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Cognitive control deficits are consistently identified in individuals with schizophrenia and other 
psychotic psychopathologies. In this analysis, we delineated proactive and reactive control 
deficits in psychotic psychopathology via hierarchical Drift Diffusion Modeling (hDDM). People
with psychosis (PwP; N=123), their first-degree relatives (N=79), and controls (N=51) 
completed the Dot Pattern Expectancy task, which allows differentiation between proactive and 
reactive control. PwP demonstrated slower drift rates on proactive control trials suggesting less 
efficient use of cue information for proactive control. They also showed longer non-decision 
times than controls on infrequent stimuli sequences suggesting slower perceptual processing. An 
explainable machine learning analysis indicated that the hDDM parameters were able to 
differentiate between the groups better than conventional measures. Through DDM, we found 
that cognitive control deficits in psychosis are characterized by slower motor/perceptual time and
slower evidence-integration primarily in proactive control. 
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Introduction
Cognitive control is the ability to regulate, coordinate, and sequence thoughts and actions

in accordance with internally maintained behavioral goals (Braver, 2012). Deficits in cognitive 
control are central to schizophrenia and limit the daily functioning of people with this disorder 
(Alptekin et al., 2005; Pascal de Raykeer et al., 2019; Ueoka et al., 2011). Among all cognitive 
functioning deficits, deficits in cognitive control have the strongest effect on quality of life 
(Savilla et al., 2008), which makes it an essential target for intervention. Deficits of cognitive 
control in psychotic psychopathology are often characterized by difficulties in incorporating 
information about the current context to determine a correct response (i.e., proactive control; 
Braver et al., 2001, 2009). Experimental tasks used to measure cognitive control deficits vary 
widely but share the requirement of responding adaptively to stimuli that are incompatible with 
prepotent or automatic response tendencies. For example, the Stroop test (Stroop, 1935) and the 
Flanker test (Eriksen & Eriksen, 1974) are characterized by their within-stimulus conflicts. The 
AX-Continuous Performance Test (Cohen et al., 1999) and its non-letter variant the Dot Pattern 
Expectancy Task (DPX; MacDonald et al., 2005) were also developed to capture cognitive 
control. These tasks temporally separate the within-stimulus conflicts into “cue” (which defines a
context) and ”probe” periods (Figure 1A). The stimulus sequences allow the participant to 
engage in proactive control by anticipating the correct response from the cue and/or reactive 
control by determining the correct response from the probe.

Figure 1. A. The Dot Pattern Expectancy (DPX) Task. Each
trial consists of a “cue” stimulus presentation followed by a
“probe” stimulus after a brief interstimulus interval (ISI). The
stimuli consist of dot patterns with there only being one valid
cue (A) and one valid probe (X) amongst similar invalid
stimuli (B and Y). The most frequent cue-probe sequence is
AX, which promotes a response prepotency on A cues for the
target response. After each trial there is a variable intertrial
interval (ITI). B. The drift diffusion model (DDM). Four
parameters are used by drift diffusion models to fit the
reaction time and error performance of the subject. These
parameters are the bias (z), the decision threshold (a), the
drift rate (v), and the non-decision time (t). These four
parameters produce reaction time and response probabilities
for the subjects’ target and non-target responses. The ratio of
the bias and decision threshold (z/a) is typically fit via
hierarchical DDM, which is denoted here as w.



COGNITIVE CONTROL DEFICITS IN PSYCHOSIS DDM                    3

Behavior on the AX-CPT and DPX tasks has been most frequently characterized using 
the participant’s accuracy, average reaction times on correct trials, and indices based on these 
features. The most commonly used index is d'-context, which assesses context processing via 
accuracy rates (Servan-Schreiber, 1996). A separate metric that was developed to assess 
proactive cognitive control is the proactive behavioral index (PBI), which can be derived from 
either reaction time or accuracy data (Braver et al., 2009). Deficits in cognitive control among 
people with schizophrenia have been indicated by greater BX error rates (Poppe et al., 2016; 
Stephenson et al., 2020), prolonged average reaction times (Lesh et al., 2013; Stephenson et al., 
2020), and lower d'-context scores (Jones et al., 2010; Poppe et al., 2015). Relatives of people 
with schizophrenia often demonstrate attenuated deficits in these measures (Delawalla et al., 
2008; MacDonald et al., 2003; Poppe et al., 2015; Reilly et al., 2016; Richard et al., 2013). While
these approaches are adequate for describing trends in the central tendencies of reaction times 
and accuracy, it omits within-subject variation in responding which contains valuable 
information about underlying cognitive processes. Overall, these analyses treat accuracy and 
reaction times as independent components that are best assessed via central tendencies, but these 
indices are actually intertwined behavioral outcomes with informative within-subject variation.

Accuracy and reaction times can be addressed in a singular analysis that encompasses 
within-subject variability via drift-diffusion modeling (DDM; Figure 1B). In DDMs, an 
underlying cognitive process noisily integrates evidence to produce an observable response. The 
DDM characterizes the decision-making process with 4 parameters that represent the rate at 
which evidence is accumulated (drift rate, v), how much evidence is required to act (decision 
threshold, a), the degree of prestimulus bias towards a particular response (bias, w), and the 
response delay due to non-decision related processes (non-decision time, t). Given that both 
longer reaction times and higher error rates are observed among people with psychosis in the 
AX-CPT and DPX tasks (Jones et al., 2010; Lopez-Garcia et al., 2013; MacDonald & Carter, 
2003; Smucny et al., 2019; Stephenson et al., 2020), we suspected that people with psychosis 
could markedly differ from control subjects in how they integrate evidence to produce a 
response.

Previous DDM analyses of the behavior of people with schizophrenia have most often 
observed deficits in drift rates and non-decision times, but not always (Gupta et al., 2022). 
Specifically, people with schizophrenia showed longer non-decision times and slower drift rates 
on the N-back (Fish et al., 2018) and digit-symbol-like coding tasks (Mathias et al., 2015). On a 
reward-punishment task, Moustafa et al. (2015) observed greater non-decision times, but with 
greater decision thresholds instead of the typically observed difference in drift rate. Some recent 
analyses by Smucny and colleagues have suggested slower drift rate in individuals with recent-
onset schizophrenia during reward anticipation (Smucny, Hanks, Lesh, O’Reilly, et al., 2023), 
and cognitive control on the AX-CPT (Smucny, Hanks, Lesh, & Carter, 2023). It is important to 
note that Smucny and colleagues’ analytic approach is somewhat limited and cannot resolve 
differences in non-decision times or bias that are likely to exist. The only study that showed a 
difference in biases was on a temporal prediction task (Limongi et al., 2018). In the only analysis
of relatives of people with schizophrenia via DDM, Fish et al. (2018) identified slower drift rates



COGNITIVE CONTROL DEFICITS IN PSYCHOSIS DDM                    4

and longer non-decision time in siblings of individuals with schizophrenia than controls on a 
sustained attention task. Recent simulations of the effects of excitation-inhibition imbalance also 
suggest utility in applying DDM to cognitive control tasks in people with psychosis (Calvin & 
Redish, 2021; Lam et al., 2022). From the perspective of these simulations, the longer non-
decision times and slower integration rates observed in schizophrenia could be attributed to 
deviations in the efficacy of glutamate (excitation) and GABA (inhibition) that cause weak 
neural representations of stimuli within circuits that are necessary for appropriate responding. 
This mix of findings and the potential effects of excitation-inhibition balance on reaction times 
suggested that analyzing cognitive control via DDM would provide insights into psychosis.

We applied hierarchical DDMs (hDDM) to DPX reaction time and response data 
obtained from PwP, their first-degree biological relatives, and controls. Our goal was to directly 
examine how aspects of the cognitive control processes differ across these groups during 
proactive and reactive control. We hypothesized that people with psychosis would have longer 
non-decision times and slower drift rates, and that this would be attenuated in relatives. We also 
hypothesized that there may also be a group difference in the bias parameter given the identified 
deficits in proactive control (i.e., context processing) in individuals with psychotic 
psychopathology.

Results
Participants

We reanalyzed DPX reaction time data that was collected during the Psychosis Human 
Connectome Project (see Demro et al., 2021 for details). In summary, the study recruited 253 
participants, which we separated into three groups. The groups were 123 people with psychosis 
(PwP), 79 of their first-degree biological relatives, and 51 controls. The groups differed in their 
ages and sex distributions (Table 1) so we controlled for age, sex, and, in addition, familial 
relationships in analyses. For additional details please see the Methods section.
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Controls Relatives PwP
Tests

(N=51) (N=79) (N=123)

Diagnoses/
Diagnosis of 
Relative (N)

N/A

Bipolar w/ 
psychosis (23) 
Schizoaffective 
disorder (9)
Schizophrenia 
(47)

Bipolar w/ 
psychosis (35)
Schizoaffective 
disorder (15)
Schizophrenia 
(73)

N/A

Age (SD) 38.4 (13.1) 44.8 (14.8) 37.3 (12.2) F(2,250)=8.26, p<.001a

Female N (%) 25 (49%) 52 (66%) 52 (42%) χ2
(2)=10.77, p=.005

Race (N) *p=.29

American Indian or
Alaskan Native

0 0 1

Asian orPacific
Islander

1 1 6

Black, not of
Hispanic Origin

3 5 20

Hispanic 1 2 4

White, not of
Hispanic Origin

45 69 88

Other 1 2 4

Edu (Years) 16.2 (2.5) 15.2 (2.2) 14.1 (2.1) F(2,249)=16.96, p<.001b

Parent Education 6 6 5 **χ2
(2)=4.94, p=.08

Estimated IQ (SD) 106.7 (11.0) 102.3 (10.8) 98.2 (11.4) F(2,250)=10.99, p<.001c

BPRS Total (SD) 27.8 (4.2) 32.5 (6.7) 45.2 (12.6) F(2,250)=74.19, p<.001b

SPQ Total (SD) 7.7 (7.9) 14.4 (12.7) 29.9 (15.3) F(2,250)=62.68, p<.001b

Table 1. Demographics and Clinical Information of the Participants. PwP=People with a history of psychosis. 
*Fisher’s exact test. Parent education: median of max of parents’ education; (1: 7th grade or less; 2: between 7th and
9th grade; 3: between 10th and 12th grade; 4: high school graduate/GED; 5: partial college; 6: college graduate; 7: 
graduate degree) **Kruskal-Wallis rank sum test. Significant post-hoc group differences: a=relatives vs. both 

controls and PwP; b=controls vs. relatives vs. PwP, c=PwP vs. both controls and relatives. 
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Conventional measures of DPX 
Error rates

Groups differed in their error rates (Figure 2A). A linear mixed effects regression 
(LMER) model of error rates revealed a main effect of group (F(2,245.93)=3.53, p=.03), a main 
effect of trial stimulus sequences (F(3,747.10)=24.91, p<.001), and an interaction between group and
trial sequence (F(6,747.12)=2.38, p=.03). Consistent with past literature, PwP made more errors on 
BX trials than controls (t(680)=3.57, p=.001) and relatives (t(632)=-3.36, p=.002), while controls and
relatives did not differ on BX error rates (t(609)=0.51, p=.87). The groups did not differ 
significantly on the other trial sequences (|t|s<1.57, ps>.26).

Figure 2. A. Error rate means and standard errors of participants in each group. B. Reaction time means and 
standard errors of participants in each group. C. The normalized reaction time probability density distributions for 
each group’s target and non-target responses. The dots above each of the panels indicate the participant mean 
reaction times from panel B.
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Reaction times (RT)
Groups also differed in their reaction times (Figure 2B). A LMER model of the by-

individual mean correct response reaction times showed a main effect of group (F(2,155.75)=9.24, 
p<.001), a main effect of trial sequence (F(3,734.65)=169.88, p<.001), and an interaction between 
group and trial sequence (F(6,734.75)=3.70, p=.001). PwP were slower on BX and BY trials 
compared to controls (tBX(337)=-3.80, p<.001, tBY(336)=-3.70, p<.001) and relatives (tBX(269)=3.89, 
p<.001, tBY(269)=4.04, p<.001). PwP were significantly slower on AY trials (t(335)=-3.36, p=.003) 
and AX trials (t(335)=-2.38, p=.047) than controls.

d’-context and Proactive Behavioral Index (PBI)
One-way ANOVAs revealed group differences in d'-context scores (F(2,226.28)=7.36, 

p<.001) and PBI-RT (F(2,178.05)=4.59, p=.01), but not in PBI-accuracy (F(2,173.79)=1.62, p=.20). PwP
demonstrated lower d'-context scores and PBI-RT than both relatives (td’-context(235)=-3.15, pd’-

context=.005; tPBI-RT(181)=-2.41, pPBI-RT=.04) and controls (td’-context(248)=3.07, pd’-context=.007;  tPBI-

RT(236)=2.40, pPBI-RT=.04), suggesting less efficient context processing and less utilization of 
proactive control. The control and relative groups did not differ from each other on d'-context 
scores or PBI-RT (td’-context(227)=0.175, pd’-context=.98; tPBI-RT(238)=0.28 pPBI-RT=.96).

DDM Parameters
The group reaction time distributions indicated that the participant’s reaction times were 

poorly described by their mean reaction times, and suggested that there were significant group 
differences in the underlying evidence integration process (Figure 2C). Thus, we hierarchically 
fit DDMs to the participant behavior to get individual estimates of the drift-rate (v), decision 
threshold (a), non-decision time (t), and the response bias (w) (Figure 1B). We found that the 
maximally flexible model (Figure 3A), which allowed a, t, and v parameters to vary by trial 
sequence and w by the cue type, was the best description of participant reaction times and 
responses. All of the best models showed good convergence via Gelman-Rubin with R̂s < 1.2 on 
all individual parameters. 
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Figure 3. A. Diagram of the best fitting hierarchical drift diffusion model (hDDM) to the distribution of participant 
responses across trials (~Xi,j). The best fitting hDDM permitted the rate-of-integration, decision threshold, and non-
decision time to vary by trial type (i.e., 1 of each parameter for AX, AY, BX, and BY) and the bias to vary by the 
cue (i.e., 1 parameter for A cues and 1 for B cues). µ and σ are the subgroup means and standard deviations of the 
parameters that are denoted in their subscripts. Each subgroup was independently fitted. B. The means and standard 
errors of the drift rate parameter by group. The gray section indicates that the sign of the parameter was negative 
(i.e., towards a target response) prior to taking its absolute value. C.  The means and standard errors of the decision 
threshold by group. D.  The means and standard errors of the non-decision time threshold by group. E. The means 
and standard errors of the degree of bias. The gray section indicates that the sign of the calculated parameter was 
negative (i.e., towards a target response) prior to taking its absolute value. The absolute value was taken after 
calculating the mean and standard errors.
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Drift Rate (  v  )  
For the sake of comparing across all trial stimulus sequences, we made the direction of 

AX trial drift rates positive (the only target trial) (Figure 3B). A LMER model examining drift 
rate across group and trial sequences revealed main effects of group (F(2,237.73)=19.42, p<.001) and
trial sequence (F(3,749.02)=38.22, p<.001), as well as an interaction between group and trial 
sequence (F(6,749.04)=3.71, p=.001; Figure 3B). PwP showed lower rates of information integration 
than controls (AX: t(695)=3.13, p=.005; BX: t(695)=5.55, p<.001; BY: t(696)=5.03, p<.001) and 
relatives (AX: t(646)=-3.03, p=.007; BX: t(646)=-4.48, p<.001; BY: t(647)=-5.36, p<.001) across all 
trials, except for AY trials where PwP showed comparable drift rates to relatives (t(646)=-2.00, 
p=.11) and controls (t(695)=1.45, p=.32). This pattern of findings indicates a specific deficit in 
evidence integration when PwP can utilize proactive control, but not when they are utilizing 
reactive control. This difference is particularly exacerbated when the cue stimulus provides 
definitive information about the correct response (i.e., B cue trials), rather than suggestive 
information (i.e., A cue trials). Relatives did not significantly differ from controls on drift rates 
across all trials (|t|s<1.41, ps>.34). 

Decision Threshold (  a  )  
The groups did not significantly differ in their decision thresholds (Figure 3C). An 

LMER model of decision threshold revealed a main effect of trial sequence (F(3,749.03)=69.85, 
p<.001), but no main effect of group (F(2,156.80)=0.43, p=.65) or interaction between group and 
trial sequences (F(6,749.04)=1.35, p=.23). Each pairwise comparison among the trial sequences was 
statistically significant (|t|s>3.99, ps<.001). Generally, the incongruent trial sequences (i.e., AY 
and BX sequences, which have mixed valid and invalid stimuli) had the lowest decision 
thresholds. 

Non-Decision Time (  t  )  
There were interesting group differences in the non-decision time (Figure 3D). An LMER

model revealed a main effect of trial sequence (F(3,749.10)=402.68, p<.001), a main effect of group 
(F(2,211.94)=12.47, p<.001), and an interaction between group and trial sequence (F(6,749.11)=3.53, 
p=.002). The groups did not differ significantly on AX trials in their non-decision times (|t|
s<1.94, ps>.13). However, PwP showed longer non-decision times than controls on AY (t(634)=-
5.85, p<.001), BX (t(634)=-3.02, p=.007), and BY (t(635)=-2.68, p=.02) trials. This effect was most 
pronounced on AY trials, which require reactive control. The longer non-decision times on trials 
with a B cue suggests that there may be less proactive response planning when there is definitive 
information on the correct response compared to control participants. Relatives showed longer 
non-decision times than control participants on AY trials (t(566)=-2.99, p=.008). Relatives also 
showed shorter non-decision time on AY (t(588)=2.86, p=.01), BX (t(588)=3.05, p=.007) and BY 
(t(589)=3.74, p<.001) trials than PwP. 
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Degree of Bias (  w  )  
To better equate differences in bias we adjusted the value such that it was an estimate of 

the deviation from indifference (i.e., 0.5) (Figure 3E). An LMER model on degree of bias 
revealed a main effect of group (F(2,206.59)=3.09, p=.047), no main effect of the cue (F(1,250)=1.70, 
p=.19), and no interaction between group and trial sequence (F(2,250)=1.43, p=.24). Although there
was a main effect of group, post-hoc pairwise comparisons did not survive multiple comparison 
correction. PwP showed a lower degree of bias than their relatives (t(218)=-2.18, p=.076), but this 
did not reach significance since the test was two-tailed. PwP did not differ from controls on 
degree of bias (t(245)=1.78, p=.17).

Classification Models to Determine Utility
We applied eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016) 

model classification to the 14 DDM parameters, followed by a Shapley interpretation (SHAP). 
This analysis helps identify the presence of heterogeneity within a group in their evidence 
integration processes, and indicates which aspects of the evidence integration process are most 
uniquely important for differentiating between groups.

Controls vs. PwP 
An XGBoost model classifying PwP from control participants had high discriminative 

performance, indicated by a cross-validated area-under-the-curve (AUC) of 0.91. The SHAP 
explanation of this model (Figure 4A) found that the most important variable in this model was 
B-cue bias, where increased bias, surprisingly, predicted a higher likelihood of being classified 
as a member of the PwP group. Other variables that were especially important to categorizing 
participants were v-BY, where lower drift rate predicted higher likelihood of being labeled PwP, 
t-AY, where longer AY non-decision times predicted greater likelihood of being labeled PwP, a-
BX, where increased BX decision thresholds predicted greater likelihood of being labeled PwP, 
and t-BX, where longer non-decision times for BX trials predicted greater likelihoods of being 
labeled PwP. 

A comparison model attempting to classify PwP from controls using conventional 
measures from the DPX produced a cross-validated AUC of 0.72, indicating worse performance 
than the DDM-parameter based classification (Figure 4E). The majority of the parameters that 
had the most utility in differentiating PwP from controls were reaction time measures or indices 
(AX and BX trial reaction times and PBI-RT). Given its ubiquity in the literature, it was 
surprising that d'-context was only the 5th most important parameter for differentiating between 
controls and PwP. Overall, this comparison supports the utility of reaction times and the DDM.
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Figure 4. A-C. SHAP explanations of XGBoost model classifications. Each dot represents a single participant. Dots
are arranged along the X-axis according to the impact each variable had on the model classification for each 
individual with the black line in the center indicating zero value. Dots to the left of the zero line indicate that the 
variable predicted membership in the class label to the left, and dots to the right similarly indicate that the variable 
predicted membership in the class label to the right. Parameters are listed in the order of classification importance. 
D. Summary of how important each parameter was for differentiation between the groups. E. SHAP explanation of 
XGBoost model classification using typical DPX parameters. F. Correlations of the DDM parameters with 
conventional indices.
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Relatives vs. PwP
An XGBoost model classifying PwP from their first-degree relatives produced a cross-

validated AUC of 0.82, indicating high discrimination performance. The SHAP analysis (Figure 
4B) found that the most important variable in this model was the drift rate on BY trials, v-BY, 
where slower drift rates predicted a greater likelihood of PwP membership. Other important 
variables included a-BY, where decreased BY thresholds predicted greater likelihood of being 
labeled PwP, t-BY, where longer non-decision times for BY trials predicted higher likelihoods of
being labeled PwP, t-AY, where longer AY non-decision time predicted higher likelihood of 
being labeled PwP, and w-A, where decreased A-cue bias predicted higher likelihoods of being 
labeled PwP. A comparison model attempting to classify PwP from their first-degree relatives 
using conventional measures from the DPX produced a cross-validated AUC of 0.63, indicating 
a substantial decrease in performance by comparison to the DDM parameters.
Controls vs. Relatives

An XGBoost model classifying controls from relatives produced a cross-validated AUC 
of 0.82, indicating high discrimination performance. The SHAP analysis (Figure 4C) found that 
the most important variable in this model was a-BY, where increased BY thresholds predicted 
higher likelihood of relative membership. Other important variables included w-B, where 
increased B-cue bias predicted higher likelihoods of being labeled relatives, t-AY, where longer 
AY non-decision time predicted higher likelihood of being labeled relatives, a-BX, where 
increased BX thresholds predicted higher likelihood of being labeled relatives, and w-A, where 
decreased A-cue bias predicted higher likelihoods of being labeled relatives. A comparison 
model attempting to classify relatives from control using traditional behavioral indices from the 
DPX produced a cross-validated AUC of 0.65, indicating a substantial decrease in performance 
by comparison to the DDM parameters.
Summary of Comparisons

While the exact ordering of the most useful to least useful parameters found by the SHAP
analysis for differentiating between groups varied, there were some commonalities across them 
(Figure 4D). The most useful parameters for categorizing group membership were the decision 
threshold and drift rate on BY trials, the non-decision time on AY trials, and the bias on trials 
with B-cues.

Relationship of DDM Parameters with Conventional Indices 
When examining the correlations between conventional DPX measures and DDM 

parameters, we found that they were highly associated with each other (Figure 4F). d'-context 
scores were positively correlated with drift-rate (Kendall’s τvAX=.36, padj<.001; τvAY=.24, 
padj<.001; τvBX=.57, padj<.001; τvBY=.39, padj<.001) and degree of bias (τzA=.15, padj=.03; τzB=.20, 
padj=.004). They were also positively correlated with decision threshold in AX and BX trials 
(τaAX=.15, padj=.03; τaBX=.17, padj=.01), and negatively correlated with non-decision time in BX 
trials (τtBX=-.19, padj=.005). PBI-RT was significantly correlated with parameters extracted from 
trials with a B stimulus which assess proactive control (τaBX=-.23, padj<.001; τaBY=-.31, padj<.001; 
τvBX=.44, padj<.001; τvBY=.26, padj<.001; τtBX=-.28, padj<.001; τtBY=-.28, padj<.001; τzB=-.44, 



COGNITIVE CONTROL DEFICITS IN PSYCHOSIS DDM                    13

padj<.001). PBI-RT was also negatively correlated with non-decision time in AY trials (τtAY=-.16, 
padj=.02).

Discussion
We applied a hierarchical drift diffusion model (hDDM) to behavior on the DPX task and

found that it provided novel insights into cognitive control deficits in psychosis. The DDM 
revealed that cognitive control deficits in psychosis are mainly due to two differences in the 
underlying decision process. First, the slower drift rates across AX, BX, and BY trials suggests a 
deficit in integrating evidence to respond when the cue stimulus is informative. This is further 
emphasized by the absence of a similar deficit on AY trials, which can only be responded to 
correctly and efficiently by refraining from a response based on the cue stimulus. Second, we 
observed longer non-decision times for PwP during all but AX trials. The slowed non-decision 
time on proactive control trials (i.e., BX and BY trials) suggests that PwP take longer to 
represent the probe stimulus or access working memory of the B cue since they had ample time 
during the interstimulus-interval to anticipate and plan their motor response. The much longer 
non-decision time on reactive control trials (i.e., AY trials) suggests that PwP have an additional 
deficit in overriding or generating a new motor response and/or visually recognizing the stimulus
when the probe stimulus is unlikely. 

While we hypothesized a reduced bias in PwP due to previously observed deficits in 
proactive control and simulation of the underlying process (Calvin & Redish, 2021), we found 
mixed observations. PwP showed marginally lower bias than their relatives, even after 
controlling for age and sex differences, but they were not significantly different from controls. It 
could be that we failed to detect a difference in degree of bias due to the heterogeneity of our 
PwP sample. Evidence for this is that the XGBoost classification method found that increased 
bias differentiated PwP from controls, but only for a subset of participants (Figure 4A). The 
clumps of points in the SHAP analysis suggest that there are subgroups of participants that can 
be categorized by one or a couple of the parameters. For comparison, the traditional measure 
classification (Figure 4E) seems to differentiate between the groups in a more continuous 
fashion. It may be that PwP generally have a deficit in bias as was captured by the LMER but 
that there is a subset of PwP who engage in a higher degree of preplanning. This suggests that 
the hDDM is more capable of parsing underlying cognitive processes, and that there may be 
utility in using it to identify subtypes within psychosis.

Our DDM findings of decreased drift rates and slower non-decision time in PwP are 
consistent with previous findings on sustained attention, coding, punishment, and reward 
anticipation tasks (Fish et al., 2018; Mathias et al., 2017; Moustafa et al., 2015; Smucny, Hanks, 
Lesh, O’Reilly, et al., 2023). Our findings further extend the typically observed inefficiencies in 
information processing to cognitive control, especially on those trials where responses could be 
proactively planned. Importantly, our study identified that slowed motor and perceptual speeds 
appear to be a consistent deficit in people with psychosis. As with previous studies (Fish et al., 
2018; Mathias et al., 2017; Smucny, Hanks, Lesh, O’Reilly, et al., 2023), we did not observe 
differences in the decision thresholds. It may be that the greater decision threshold along with 
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slower drift rates observed by Moustafa et al (2015) is a method of responding more accurately 
than quickly under sufficient motivation (e.g., during reward or punishment) on a challenging 
task. Also, the Smucny et al. (2023) analysis approach to AX-CPT behavior was unable to 
resolve important differences in bias and non-decision time. Based on ours and others findings, 
their approach of limiting DDM variation to only the drift rate and boundary incompletely 
characterizes the aberrations in cognitive control processes in psychosis.

Relatives of people with psychosis in our study more closely resembled controls than 
their affected first-degree relatives with psychosis. Their response patterns did not differ 
statistically from controls on measures of error rates, reaction time, or derived conventional 
measures. While they also demonstrated comparable drift rates, decision thresholds, and 
response biases to controls, they did differ from controls in non-decision time on reactive control
AY trials. Our patient and relative sample is slightly more heterogeneous in diagnosis than Fish 
et al.’s sample (2018), but we partially matched their finding of decreased drift rates and 
increased non-decision times in siblings of participants with schizophrenia compared to controls.
Regardless, our XGBoost classification method was able to differentiate relatives from their 
family members with psychosis, indicating that there are subtle differences in their cognitive 
control processes from controls. Future studies are needed to better understand the genetic 
liability of psychotic psychopathology in various decision making processes. 

 Conventional indices of cognitive control on the DPX were less useful for differentiating
between groups than we expected and had interesting relationships with the DDM parameters. d'-
context was most correlated with DDM parameters on BX trials, but there are also significant 
correlations with the drift-rate on trials with other stimulus sequences. Since the drift rate 
parameter captures error rates more than the other parameters, this suggests that d'-context is 
measuring general error rates and may be less specific to contextual processing. It is also 
surprising that d'-context was only the 5th most useful parameter for differentiating between 
controls and PwP, given its theoretical underpinnings and its ubiquity in the literature. PBI-RT 
was more informative for differentiating between groups than d'-context and tapped into 
different aspects of the cognitive control process. Given its basis in reaction times, PBI-RT 
captured the non-decision time differences that our analysis, and existing literature, suggests are 
important. Furthermore, the PBI-RT was primarily related to DDM parameters of trials with a B 
cue. This suggests that it is a very good measure of proactive control, but that it does not 
differentiate between the underlying mechanisms of the cognitive process. Conventional indices 
seem to lack an index that specifically taps into the non-decision time on AY trials which had 
important utility in our group membership classification.

One limitation of this study is that we had to use hierarchical DDMs to estimate 
individual parameters, which uses information from the group-level to influence parameters at 
the participant-level. This approach could have caused our XGBoost method to overestimate the 
area under the curve compared to other grouping approaches. Attempting to fit all participants as 
a single group is also problematic, however, because it would obscure group differences by 
assuming a homogeneity across groups that may not exist, and attempting to examining group 
after fitting each individual’s behavior without group influence is impossible on this task due to 
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the limited number of trials for each subject. To overcome this limitation, it would be beneficial 
to conduct an experiment with an order of magnitude more trials to estimate the parameters of 
individual subjects without the influence of other participants. This would permit a better 
assessment of how informative the DDM parameters are for classification. Within this 
experiment, it is best to interpret the XGBoost and SHAP results as the order of the most useful 
parameters for categorization and to be somewhat cautious of the AUC estimates.

Overall, our results provide invaluable information about underlying cognitive control 
mechanisms that are not captured by conventional measures. By analyzing reaction times from a 
DDM perspective, we learned that slowed motor/perceptual time as well as inefficiencies in 
proactive information integration likely contribute to deficits in cognitive control in psychosis. 
Our findings provide additional support for a deficit in proactive control in psychotic 
psychopathology, and further highlight the importance of perceptual and motor functions in 
understanding compromised cognitive control in people with a history of psychosis.

Methods
Participants and Clinical Measures

Two-hundred-and-fifty-three participants were recruited as part of the Psychosis Human 
Connectome Project. For a detailed description of the Psychosis Human Connectome Project, 
please see Demro et al., (2021). In summary, 123 people with psychosis (PwP), 79 of their first-
degree biological relatives, and 51 controls were included in the analysis. All participants 
completed a clinical interview and self-report questionnaires, as well as cognitive and motor 
assessments. Trained research assistants conducted the Structured Clinical Interview for DSM-
IV-TR disorders (First et al., 2002), and the Psychosis Module of the Diagnostic Interview for 
Genetic Studies (DIGS; Nurnberger, 1994) with each of the participants to obtain diagnostic 
information. Diagnostic consensus was completed by a team of at least two qualified assessors 
(clinical psychology graduate students, postdoctoral associates, or licensed psychologists) to 
determine which diagnostic criteria were met, and reached consensus on the most appropriate 
DSM diagnoses. Among the 123 PwP, 73 were individuals with schizophrenia or 
schizophreniform, 15 were individuals with schizoaffective disorder, and 35 were individuals 
with bipolar disorder with psychosis. In addition to making diagnostic determinations, we also 
collected symptomatology measures. The Brief Psychiatric Rating Scale-24 Item Version 
(Lukoff et al., 1986; Wilson & Sponheim, 2014) and the Scales for the Assessment of 
Negative/Positive Symptoms (Andreasen, 1981, 1983) were used to assess the participants’ 
psychotic, depressive, and manic symptoms for the 30 days leading up to the evaluation based on
the participants recollection. Table 1 presents the demographics information of the participants.

The Dot Pattern Expectancy (DPX) Task and Conventional Measures
We used the dot-pattern version of the AX-CPT cognitive control task, the DPX task, 

where stimuli were braille-based arrangements of dots (MacDonald et al., 2005). On each trial, a 
cue stimulus and a probe stimulus were sequentially presented with an interstimulus interval of 
2500 or 3500 ms between them (Figure 1A). Cue and probe stimuli were differentiable by being 
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colored white and light blue, respectively. Stimuli were grouped into ‘valid’ and ‘invalid’ 
categories and only when both the cue and probe were valid was the participant supposed to 
provide a ‘target’ response with the index finger of their right hand. The only target sequence 
was the A cue followed by the X probe, and all other cue-probe combinations were considered 
non-target (Figure 1A). As such, there were four cue-probe permutations: AX, AY, BX, and BY.
The participant was to provide a non-target response with the middle finger of the same hand for 
any non-target sequence (i.e., AY, BX, or BY). An expectation bias was induced by having 60% 
of the cue-probe trials being the target sequence (AX). The remaining trials were distributed such
that 15% of trials were AY, 15% BX, and 10% BY cue-probe pairings. Each participant 
responded to 120 trials that were equally distributed across 3 blocks. While not analyzed in this 
manuscript, the participants were undergoing fMRI during this task. About 2% of all trials were 
responded to within 100 ms (too fast to have recognized the probe stimulus) or were not 
responded to within 2000 ms, and were thus excluded from subsequent analyses.

d'-context and Proactive Behavioral Index (BPI) Calculation
A number of conventional measures have been used in the DPX literature to assess 

cognitive control. d'-context scores, a measure of context processing, were calculated as the 
difference between correct responses to the AX pair and incorrect responses to the BX pair: 
z(AXHit)-z(BXFalseAlarm) (Servan-Schreiber et al., 1996). Higher d'-context scores are suggestive of 
better context processing. PBI in DPX for accuracy and reaction time (Braver et al., 2009), a 
measure of proactiveness, was calculated by (AY-BX)/(AY+BX). This measure evaluates 
proactiveness by directly comparing error rates or reaction time of proactive vs. reactive trial 
types. Higher PBIs suggest a preference for proactive control over reactive control. Due to poor 
psychometric properties (excessively kurtotic with large numbers of outliers), we did not relate 
the PBI-Accuracy with the hDDM parameters.

Hierarchical Drift Diffusion Model (hDDM)
Hierarchical DDMs were applied to the DPX task data across groups using the HDDM 

0.9.1 python package (Wiecki et al., 2013). Since we had a priori reasons to believe that the 
evidence integration process would vary across diagnostic categories, we fitted the hDDMs to 
each group separately. To determine the best description of the participant behavior, we fitted 
several models that varied whether the parameter values of a, t, and v parameters were consistent
across trial sequences. We decided to only permit w to vary by the cue stimulus because it 
theoretically should only influence the start of the evidence integration process and should, thus, 
not be modified by the probe stimulus. We identified the best-fit models by comparing the 
deviance information criteria (DIC) and by evaluating how well the model converged. Model 
convergence was assessed via the Gelman-Rubin R̂statistic (Gelman et al., 2013).

Conventional and DDM Statistical Analyses
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All statistical analyses were conducted in R (version 4.2.3; R Core Team, 2023) and 

corrected for age, biological sex, and family-level dependencies. Conventional variables from 
DPX, including error rates and correct trial reaction time, and DDM parameters were examined 
by Linear Mixed-Effect Regression models (LMER) using the lme4 package (version 1.1-31; 

Bates et al., 2015). Post-hoc analyses examining interaction and group effects were performed 
via the emmeans package (version 1.8.3; Lenth, 2022) with multivariate t-distribution 

adjustments for multiple comparisons. d'-context scores and PBIs were analyzed with one-way 
ANOVAs, including post-hoc group comparisons corrected by multivariate t-distributions. Since 
most of the conventional measures were non-Gaussian, correlational analyses between 
conventional variables and DDM parameters were performed with the robust, nonparametric 
Kendall’s Rank Correlation Tests (Kendall, 1938). We controlled for the false discovery rate 
when making multiple family-wise correlational tests (Benjamini & Hochberg, 1995).

eXtreme Gradient Boosting (XGBoost) Classifier and Shapley Value Model Explanation
To determine the multivariate predictive utility of DDM parameters, we used a 

nonparametric machine learning classification approach called eXtreme Gradient Boosting, or 
XGBoost (Chen & Guestrin, 2016), implemented in the R package xgboost version 1.7.5. This

classifier is more stable with a smaller sample size than competing methods like support vector 
machines (Floares et al., 2017; Mukherjee et al., 2003). Additionally, this classifier is robust to 
class imbalance (Wang et al., 2020), which is ideal because our groups varied in sizes. We fit 
three classifiers to classify PwP from controls, PwP from first-degree relatives, and first-degree 
relatives from controls. We fit another three classifiers to classify across the same groups but 
with conventional behavioral indices from the DPX: accuracy and RT of all four trial types and 
the PBI-RT, PBI-accuracy, and d'-context. All XGBoost analyses used the area under the 
receiver operating characteristic curve (AUC) as the objective function. The AUC can range 
from 0 to 1, where 1 is perfect classification and 0.5 indicates completely random performance 
for a binary outcome. 

XGBoost requires several hyperparameters. For brevity, we do not describe the 
interpretation of each hyperparameter. It is recommended to tune hyperparameters in a data-
driven way (Bentéjac et al., 2021). We used a Bayesian hyperparameter tuning approach with 
100 repetitions implemented in the mlrMBO package for R version 1.1.5.1 (Bischl et al., 2018) 

to tune XGBoost hyperparameters. For each classifier, we tuned parameters in 25% of the full 
sample who were not further analyzed, ensuring that hyperparameter optimization occurred in a 
different group of subjects than our primary analysis. This reduces risk of model overfitting. 
Hyperparameters were optimized over the Cartesian product of: number of rounds = [50, 100, 
150, 200], max tree depth = [3, 4, 5, 6, 7, 8, 9, 10], eta = [0.01, 0.03, 0.1, 0.3], gamma = [0, 0.1, 
0.5, 1, 5], subsampling = [0.5, 0.6, 0.7, 0.8, 0.9, 1], minimum child weight = [1, 3, 5]. 

Following hyperparameter tuning in 25% of the sample, we used XGBoost with 
optimized hyperparameters to classify participants in the remaining 75% of the sample. We 
trained and tested classifiers using 5-fold cross-validation, ensuring that all machine learning 
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models were trained and tested on fully independent sets of data, which also reduced the risk of 
model overfitting. During cross-validation of the model that classified PwP from their first-
degree relatives, we always assigned family members to the same cross-validation fold, ensuring 
that models were not overfit by training and testing on related family members. For this analysis,
we report the final cross-validated AUC for each classifier as our primary outcome.
XGBoost provides a powerful tool for machine learning classification, but multivariate machine 
learning models like XGBoost can suffer from reduced interpretability due to the black-box 
nature of these models and the complicated model fitting process. We solved this problem by 
applying a recently developed model explanation tool to the output of each XGBoost classifier, 
using the R package SHAPforxgboost version 0.1.1 (Just et al., 2020). SHapley Additive 

exPlanations, or SHAP (Lundberg et al., 2019; Lundberg & Lee, 2017), is an information 
theoretic approach that explains the output of a machine learning model by ranking the input 
variables according to which variables had the greatest independent contribution to the output of 
the classifier. SHAP is based on the game theoretic concept of Shapley values, proposed by 
(Shapley, 1953) as a consistent way to allocate credit to a team of players working toward a 
common goal. In this case, each independent variable is treated as a player on the team, and the 
common goal is to maximize the performance of the classifier. As such, this analysis provides an
interpretation for the output of the XGBoost algorithm, and describes which DDM parameters 
are most important for discriminating between participant groups.
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