work has52

combined WBE with reported case data to estimate (relative) case ascertainment rate (“waste-53

water based epidemiology” AND (“SARS-CoV-2” OR “COVID-19”) AND “case ascertainment54

rate”). Previous work has estimated the reproduction number from reported cases assuming55

constant under-ascertainment but the issue of time-varying case ascertainment has not yet been56

addressed, except to demonstrate the effect of a pre-determined change in case ascertainment.57

Added value of this study58

We present a model that, for the first time, enables reported case information to be combined59

with wastewater data to estimate epidemiology quantities. This work further demonstrates the60

utility of WBE; the reproduction number can be estimated in the absence of reported case61

information (although results are more reliable when case data are included), and wastewater62

data include information that, when combined with case data, can be used to estimate the63

time-varying relative case ascertainment rate.64

Implications of all the available evidence65

In order to make informed and timely public health decisions about infectious diseases, it is66

important to understand the number of infections in the community. WBE provides a useful67

source of data that is not impacted by time-varying testing practices. Wastewater data can be68

quantitatively combined with case information to better understand the state of an epidemic. In69

order to determine the absolute case ascertainment rate (rather than the relative rate calculated70

in this work), there is a need for infection prevalence surveys to calibrate model results against.71
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1 Introduction72

Understanding and predicting the trajectory of infectious diseases is important in planning an73

effective public health response. Reported case data depend heavily on testing modalities and74

practices which typically change over time, resulting in considerable uncertainty in the case75

ascertainment rate (CAR; the fraction of infections that are officially reported). During the76

COVID-19 pandemic, many countries relied primarily on symptom-based testing programmes77

to inform situational awareness and public health responses. In Aotearoa New Zealand, the CAR78

for COVID-19 has been influenced by factors such as access to testing, a shift from healthcare79

worker-administered polymerase chain reaction (PCR) tests to self-administered rapid antigen80

tests (RATs), reduction in rates of symptomatic and severe disease due to rising population81

immunity, relaxation of testing requirements and recommendations, and/or lack of perceived82

need to test or ‘pandemic fatigue’ [1, 2, 3]. As a result, over time, officially reported cases of83

COVID-19 have become a less reliable measure of levels of SARS-CoV-2 infection.84

Data on hospital admissions and deaths are more consistent and are less affected by testing85

practices and behavioural change than reported cases but are subject to additional delays [4]86

that limit their usefulness for understanding disease dynamics. Infection prevalence surveys [5]87

that aim to regularly test a representative sample of the population are the gold-standard for88

tracking the spread of an infectious disease, but these surveys are resource intensive, making89

them harder to justify as countries move out of the acute phase of the pandemic. For example,90

regular SARS-CoV-2 infection prevalence surveys in the UK [6] have now been wound down91

and there are no current plans for similar surveys in New Zealand.92

Wastewater surveillance, where levels of SARS-CoV-2 RNA in wastewater samples are mea-93

sured, can provide additional data on the prevalence of the virus that are unaffected by individ-94

ual testing and self-reporting behaviours. Wastewater surveillance (also known as wastewater-95

based epidemiology or WBE) also has the potential to contribute to an integrated global network96

for disease surveillance [7, 8, 9]. These data, however, can be highly variable and subject to other97

biases, such as rainwater dilution, sampling methodologies, and changing locations of selected98

sampling sites. To realise this potential, appropriate models and analytical tools are needed99

to deliver epidemiological insights from raw data. Previous work by [10] and [11] estimated Rt100

from wastewater data, compared the results with estimates derived from case data, and found101

that WBE can provide independent and reliable estimates of Rt.102

Semi-mechanistic models based on the renewal equation are a popular method for epidemic103

forecasting and estimation of the instantaneous reproduction number [12, 13, 14]. Such methods104

are robust to constant under-ascertainment of cases, but may be biased by rapid changes in105
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CAR and cannot provide any information about the total number of infections. In this paper,106

we extend the renewal equation framework [12, 13, 14] for reproduction number estimation107

to incorporate wastewater time-series data. The model treats the instantaneous reproduction108

number and CAR as hidden states and reported cases and quantity of viral RNA in wastewater109

as observed states. We use a sequential Monte Carlo approach to infer the hidden states. We110

apply the model to national data from Aotearoa New Zealand on reported COVID-19 cases and111

the average number of SARS-CoV-2 genome copies per person per day measured in municipal112

wastewater samples between January 2022 and March 2023. Because the relationship between113

infections and wastewater concentration is only determined in the model up to an overall scaling114

constant, it cannot be used to infer the absolute CAR but can be used to estimate relative115

changes in case ascertainment over time.116

From March 2020 until December 2021 New Zealand used strict border controls and intermittent117

non-pharmaceutical interventions to suppress and eliminate transmission of SARS-CoV-2. By118

the beginning of 2022, there had been a cumulative total of around 3 confirmed cases of COVID-119

19 per 1,000 people and around 90% of the population over 12 years old had received at least120

two doses of the Pfizer-BioNTech vaccine. From October 2021, interventions were progressively121

eased and in January 2022 the B.1.1.529 (Omicron) variant began to spread in the community,122

causing the first large wave of infection. Since then community transmission has been sustained,123

with multiple further waves of infection being driven by various Omicron subvariants. Between124

1 January 2022 and 31 March 2023, there was a cumulative total of around 440 confirmed cases125

per 1,000 people, most of which were from self-administered RATs. During this period, SARS-126

CoV-2 concentration was regularly measured at various wastewater treatment plants, providing127

an additional data source on changes in community prevalence over time.128

2 Materials and Methods129

2.1 Data130

National daily reported cases of COVID-19 were obtained from the New Zealand Ministry of131

Health [15]. Until February 2022, these cases were diagnosed solely by healthcare-administered132

PCR testing. From February 2022, in response to the rapid increase in reported cases, RATs133

were widely distributed. Since then, the vast majority of reported cases have been from self-134

administered RATs, with results reported through an online portal. Reported cases are shown135

in Figure 1. As these data exhibit a clear day-of-the-week effect we remove the weekly trend136

before fitting the model (see Supplementary Material sec. 1.2 for details).137

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.14.23294060doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.14.23294060
http://creativecommons.org/licenses/by-nc-nd/4.0/


SARS-CoV-2 concentration data from wastewater samples collected by the Institute for Envi-138

ronmental Science and Research (ESR) were used for this study [16]. Wastewater samples were139

collected every week at municipal wastewater treatment plants located throughout the coun-140

try, serving communities with populations ranging from 400 to over 500,000 people. Typically141

70-90% of the national population connected to reticulated wastewater was covered by waste142

water sampling in any given week (60-124 sites, usually sampled twice per week). We aggregate143

the individual wastewater samples into daily estimates of genome copies per person by taking144

volume-weighted averages of the samples on each day and dividing by the total population145

connected to the sampled sites (see Figure 1).146

Figure 1: Reported cases of COVID-19 (upper), daily SARS-CoV-2 genome copies per litre

in sampled wastewater (middle), and proportion of the total population covered by sampled

wastewater catchments (lower), between 1 January 2022 and 31 March 2023 in Aotearoa New

Zealand. The black line in the upper plot shows the adjusted case series with the multiplicative

day-of-the-week effect removed (see Supplementary Material section 1.2). The two outliers in

wastewater data arise from estimates of a high wastewater flow-rate in Wellington following

high rainfall. Since rainfall is a source of noise in wastewater sampling we retain these samples

in our analysis. Reported case data were obtained from the New Zealand Ministry of Health

[15] and wastewater data were obtained from ESR [16].
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2.2 Hidden state model147

We construct a state-space model (Figure 2) consisting of time-varying hidden states (the in-148

stantaneous reproduction number Rt, daily case ascertainment rate CARt, and daily infection149

incidence It) and time-varying observed states (daily reported cases of COVID-19 Ct and daily150

wastewater observations Wt). We use subscript s : t to refer to all values between day s and t151

inclusive.152

We assume the hidden statesRt and CARt follow independent Gaussian random walks, encoding153

the fact we expect them to vary continuously over time. We also assume that the hidden state154

It follows a Poisson renewal process, a simple epidemic model commonly used when estimating155

Rt [12]. Thus our state-space transitions are governed by:156

(Rt|Rt−1) ∼ N(0,∞)(Rt−1, σRRt−1)

(CARt|CARt−1) ∼ N(0,1)(CARt−1, σCAR)

(It|Rt, I1:t−1) ∼ Poisson

(
Rt

t−1∑
u=1

guIt−u

)

Parameters σR and σCAR determine how quickly Rt and CARt vary. The standard deviation157

of the transition distribution for Rt → Rt+1 is given by σRRt, which means that Rt varies more158

rapidly at larger values. The distribution for Rt was truncated on (0,∞) and for CARt on159

(0, 1). Finally, gu is the pre-determined generation time distribution, describing the proportion160

of transmission events that occur u days after infection (see Supplementary Material sec. 2.7).161

We assume that the expected number of reported cases µc
t at time t is equal to CARt multiplied162

by the convolution of past infections with the infection-to-reporting distribution Lu:163

µc
t = CARt

t∑
u=1

It−uLu

Similarly, we assume that the expected number of genome copies per person µw
t at time t is equal164

to the convolution of past infections with the infection-to-shedding distribution ωu, multiplied165

by a fixed parameter α, representing the average total genome copies produced by an infectious166

individual:167

µw
t = α

t∑
u=1

It−uωu

We model reported cases using a negative binomial distribution:168

(Ct|CARt, I1:t) ∼ NegBin

(
r = kc, p =

kc
kc + µc

t

)
7
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which has mean µc
t and variance µc

t

(
1 +

µc
t

kc

)
. A negative binomial distribution is used to169

account for noise in the observations beyond that predicted by a binomial distribution. This is170

a common choice in other methods of reproduction number estimation [14, 17].171

We model observed wastewater data using a shape-scale gamma distribution:172

(Wt|I1:t) ∼ Γ

(
kwpopt,

µw
t

kwpopt

)
which has mean µw

t and variance
(µw

t )2

kwpopt
. The variable popt refers to the daily population in173

the catchment areas of the sampled wastewater sites at time t. Scaling by this allows the model174

to account for additional noise when fewer or smaller sites were sampled. On days when no175

sites were sampled, we let P (Wt = 0) = 1, meaning that the model filters on case data alone.176

The gamma distribution is a reasonably flexible choice for a non-negative continuous random177

variable, however other distributions could be considered, such as a Weibull or log-normal.178

Figure 2: Diagram of the state-space model showing the dependency between hidden-states

(dashed circles) and the observed data (solid circles). Rt is the instantaneous reproduction

number on day t, CARt is the case ascertainment rate on day t, It is the number of new

infections on day t, Ct is the number of reported cases on day t, and Wt is the observed

wastewater, measured as genome copies per person per day, on day t. I1:t denotes the set of

states {I1, I2, . . . , It}. In practice the current infections It, reported cases Ct and wastewater

Wt depend only on recent values of It as specified by the generation interval distribution,

the infection-to-reporting distribution, and infection-to-shedding distribution respectively (see

Methods).

In the absence of additional information we are unable to estimate α, which represents the179

average total genome copies shed by an infected individual over the course of their infection.180
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Table 1: Parameter values used in the model. The infection-to-reporting and infection-to-

shedding distributions are calculated as convolutions of the incubation period distribution [18]

and the onset-to-reporting and onset-to-shedding distribution [19] respectively (see Supplemen-

tary Material sec. 2.7).

Parameter Symbol Value

Coefficient of variation of Rt transitions σR Fitted

Std dev. of CARt transitions σCAR Fitted

Reported cases tuning parameter kc Fitted

Wastewater tuning parameter kw Fitted

Generation time distribution [20, 21] gu Mean = 3.3 days, s.d. = 1.3 days

Infection-to-reporting distribution Lu Mean = 5.8 days, s.d. = 2.6 days

Infection-to-shedding distribution ωu Mean = 5.2 days, s.d. = 2.9 days

Average total genome copies per infection α 3× 109 (2× 109, 4× 109)

Fixed-lag resampling window h 30 days

This means we are unable to estimate the absolute value of CARt. Instead, we run the model181

with a range of different values for α, and estimate the change in CARt relative to its initial182

value. This additionally requires the assumption that α is constant over time, which is unlikely183

to be true in general and is a key limitation of our model (see Discussion).184

The infection-to-reporting and infection-to-shedding distributions are calculated as the convo-185

lution of the incubation period distribution with the onset-to-reporting and onset-to-shedding186

distribution respectively. The incubation period is modelled as a Weibull distribution with mean187

2.9 days and standard deviation 2.0 days [18]. The onset-to-reporting distribution is estimated188

empirically from New Zealand case data extracted on 16 September 2022, representing over 1.2189

million cases, and has mean 1.8 days and standard deviation 1.8 days. The onset-to-shedding190

distribution comes from [19] and has mean 0.7 days and standard deviation 2.6 days. The191

resulting infection-to-reporting distribution has mean 5.8 days and standard deviation 2.6, and192

the resulting infection-to-shedding distribution has mean 5.2 days and standard deviation 2.9193

days (see Supplementary Figure S1).194

The model is solved using a bootstrap filter [22] with fixed-lag resampling. This produces195

estimates for the marginal posterior distribution of the hidden states at each time step. The196

random walk step variance parameters (σR and σCAR) and observation variance parameters197

(kc and kw) are estimated using a particle marginal Metropolis Hastings Markov chain Monte198

Carlo method. We use uninformative uniform prior distributions for these parameters, with199

the exception of σCAR, where we use an informative prior distribution to ensure an appropriate200

level of smoothness in our estimates of CARt. Different parameter values are fitted in three-201
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Figure 3: Results for New Zealand data from 1 January 2022 to 31 March 2023. (a) instan-

taneous reproduction number Rt, (b) relative case ascertainment rate CARt (compared to the

central estimate on 1 April 2022), (c) wastewater data Wt measured in genome copies per per-

son per day and (d) reported cases Ct. Results assume the average total shedding per infection

does not vary over time (α = 3 × 109). Solid lines present central estimates. Shaded regions

show 95% credible intervals on the value of the hidden states (subplots a and b), and 95%

credible intervals on the expected reported cases and wastewater data (darker shaded regions in

subplots c and d) and 95% credible intervals on the prediction distribution for wastewater data

and reported cases (lighter shaded regions in subplots c and d). Black dots show the observed

data.

month blocks to allow for some variation over time. See Supplementary Material sec. 2 for202

further details of the numerical method. Code and data to reproduce the results are provided203

at https://github.com/nicsteyn2/NZWastewaterModelling.204
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3 Results205

Reproduction number, relative case ascertainment, and infection incidence206

The estimated value of the reproduction number Rt (Figure 3a) increased from around 1 at the207

beginning of 2022 to a peak of 2.46 (95% CrI 2.04, 3.20) on 18 February 2022 (95% CrI 10 Feb,208

23 Feb), corresponding to the sharp increase in cases seen during the first Omicron wave, which209

was a mixture of the BA.1 and BA.2 variants [23]. The estimated value of Rt dropped below 1210

on 1 March 2022 (95% CrI 25 Feb, 5 Mar) and infection incidence peaked on 28 February 2022211

(95% CrI 23 Feb, 7 Mar), suggesting this is when the wave peaked.212

The estimated CAR (Figure 3b) increased rapidly between mid-February and mid-March 2022.213

RATs became widely available for the first time in the last week of February 2022. This likely214

led to a significant increase in case ascertainment as the testing system, which had previously215

relied solely on laboratory-processed PCR tests, had become overwhelmed [3]. The estimated216

CAR approximately halved between April and July 2022, when a second wave of infection217

caused by the BA.5 Omicron subvariant [23, 24] occurred. This second wave was visible in both218

reported cases and wastewater sampling, with estimated peak infections occurring on 7 July219

2022 (95% CrI 3 Jul, 12 Jul). The estimated CAR increased somewhat between mid 2022 and220

early 2023, with a noticeable dip in December 2022, possibly reflecting reduced testing during221

the Christmas and summer school holiday period (from mid-December to late-January/early-222

February). Alternatively, the estimated increase in CAR from mid-2022 could be explained by223

a decrease in the average genome copies shed by an infected individual α, although without224

further information we are unable to discern changes in α. Overall, the model provided a225

reasonably good fit to the observed data on cases and wastewater (Figure 3c-d).226

Figure 4a-b shows the estimated daily incidence and cumulative infections for three values of227

α, corresponding to estimated CAR values on 1 April 2022 of 0.42 (95% CrI 0.35, 0.50), 0.61228

(95% CrI. 0.51, 0.71), and 0.80 (95% CrI. 0.67, 0.93), for α = 2 × 109, 3 × 109, and 4 × 109229

respectively. For comparison, the graphs also show the number of cases per capita in a cohort of230

approximately 20,000 border workers who were tested weekly between January and July 2022231

[24], scaled according to population size. This cohort is not representative of the population232

and may not have perfect case ascertainment, so we do not expect the results to match exactly.233

However, they provide a limited validation that the model is producing plausible estimates for234

total infections.235

Whilst peak reported cases (adjusted for the day-of-the-week effect) in the second wave were236

only 49% of the peak in the first wave (10,879 vs 22,038 respectively), under the assumption237
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Figure 4: Estimated (a) daily infections It, (b) cumulative infections
∑t

s=0 Is, (c) case ascer-

tainment rate CARt, (d) relative case ascertainment rate (compared to the central estimate on

1 April 2022), and (e) instantaneous reproduction number, Rt. Results are presented for three

values of α: 2×109, 3×109, and 4×109. Solid lines show central estimates and coloured regions

are the 95% CrIs. Estimates and credible intervals on cumulative infections are calculated by

taking cumulative sums of the estimates and credible intervals in panel (a). Black dots in panels

(a) and (b) show the number of per capita cases in a cohort of regularly-tested border workers,

scaled according to population size. The horizontal dashed black lie in panel (b) shows the New

Zealand population at the end of 2022 (5.15 million people) [25]. While changing α results in

different estimates of infections and absolute CAR, the relative CAR and reproduction number

estimates are robust to different values, provided α remains relatively constant.
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Table 2: Central estimates and 95% CrIs for estimated model parameters in each time period.

Dates in the ‘Period’ column are the start date for the three-month period. All outputs presented

to 2 s.f. Higher values of σR and σCAR suggest Rt and CARt vary faster. Higher values of kc

and kw indicate a lower variance in the corresponding observation distribution. Note a different

prior distribution was used for σCAR in the first period (see Supplementary Material, sec. 2.4),

which may also impact estimates of other parameters in this period.

Period starting σR σCAR kc kw(×10−6)

1 Jan 2022 0.12 (0.069, 0.21) 0.03 (0.017, 0.043) 31 (20, 49) 1.5 (1.1, 2)

1 Apr 2022 0.069 (0.041, 0.12) 0.0099 (0.0053, 0.014) 170 (100, 250) 4.8 (3.2, 6.8)

1 Jul 2022 0.037 (0.02, 0.066) 0.0063 (0.0018, 0.01) 330 (220, 400) 4.8 (3.3, 6.5)

1 Oct 2022 0.038 (0.02, 0.068) 0.011 (0.0073, 0.014) 170 (110, 270) 7.2 (4.7, 10)

1 Jan 2023 0.038 (0.018, 0.073) 0.0093 (0.0041, 0.015) 150 (84, 330) 6.8 (4.4, 10)

of constant α, the central estimate from the model suggests that true infections peaked at238

approximately 78% of the peak of the initial wave (Figure 4a). Figure 4c-e shows the estimated239

absolute and relative CAR and R. These panels show that, while we are uncertain about the240

absolute level of infections and CAR, the relative CAR and reproduction number estimates are241

robust to reasonable choices for (constant) α.242

Parameter estimates243

The estimated standard deviation σR of the random walk on Rt was greatest in the first time244

period (1 Jan – 31 Mar 2022) – see Table 2. This is unsurprising as it coincided with the rapid245

increase and then decrease in incidence associated with the first Omicron wave. σR decreased246

in the second period (1 Apr – 30 Jun 2022) and then remained relatively constant throughout247

the remaining periods (1 Jul 2022 – 31 Mar 2023). The estimated standard deviation σCAR of248

the random walk on CARt was also estimated to be greatest in the first time period, although249

this is primarily because we applied a prior distribution with a higher mean in this period (see250

Supplementary Material sec. 2.4).251

The estimated variance parameters, kc and kw, for cases and wastewater observations, were252

lowest in the first time period (1 Jan 2022 – 31 Mar 2022). This implies there is more variability253

in the data that is not explained by the model in this time period, possibly as a consequence of254

the sharper variations in incidence compared to the later time periods. A less consistent weekly255

pattern in reported cases during the first time period, and higher levels of noise in wastewater256

observations at the low concentrations seen at the beginning of 2022, could also be contributing257

factors.258

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.14.23294060doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.14.23294060
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Discussion259

WBE has been used globally for COVID-19 surveillance and has been shown to be a useful260

public health tool for policy and public health responses [26]. We have presented a semi-261

mechanistic model that combines reported cases with wastewater data to estimate the time-262

varying reproduction number and CAR. This work demonstrates the value of WBE and how263

the additional data that it provides can be combined with traditional monitoring (e.g., reported264

cases) to learn more about the state of an epidemic, disease dynamics, and the true number265

of infections in the community. This provides useful information to inform the public health266

response.267

To make reliable estimates of the state of the epidemic from reported cases, it is essential to268

understand how case ascertainment changes with time. For example, are there fewer cases269

because there are fewer infections or because fewer people are reporting? We applied our model270

to national data from Aotearoa New Zealand and derived important insights into changes in271

case ascertainment over the 15-month period considered. Reported cases during the second272

wave in July 2022 were significantly lower than in the first wave in February and March 2022.273

However, the model inferred that there was a substantial drop in case ascertainment between274

these waves, and the true number of infections was likely more similar in each wave. The275

reduced CAR during the second and subsequent waves may have been due to a higher number276

of reinfections with individuals displaying fewer symptoms or due to “pandemic fatigue” and277

reduced compliance with public health measures, including testing. This type of insight would278

not be possible without regular wastewater surveillance data and without a robust analytical279

framework in which to integrate these data with traditional epidemiological data streams.280

Strengths of our model include the fact that it has relatively minimal data requirements, re-281

quiring only time series for reported cases and wastewater concentrations. This means that it282

could be readily applied in other jurisdictions with wastewater surveillance programs, either283

for SARS-CoV-2 or other pathogens such as influenza viruses [26, 27]. It is a relatively simple284

model with minimal mechanistic assumptions and parsimonious parameterisation. This means285

that results are less sensitive to model misspecification or parameter uncertainty than more286

complex mechanistic models. The model presented here was operationalised by ESR in late287

2022 and results for Rt and relative CAR are regularly provided to the Ministry of Health to288

inform situational awareness and decision-making.289

There are several limitations to this model and the results. We assume that the average number290

of genome copies shed by an infected individual (the α parameter) was constant through 2022291

and 2023 and did not depend on the infecting variant or history of prior infection or vaccination.292
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It is possible that some of the inferred changes in CAR may be partly explained by these293

factors. For example, some of the inferred increase in case ascertainment between October and294

December 2022 may have been due to decreasing α, caused by a combination of new immune295

evasive subvariants displacing the previously dominant BA.5 variant [28] and/or an increase in296

the proportion of reinfections or asymptomatic infections [15]. Furthermore, as we are unable to297

estimate the true value of α, we are unable to estimate the absolute CAR. Nonetheless, relative298

CAR is a useful metric and, given an estimated range of values for α, we are able to provide299

plausible bounds on the total number of infections (Figure 4).300

Wastewater surveillance does not provide any information on how infections are distributed301

among population groups (e.g. age groups, ethnicity) and biases in self-administered testing302

mean that case counts are not representative either. This information is important for assessing303

the clinical burden of disease and addressing health inequities [29]. Thus, other approaches are304

needed to determine the distribution of disease burden, such as representative sampling [6, 30],305

cohort studies [31] or sentinel surveillance [32].306

As our model is flexible, future work could integrate hospitalisations (such as in [33]) and deaths307

data. In principle, this could allow the effects of varying CAR and varying rate of shedding per308

infection to be separated. However, this would additionally require the effects of age, immunity,309

ethnicity, and other variables on clinical severity to be accounted for.310

The model could also be implemented at a regional level so that local epidemic dynamics can311

be compared. This paper has focused on modelling for inference: understanding epidemic312

dynamics that have already occurred. However, the state-space transition model coupled with313

the estimated parameters provides a natural method for forecasting [34, 14]. Forecasts generated314

using this state-space transition model naturally incorporate increasing uncertainty about the315

future reproduction number and CAR.316

While this model has focused on COVID-19, there is a wealth of genetic information within317

municipal wastewater that could also benefit from modelling. The detection and concentration318

of viral, bacterial and anti-microbial resistance genes within wastewater have the ability to319

inform public health decision-making in a number of ways, especially as methodology is refined320

allowing more rapid turn-around times. As many jurisdictions seek to retain the wastewater321

capabilities they built during the pandemic phase of COVID-19 (and to diversify microbial322

targets), there is an ’opportunity springboard’ to build tools that can predict the trajectories323

and spread of pathogens - modelling has a key role to play in this journey.324
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Data availability325

Daily reported case data for Aotearoa New Zealand are available from the Ministry of Health at326

https://github.com/minhealthnz/nz-covid-data and seven-day average wastewater data327

are available from ESR at https://github.com/ESR-NZ/covid_in_wastewater.328

Code to run the model and reproduce the results in this paper are available at https://github.329

com/nicsteyn2/NZWastewaterModelling.330
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