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Abstract 
Background: 
Recurring COVID-19 waves highlight the need for tools able to quantify transmission risk, and 
identify geographical areas at risk of outbreaks. Local outbreak risk depends on complex 
immunity patterns resulting from previous infections, vaccination, waning and immune escape, 
alongside other factors (population density, social contact patterns). Immunity patterns are 
spatially and demographically heterogeneous, and are challenging to capture in country-level 
forecast models. 

Methods: 
We used a spatiotemporal regression model to forecast subnational case and death counts and 
applied it to three EU countries as test cases: France, Czechia, and Italy. Cases in local regions 
arise from importations or local transmission. Our model produces age-stratified forecasts given 
age-stratified data, and links reported case counts to routinely collected covariates (test number, 
vaccine coverage..). We assessed the predictive performance of our model up to four weeks 
ahead using proper scoring rules and compared it to the European COVID-19 Forecast Hub 
ensemble model. Using simulations, we evaluated the impact of variations in transmission on 
the forecasts. We developed an open-source RShiny App to visualise the forecasts and 
scenarios. 

Results: 

At a national level, the median relative difference between our median weekly case forecasts 
and the data up to four weeks ahead was 25% (IQR: 12-50%) over the prediction period. The 
accuracy decreased as the forecast horizon increased (on average 24% increase in the median 
ranked probability score per added week), while the accuracy of death forecasts remained 
stable. Beyond two weeks, the model generated a narrow range of likely transmission 
dynamics. The median national case forecasts showed similar accuracy to forecasts from the 
European COVID-19 Forecast Hub ensemble model, but the prediction interval was narrower in 
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our model. Generating forecasts under alternative transmission scenarios was therefore key to 
capturing the range of possible short-term transmission dynamics. 

Discussion: 

Our model captures changes in local COVID-19 outbreak dynamics, and enables quantification 
of short-term transmission risk at a subnational level. The outputs of the model improve our 
ability to identify areas where outbreaks are most likely, and are available to a wide range of 
public health professionals through the Shiny App we developed. 

 

Introduction 
Local dynamics of COVID-19 depend on a combination of the level of immunity in a population, 
which in turn depends on previous incidence, vaccine uptake, and the immune escape 
properties of the currently circulating SARS-CoV-2 variants, and other factors such as 
population density, social contact patterns, migration patterns and adherence to public health 
measures. Most countries in Europe have been affected by repeated COVID-19 waves since 
March 2020, and have implemented extensive vaccination campaigns in order to reduce the 
health impact of these waves. This led to high national levels of both natural and vaccine-
induced immunity (1). Before the emergence of the Delta and Omicron variants of concern 
(VOCs), this immunity provided considerable and durable protection against severe outcomes 
(hospitalisation and death) and some transient protection against infection (2). The emergence 
of new VOCs, and the extent of their immune escape, along with the waning of efficacy 
observed for a two-dose vaccine course, precipitated the expansion and acceleration of 
“booster” vaccination campaigns, further shifting the immune landscape of the population. 
Overall immunity to the Omicron BA.1 variant rose quickly after its emergence due to the 
unprecedentedly large wave of BA.1 cases that occurred throughout Europe in late 2021-early 
2022, and vaccine booster campaigns. Since then, repeated emergence of Omicron subvariants 
with high levels of immune escape has led to multiple waves of infections, with lower case 
burden than the first BA.1 wave.  
 
Currently, the overall level of immunity against infection is high compared to the early phase of 
the COVID-19 pandemic. The immune landscape of the population is spatially heterogeneous 
due to considerable variation in infection histories (e.g. multiple reinfections with different 
variants) and differences in vaccine uptake and timing across the population. If overall immunity 
rises, this immune landscape should result in the risk of outbreaks becoming more spatially and 
demographically heterogeneous, with the potential for distinct identifiable outbreaks. Therefore, 
there is interest from public health agencies in forecasting short-term incidence at a subnational 
level, and in different age groups, to anticipate large localised spikes in case numbers and local 
pressure on health care systems. Predicting such spikes in health care demand will become 
increasingly relevant as time moves forward if COVID-19 becomes more seasonal and 
influenza-like in its dynamics. This project was developed in collaboration with the European 
Centre for Disease Prevention and Control (ECDC), with the objective of developing a statistical 
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framework for forecasting local case and death incidence in a range of European countries, and 
visualisation tools to communicate the predictions. The forecasts and scenario analysis can 
then be used to optimise planning and allocation of resources.  
 
There have been numerous attempts to model subnational incidence of COVID-19 over the 
course of the pandemic. These have tended to fall into two broad categories: mechanistic 
“spatial” susceptible-exposed-infectious-recovered transmission models and statistical time 
series/spatiotemporal models. Most time series and transmission models have treated 
subnational regions as independent (fitted the model and made predictions separately for each 
region) without accounting for spatiotemporal correlations in incidence between regions (3–7), 
despite these being strong (8–10). A limited number of transmission models have instead 
treated subnational regions as connected sub-populations via a metapopulation approach, and 
used geographical distance or mobility/commuting data to parametrise connectivity between 
regions (11–16). These models become increasingly complex and hence slow to generate 
predictions as the number of affected regions increases, and have therefore received limited 
use for real-time forecasting during the pandemic. Time series models and spatiotemporal 
statistical models, on the other hand, have been used extensively and successfully to forecast 
future incidence at national and subnational levels (6,7,17). In the latter category, we focus on 
Endemic-Epidemic models, a flexible class of spatiotemporal statistical models that can be used 
to link changes in incidence to recent case numbers and the effect of various different 
covariates, on which the framework used in this paper is based. Endemic-Epidemic models 
have already been employed during the pandemic to understand and forecast spatiotemporal 
spread of COVID-19 at a subnational level (18–21) and at a national level in Africa (22), and to 
assess the impact of non-pharmaceutical interventions (NPIs), including lockdowns and border 
closures (23–26) (see (27) for a review). Their superiority to time series models that assume 
independence between regions has been demonstrated on data from northern Italy (28). 
However, they have not, as yet, been applied to forecast subnational incidence across multiple 
countries. 
 
In this paper, we present a flexible modelling framework to capture subnational, age-stratified 
case dynamics of COVID-19, alongside a publicly available RShiny App to visualise the results 
and forecasts generated. The framework is used to predict subnational incidence of COVID-19 
cases and deaths from routinely collected, publicly available surveillance data, and forecast the 
impact of changes in transmission on short-term dynamics (e.g. due to changes in behaviour or 
transmissibility). The framework can be run with an age-stratified model if local, age-stratified 
data is available. Public health professionals can use the RShiny App to visualise the forecasts 
of reported cases and deaths, and the predicted incidence under different scenarios, to get a full 
picture of the anticipated short-term burden of COVID-19 in local areas. We apply the 
framework to forecast cases and deaths at a NUTS-3 (Nomenclature of Territorial Units for 
Statistics 3) level in France, Czechia and Italy as test cases, and evaluate its ability to predict 
subnational incidence up to four weeks ahead.  
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Methods 

Spatiotemporal modelling framework for reported cases 
We model subnational COVID-19 case counts using the Endemic-Epidemic spatiotemporal 
modelling framework (29), as implemented in the surveillance R package (30). Endemic-
Epidemic models provide a flexible framework for relating current incidence of cases to recent 
case incidence and to imported cases, accounting for the influence of other factors (i.e. 
covariates) on these relationships. They decompose local incidence in region � at time � into 
three components: 
- An autoregressive component that quantifies the number of new infections expected from 

cases reported in region � at previous time steps.  
- A neighbourhood component that quantifies the number of new infections expected from 

cases reported in regions around region � in previous time steps, which depends on the 
connectivity (or the human mobility) between regions. 

- An endemic component that quantifies the background number of new infections occurring 
in region � at time �, independent of the current level of transmission, representing 
importations from regions outside those included in the study (or cases that could not be 
linked to the mechanistic components). 

Endemic-Epidemic models are able to integrate multiple data sources from disease surveillance 
activity to link case incidence and various covariates. Each component is independently 
impacted by each covariate. Since we introduce various covariates and controls in our model, 
we merge the autoregressive and neighbourhood component into an epidemic component to 
reduce the number of parameters estimated, and avoid identifiability and convergence issues. 
 
Early versions of the Endemic-Epidemic models only included dependence of current cases on 
cases in the previous time step, but they have since been extended to account for distributed 
lags via the hhh4addon R package (31–33). This allows for a more faithful representation of the 
impact of recent incidence on current case number, for instance by aligning the lag distribution 
to the serial interval of the pathogen.  
 
The link between indicators of immunity and risk of SARS-CoV-2 infection is complex and 
unstable, due to waning of vaccine and infection-induced immunity, and emergence of variants 
able to escape immunity. The flexibility of the Endemic-Epidemic framework therefore makes it 
well suited to capture local dynamics of COVID-19 cases, while fully mechanistic frameworks 
may be too complex to parametrise. Depending on data availability, the model can be stratified 
by age.  

Non-age-stratified model 

The total number of cases (over all age groups) in region � at time �, ���, conditional on the 
number of cases in the same region and neighbouring regions in the previous � time steps, is 
modelled as negative binomial: 
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���|���,��� , . . . , ��,���	 ~ �
�������� , ��	  (1) 

 
with conditional mean ��� and dispersion parameter �� such that �������|���,���, . . . , ��,���		 �

��� � �����
� .  

The mean is given by 

��� � ��� ∑ ��������,���� � ���  (2) 

where ���,��� �  ∑�
	
�

��	���,��	  is the transmission potential from recent cases in region  , 

with ��	� the normalised lag weight for cases ! days ago. We set � � 20 days and use a custom 
composite serial interval distribution for �	 that accounts for missing infection generations (34), 
with a mean and standard deviation for the first infection generation of 5 days and 1.5 days 
respectively, based on the estimated serial interval for SARS-CoV-2 for pre-Omicron variants 
(35–37), and 80% of the composite serial interval assumed to reflect direct transmission 
(without missing infections) (Supplementary Figure 1). The predictors for the epidemic 
(combined autoregressive and neighbourhood) and endemic components, ��� and ���, 
determine the number of cases stemming from each component and are assumed to depend on 
log-linear component-specific predictors: 
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The predictors are independently impacted by different covariates, (��
��
, (��

��
, i.e. a covariate 

may be associated with fewer imported cases (endemic component ���), but have little impact 
on the spread of the virus in and between the regions (epidemic component ���). The 
association between the covariates and the local number of cases expected is quantified by 

regression coefficients, '
��


, '
��
, estimated through a maximum-likelihood approach. The 

weights ��� in the neighbourhood component quantify the degree of connectivity between region 

� and surrounding regions  . We use a power-law model for the neighbourhood weights: 
 

��� �  �%�� � 1	��  for   � 0, . . . , *  

0  otherwise 
 

where %�� is the adjacency order between regions � and   and + is a decay parameter to be 

estimated. The adjacency order is defined as the minimum number of borders that must be 
crossed to get from � to  : the adjacency degree is equal to 1 between neighbours, 2 between 
neighbours of neighbours, and so on. We normalise the weights, such that ∑ �����

�
�
� � 1, where 

* is the maximum adjacency order considered, which we take to be 5.  

Age-stratified model 

For countries in which age-stratified subnational case count data is available, we implement an 
age-stratified version of the model above using modified code from the hhh4contacts R package 
(38,39). For this model, the number of cases in age group � in region � at time �, ���� , conditional 
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on the numbers of cases in the previous � time steps in the same and other age groups in 
region � and the surrounding regions is modelled as negative binomial: 
 

����|�,���, . . . , ,���	 ~ �
��������� , ��	  (3) 
 
with conditional mean 

���� � ���� ∑ ∑ -����������,�,����� � ����  (4) 

where ���,�,��� �  ∑ ��	���,�,��	
�
	
�  

 
and overdispersion parameter �� . 0 such that ��������|�,���, . . . , ,���		 � ���� � ������

� , where 

,��� � /��,�,���0�
�,...,��,�
�,...,�� with �� age groups and �� regions, and -�� is the mean number of 

daily contacts in age group � of an individual in age group 1. We stratify the population into 
�� � 9 age groups (0-9, 10-19,..., 70-79, 80+ years). We use age-structured contact matrices 
from country-specific pre-pandemic contact surveys for -��  where available, e.g. for France 
(40), and synthetic contact matrices estimated from contact survey and demographic data for 
countries in which no nationally representative contact surveys have been conducted, e.g. for 
Czechia (41). We used age-stratified intercepts in the epidemic component. 

Covariates 

We incorporate various covariates in (��
��
 and (��

��
 in the log-linear predictors for ��� and ���. The 
full model equations are given in the Supplementary Material (see Model equation for each 
country and Supplementary Table 1).  The covariates were picked based on potentially having 
had an effect on transmission and importation risk, or having an effect in future. We compare 
the forecasts obtained with the full model with covariates against a baseline model without 
covariates in the Supplement. 
We included the same set of covariates in the endemic component in the age-stratified and non-
age-stratified models: 

- population: the total population of region � 
- urban/rural status: binary covariates for whether the NUTS-3 region � is classified as 

urban, intermediate urban, intermediate rural or rural. 
- seasonality: sinusoidal terms with annual periodicity to account for seasonal effects on 

importations. The amplitude and offset of the seasonality function are estimated by the 
model.  

- number of cases in the WHO European region over the last month.  
These covariates cover the impact of demographic characteristics and transmission in 
neighbouring countries on the background number of cases in each region (and age group in 
the age-stratified version of the model). The covariate specifications of the epidemic component 
depend on the availability of age-stratified data as follows:  

- population:  
- age-stratified: two covariates:  

- total population of region � 
- proportion of the population of age group � in region �. 

- non age-stratified: one covariate: the total population of region �. 
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- testing:  
- age-stratified: two covariates: 

- proportion of the population in the country tested in the last 2 weeks. 
- if local age stratified testing data is available: proportion of population of 

age group � in region � (if local testing data is available, national 
otherwise) tested in the last two weeks. Otherwise, proportion of 
population of age group � in the country tested in the last two weeks. 

- non age-stratified: one covariate: the proportion of the population in the country  
tested in the last 2 weeks. 

- vaccination coverage: the proportion of the population in region � who received their 
second dose in the last 120 days, or who have received three or more doses (for each 
age group in the age-stratified model) 

- cumulative incidence: the cumulative incidence of cases between the start of the fitting 
period and a month ago in region � (for each age group in the age-stratified model) 

- recent incidence: the cumulative incidence of cases in the past month in region � (for 
each age group in the age-stratified model) 

- variant: two binary indicator variables for whether the proportion of sequenced cases 
that were Delta or an Omicron variant was higher than 30% (in all three countries, the 
Delta covariate is equal to one in late 2021, and the Omicron covariate is equal to one 
from January 2022 onwards). 

- day-of-the-week: indicator variables to account for day-of-the-week reporting effects in 
the numbers of cases. 

- urban/rural status: binary covariates for whether the NUTS-3 region � is classified as 
urban, intermediate urban, intermediate rural or rural. 

- seasonality: sinusoidal terms with annual periodicity to account for their effects on local 
transmission. The amplitude and offset of the seasonality function are estimated by the 
model.  

The covariates above cover the impact of local immunity (due to vaccine or previous infection), 
testing patterns, variants and seasonality on the risks of reported cases. We Included covariates 
that quantify the association between number of tests and incidence so that the model may 
capture changes in surveillance and reporting patterns, whereby drops in testing can be 
associated with changes in the number of new cases. For instance, in age groups with a lower 
proportion of hospitalised cases (e.g. younger age groups) the reporting rate may vary greatly if 
only severe cases are tested and reported. The covariates quantifying the association between 
infection or vaccine-acquired immunity and transmission risk depend on various thresholds (e.g. 
recent incidence corresponds to cases reported in the last month; the second vaccine dose is 
only taken into account during 120 days). These thresholds can easily be changed in the code 
to generate sensitivity analyses, or to adapt to the characteristics of new variants or vaccines. 

Model fitting 
We fit the model to case data reported between September 2020 and the latest reported date 

for each country (currently end of April 2023) to estimate the regression coefficients '��

 and 
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'
��
. The model is fit separately for each country. We do this via maximum-likelihood estimation, 

as implemented in the surveillance and hhh4addon R packages.   

Case forecasts 
We use the parameter estimates from the model fitting to generate four-week-ahead forecasts 
of daily case numbers in each region and age group by simulating the model forward 28 days 
with projected values of the covariates. We used the latest value of the covariates describing 
vaccine coverage and testing, and the mean value over the past 30 days for the number of 
cases in the rest of Europe in the past month. We run 500 simulations for each country to 
account for stochasticity and parameter uncertainty, and output the median, 2.5th, 25th, 75th, 
and 97.5th percentiles of the predicted distribution for each date and region (and age group for 
the age-stratified model) for visualisation in the RShiny app. 

Death forecasts 
We use simple linear regression models to generate four-week-ahead forecasts of weekly 
numbers of reported deaths. To do so, we estimate the Case Fatality Rate (CFR), and combine 
it with the recent number of reported cases to forecast the number of deaths, We first aggregate 
the number of reported cases and deaths by week, and compute a proxy for the age-stratified 
CFR assuming a three-week delay between weekly reported cases and reported deaths (42–
44). Specifically, we compute the CFR for age group �� in region � at week � as:  

345��� � ��,�,���/7���  

where ���� and 7��� are the numbers of cases and deaths in age group �, in NUTS-2 region �, 
in week �. The death forecast model was implemented at a NUTS-2 geographical scale since 
death data was not always available at a NUTS-3 level. 
 
We then calculate 8345����, the change in CFR, and 8�����, the change in the number of 
cases, between the prediction date and the forecast horizon: 

8345���� � 345��� 9 345�,�,��� 

8����� � ���� 9 ��,�,���  

where : is the forecast horizon (1, 2, or 3 weeks). We implement a linear regression model for 
each forecast horizon and age group, with 8345 as outcome, and 8� as explanatory variable, 
again using a three-week delay: 

8345���� � &��  � '��  8��,�,���,�  

We then use the estimates of &�� and '�� to predict 8345 between the last week of reported 
case data (����	) and the forecast dates (����	 � 1, ����	 � 2, ����	 � 3), and calculate the 

predicted CFR as:  
345�,�,�������

� 345�������
� 8345��������

  

(using a sample of 10 values of 8345����, computed from the mean estimate and the prediction 
interval of the linear regression). Finally, we draw the number of new weekly deaths each week 
using a binomial distribution, from the estimated CFR, and the number of cases reported three 
weeks before:  
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7�,�,�������
~ ���%<��$���,�,���������

, 345�,�,�������
	.  

We draw 500 forecasts for 7�,�,�������
 in total (50 per value of 345�,�,�������

). Given the three-

week delay between cases and deaths, one-, two-, and three-week ahead death forecasts are 
generated using already reported case data. In contrast, four-week-ahead death forecasts 
require one-week-ahead case forecasts. We estimate the change in CFR using the regression 
parameters from the three-week-ahead forecasts and the four-week change in number of cases 
in the one-week-ahead case forecasts  

8345���� � &��  � '��  8��,�,���,� . 

Scenario simulations 
To explore the impact of variations in transmission intensity or implementation of non-
pharmaceutical interventions (NPIs), we generate 28-day forecasts under combinations of the 
following scenarios, by changing the values of the epidemic predictor ����, or the endemic 
predictor ���� : 

- Moderate (20%) or large (40%) increase in transmission intensity (����), due to inherent 
properties of the pathogen (i.e. emergence of a new, more transmissible variant), or to 
changes in behaviour. 

- Moderate (20%) or large (40%) decrease in transmission intensity (����), due to changes 
in human behaviour or NPIs. Furthermore, for countries where an age-stratified model 
was implemented, this decrease can be targeted at a certain age group (children and 
teenagers below 20 years old, adults between 20 and 60 years old, or older inhabitants), 
and implemented one or two weeks after the current date.  

- Removal of all importations, for instance due to border closure (i.e. ����= 0).  
All scenarios affect every region in the same way (i.e. we do not consider local NPIs). We 
generate 100 simulations under each scenario.  

Data 
Several publicly available data sources are used to implement the model and are summarised in 
Table 1. Since compilation of COVID-19 surveillance reports in centralised databases was 
interrupted in early 2022 in many countries, the majority of the data, including the case and 
death data, is imported from country-specific sources.  

Case and death data 

Local case data at a NUTS-3 level was used in all countries (age-stratified in France and 
Czechia). In Italy and France, death data was only available at NUTS-1/NUTS-2 level. 

Covariate data 

Where available, daily age-stratified (for the age-stratified model) vaccination data at NUTS-3 
regional level is used, though most sources provide weekly data, and a two-week delay for 
protection from each dose to develop is assumed. Publicly available testing data varies 
considerably in spatial resolution (for some countries only national data is available) and age 
stratification (for some countries only total data is available), so age-stratified national testing 
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data is used as a default and subnational data used when available. Age-stratified regional 
population data is drawn from a different source for each country (Table 1). Data on the 
proportion of different variants among sequenced cases is drawn from the ECDC variant 
database (45). The urban-rural status of each NUTS-3 region is taken from the Eurostat 
database (database labelled “urban-rural remoteness”) (46). Daily numbers of cases in the rest 
of Europe are taken from the World Health Organisation database of daily numbers of cases 
and deaths in different countries (47). 
 
Table 1: Case, death, vaccination, test and population data sources used in each country and their 
spatial and temporal resolution and age stratification. 
 

Country Metropolitan France Czechia Italy 

Case data source Santé Publique 
France (daily age-
stratified number of 
cases in each NUTS-
3 region (48)) 

Ministerstvo 
Zdravotnictví České 
Republiky (daily age-
stratified number of 
cases in each NUTS-
3 region (49)) 

Dipartimento Della 
Protezione Civile 
(daily non- age-
stratified number of 
cases reported per 
NUTS-3 region (50)) 

Death data source Santé Publique 
France (daily age-
stratified number of 
deaths in each 
NUTS-1 region (48)) 

Ministerstvo 
Zdravotnictví České 
Republiky (daily age-
stratified number of 
deaths in each 
NUTS-3 region (49)) 

Dipartimento Della 
Protezione Civile 
(daily non- age-
stratified number of 
deaths reported per 
NUTS-2 region (50)) 

Vaccination data 
source 

l’Assurance Maladie 
(weekly age-
stratified number of 
doses in each NUTS-
3 region (51)) 

Ministerstvo 
Zdravotnictví České 
Republiky (daily age-
stratified number of 
doses in each NUTS-
3 region (49)) 

ECDC vaccination 
database (overall 
weekly number of 
doses administered 
in each NUTS-2 
region (52)) 

Test data source Santé Publique 
France (daily age-
stratified number of 
tests in each NUTS-3 
region (48)) 

Ministerstvo 
Zdravotnictví České 
Republiky (daily 
national age-
stratified number of 
tests (49)) 

Dipartimento Della 
Protezione Civile 
(weekly national 
number of tests (50)) 

Population data 
source 

INSEE (Number of 
inhabitants per 
NUTS-3 region and 
age group (53)) 

Eurostat (Number of 
inhabitants per 
NUTS-3 region and 
age group (54)) 

Google COVID-19 
Open Data (Number 
of inhabitants per 
NUTS-3 region (55)) 
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Calibration analysis 
We evaluate the ability of the model to generate accurate and reliable case and death forecasts 
in each country by fitting the model up to a set of dates in a calibration period, generating 28-
day-ahead forecasts from these dates using the model fits, and comparing these forecasts with 
the data. The forecasts are generated by re-fitting the model for each calibration date (i.e. we do 
not use the data posterior to the calibration date to generate the forecasts). We used weekly 
dates from the last six months of data as calibration period (29th October 2022 to 22nd April 
2023, (i.e. 25 calibration dates). A model is deemed well-calibrated if it can identify its own 
uncertainty in making predictions, i.e. if the data points are evenly distributed across the 
prediction intervals generated by the model. Since the reliability of our forecasts is likely to 
depend on the prediction horizon, we compare the performance of the model for one-, two-, 
three-, and four-week-ahead forecasts, to determine at which point the quality of the forecasts 
declines.  
 
We use various metrics and figures to evaluate the calibration. Firstly, we visually compare our 
weekly national-level case and death forecasts, obtained by summing up the age-stratified and 
local forecasts, with the ensemble forecasts produced by the European COVID-19 Forecast 
Hub, which serves as a benchmark of short-term forecasts of COVID-19 incidence. We also 
compare our national-level forecasts with the ensemble forecasts quantitatively via the weighted 
interval score (WIS) (31), a proper scoring rule (i.e. one that measures both calibration – how 
accurate the forecasts are – and sharpness – how precise the forecasts are) for quantile 
forecasts, and the squared error of the median. This comparison assesses whether the overall 
performance of our model is in line with other COVID-19 prediction models.  
 
Secondly, we evaluate our local forecasts against those of a baseline model (chosen as the 
Endemic-Epidemic model without transmission between regions, covariates or seasonality, i.e. 
the model in Equations (1)-(4) but with ��� � 1 when  � � and ��� � 0 otherwise and $%�����	 �

&
��
 and $%�����	 � &

��
), using proper scoring rules, namely the ranked probability score 

(RPS), Dawid-Sebastiani score (DSS) and squared error score (SES) (see Supplementary 
Material for definitions).  We also generate the predictive probability distribution of the local, 
age-stratified (if available) forecasts at each calibration date. We then use the Probability 
Integral Transform (PIT) histogram to assess the calibration of the model: in models with good 
calibration, the data should follow the predictive probability distribution, and the PIT histogram 
should be uniform. We computed a non-randomised yet uniform version of the PIT histogram, to 
correct for the use of discrete values, as described in Czado et al (56).  

Comparison of age-stratified and non-age-stratified model 

As age-stratified case and death data is only available for certain countries, we explore the 
impact of fitting the model to subnational total case counts for France and Czechia on the ability 
of the model to predict subnational total numbers of cases and deaths. We do this by fitting the 
non-age-stratified equivalent of the age-stratified model in Equations (3)-(4) and (A1)-(A2) with 
the age-stratified covariates removed, i.e. Equations (1)-(2) and (A4) (see Supplementary 
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Material), and re-running the calibration analysis of the predictive performance of the model 
described above. 

RShiny Application 
All forecasts and predictors generated by the model are available in an R Shiny Application 
(https://github.com/EU-ECDC/RShinyCovidApp). The users can use the application to see the 
latest case and death forecasts of the model in each country, compare past forecasts to recent 
data points, generate different transmission and NPI scenarios, and observe the regions most at 
risk of transmission according to the model. The forecasts contained in the application are 
updated weekly. 
 

Results 

Calibration analysis: assessing the performance of the model 

Case forecasts calibration 
Firstly, we compute the weekly case forecasts generated by the model across all regions and 
age groups, by summing up all local age stratified forecasts, across the calibration period (last 
six months of data). We then compare the one, two, three, and four-week ahead forecasts with 
the observed data, and the weekly forecasts from the European COVID-19 Forecast Hub.  
 
The comparison of the forecasts is shown in Figure 1 and Table 2. It demonstrates that our 
model was able to reliably capture the dynamics observed in the data up to two weeks ahead. 
The magnitude of the peak of the different outbreaks is accurately estimated in all three 
countries, and the trend forecasted by our model corresponds to the data. Beyond a two-week 
forecast horizon, the difference between the forecasts and the data becomes starker, in 
particular during outbreaks (for instance around December 2022 in France), with changes in 
case numbers being captured with a bigger lag in the forecasts. Based on the squared error of 
the median, the median forecasts generated by the model are on par with the ensemble 
forecasts from the European COVID-19 Forecast Hub across all forecast horizons (Table 2). 
There are periods where our model outperforms the ensemble model (e.g. two-week ahead 
forecasts between September and December 2022 in Italy), and others where the ensemble 
model outperforms ours (January-March 2023 in Czechia across all forecast horizons).  
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Figure 1: Comparison of one-, two-, three- and four-week-ahead national-level case forecasts 
(rows, top to bottom) for Italy, Czechia and France (columns, left to right) from our model 
(Endemic-Epidemic (EE) model) with ensemble forecasts from the European COVID-19 
Forecast Hub (ensemble) and observed cases (data) for a calibration period from 29 October 
2022 to 22 April 2023. Dashed lines show median forecasts, shaded regions the 95% prediction 
interval for the forecasts. The weekly number of cases is shown using a logged axis. 
 
However, the dispersion of our forecasts is considerably narrower than that of the ensemble 
forecasts, particularly for France. The data points are therefore more often outside the 95% 
prediction interval of our forecasts, despite the median forecasts being close to the data points, 
and the median and 95% interval of the weighted interval score is higher for France for our 
model than the ensemble model (Table 2). The narrow prediction interval is a consequence of 
aggregating all local and age-stratified forecasts to get the national-level estimate rather than 
directly estimating the national number of new cases: since the dispersion of a sum of negative 
binomial random variables is much smaller than that of each individual negative binomial 
random variable. This is also why the prediction interval is narrowest in France, where the 
number of groups is highest (846 groups = 94 regions times 9 age groups).
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Table 2: Median and 95% interval of weighted interval score (WIS) and squared error of the median of one-, two-, three- and four-
week-ahead national-level case forecasts for Czechia, France and Italy for our model (Endemic-Epidemic, EE) and European 
COVID-19 Forecast Hub ensemble model (Ensemble) across all time points in the prediction period from 29 October 2022 to 22 April 
2023 

Country Forecast 

horizon 

(weeks) 

WIS, median (95% interval) Squared error of median, median (95% interval) 

EE Ensemble EE Ensemble 

Czechia 1 413 (56.6 - 2.05e+03) 

 

594 (178 - 1.22e+04) 2.12e+05 (9.51e+03 - 

4.75e+06) 

 

1.17e+06 (3.87e+04 - 

3.65e+08) 

2 926 (26.5 - 3.81e+03) 

 

1.19e+03 (221 - 3.84e+04) 1.21e+06 (2.28e+03 - 

1.54e+07) 

 

5.48e+06 (4.95e+04 - 

3.99e+09) 

3 1.11e+03 (95.9 - 4.80e+03) 

 

1.83e+03 (355 - 8.88e+04) 1.62e+06 (2.89e+04 - 

2.4e+07) 

 

8.25e+06 (1.16e+03 - 

2.28e+10) 

4 1.35e+03 (146 - 5.26e+03) 

 

2.10e+03 (507 - 1.94e+05) 2.37e+06 (6.14e+04 - 

2.89e+07) 

1.29e+07 (1.76e+05 - 

1.19e+11) 

France 1 9.58e+03 (183 - 1.20e+05) 

 

7.71e+03 (1.16e+03 - 

8.20e+04) 

9.72e+07 (9.17e+04 - 

1.53e+10) 

1.53e+08 (2.21e+06 - 

1.31e+10) 

2 1.54e+04 (243 - 2.48e+05) 

 

9.70e+03 (1.61e+03 - 

1.80e+05) 

2.52e+08 (2.30e+05 - 

6.43e+10) 

1.73e+08 (3.18e+06 - 

6.46e+10) 

3 2.60e+04 (3.72e+03 - 

4.18e+05) 

1.17e+04 (1.93e+03 - 

2.95e+05) 

8.17e+08 (1.95e+07 - 

1.81e+11) 

1.98e+08 (2.40e+06 - 

1.55e+11) 

4 2.94e+04 (2.38e+03 - 

5.65e+05) 

1.32e+04 (3.23e+03 - 

3.53e+05) 

8.97e+08 (9.20e+06 - 

3.33e+11) 

6.54e+08 (2.10e+06 - 

2.58e+11) 

Italy 1 1.96e+03 (234 - 3.90e+04) 8.48e+03 (1.04e+03 - 1.2e+07 (3.33e+04 - 1.26e+08 (1.37e+05 - 
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 6.47e+04) 2.15e+09) 6.96e+09) 

2 7.29e+03 (533 - 4.82e+04) 

 

1.42e+04 (1.59e+03 - 

9.67e+04) 

1.11e+08 (1.17e+06 - 

3.17e+09) 

6.71e+08 (4.09e+05 - 

1.75e+10) 

3 6.38e+03 (735 - 6.90e+04) 

 

1.13e+04 (1.85e+03 - 

1.11e+05) 

1.55e+08 (2.08e+06 - 

6.24e+09) 

3.3e+08 (4.29e+04 - 

2.91e+10) 

4 1.75e+04 (1.22e+03 - 

8.92e+04) 

3.08e+04 (2.36e+03 - 

1.41e+05) 

7.8e+08 (4.88e+06 - 

1.03e+10) 

2.6e+09 (7.46e+05 - 

5.83e+10) 
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We now assess whether the dispersion of local estimates is in line with the data (i.e. whether 
the prediction intervals from the model include the observed data points). To do so, we compute 
the case PIT histogram for each country and forecast horizon (Figure 2). We also generate PIT 
histograms stratified by broad age groups for France and Czechia (Supplementary Figures 2 
and 3). In one-week-ahead forecasts, we observe an inverse U-shaped histogram in Italy, 
indicating that the forecasts are slightly overdispersed. The performance of the age-stratified 
model varies in the different age groups. The model tends to overestimate the number of cases 
in younger age groups (Supplementary Figures 2 and 3), while the histograms in age groups 
between 20 and 80 years old were flat, indicating good calibration. The two-week ahead PIT 
histogram for Italy also shows very good performance, with little sign of bias, although the model 
tends to slightly overestimate the number of cases (few observations fall into the highest 
categories). Over longer time horizons, the PIT histogram becomes U-shaped, i.e. skewed 
towards extreme values, showing that the forecasts generated by the model are too confident.  
 
The histograms for Czechia and France are U-shaped, indicating that the model is overly 
confident (i.e. the prediction interval is too narrow). The overestimation of cases in younger age 
groups may be due to case incidence being determined by the age-structured contact rates 
used in the model (derived from contact surveys), but cases in this age group may also be 
under-reported as they typically have milder symptoms, and so are harder to spot without active 
case finding campaigns.  Forecasts past two weeks ahead are more strongly biased, and 
underdispersed, but better performance is still observed for Italy, where the model is not age-
stratified. Similar underdispersion was observed in Czechia and France when a non-age-
stratified model was implemented (Supplementary Figures 6 and 7). 
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Figure 2: Probability integral transform histograms showing the calibration of the daily case 
forecasts from the model for Italy, Czechia and France (columns, left to right) for one-, two-, 
three- and four-week-ahead forecast horizons (rows, top to bottom) for 29 October 2022 to 22 
April 2023. Uniform histograms indicate well-calibrated forecasts, while U- and inverse U-
shaped histograms indicate underdispersed and overdispersed forecasts respectively. Red 
dashed lines at relative frequencies of 0.5 and 1.5 show reasonable bounds for calibration 
compared to desired relative frequency of 1 (blue dashed line). 
 
We also generated local forecasts using a baseline model (with no transmission between 
regions, covariates, seasonality, or age-specific intercepts), and compared them to the forecasts 
from the full model (Supplementary Table 2). The addition of transmission between regions, 
covariates and seasonality to the model substantially improved the predictive performance up to 
2 weeks ahead for all countries, with an average 38% improvement across the three countries 
in the median RPS at a 2-week forecast horizon. This was especially true in Czechia and 
France, where the age-specific dynamics were hard to capture without covariates. 

Death forecasts calibration 
The death forecast comparison is shown in Figure 3 and Table 3. The performance of the model 
is not homogeneous across countries. The model performs better in Italy and Czechia, where 
the median estimate is closer to the observed data, and the 95% prediction interval includes the 
data more often than in France. In France, the model was not able to accurately capture the 
drop in number of deaths following the outbreak in December 2022. For most dates, the median 
estimate of the number of deaths is similar in our model and the European COVID-19 Forecast 
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Hub ensemble model (Figure 3), and the median of the squared errors of the median predictions 
across all time points in the prediction period is similar (Table 3). The predictive accuracy and 
coverage of our model is closer to that of the ensemble model for the death forecasts than the 
case forecasts (the WIS is closer, Table 3), and the impact of forecast horizon on the 
performance is not as severe as for the case forecasts, for instance for Italy four-week-ahead 
forecasts are still in line with the number of reported deaths (Figure 3). This is due to the larger 
prediction intervals generated with the death model relative to the number of deaths. 
 

 
Figure 3: Comparison of one-, two-, three- and four-week-ahead death forecasts (rows, top to 
bottom) for Italy, Czechia and France (columns, left to right) from our model (Endemic-Epidemic 
(EE) model) with ensemble forecasts from the European COVID-19 Forecast Hub (ensemble) 
and observed deaths (data) for a calibration period from 29 October 2022 to 22 April 2023. 
Dashed lines show median forecasts, shaded regions the 95% prediction interval for the 
forecasts.
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Table 3: Median and 95% interval of weighted interval score (WIS) and squared error of the median of one-, two-, three- and four-
week-ahead national-level death forecasts for Czechia, France and Italy for our model (Endemic-Epidemic, EE) and European 
COVID-19 Forecast Hub ensemble model (ensemble) across all time points in the prediction period from 29 October 2022 to 22 April 
2023 

Country Forecast horizon 

(weeks) 

WIS, median (95% interval) Squared error of median, median (95% interval) 

EE Ensemble EE Ensemble 

Czechia 1 5.06 (1.64 - 21.2) 6.29 (2.06 - 38.5) 71.1 (0.525 - 1.17e+03) 81 (1 - 5.20e+03) 

2 4.52 (1.82 - 46.7) 9.21 (3.39 - 93.4) 49 (0.625 - 3.82e+03) 148 (2.12 - 2.86e+04) 

3 4.96 (1.33 - 61.2) 8.85 (3.83 - 255) 55.6 (0 - 7.34e+03) 210 (25 - 1.98e+05) 

4 14.4 (2.37 - 38.9) 12.8 (4.39 - 642) 506 (1 - 2.75e+03) 468 (4 - 1.31e+06) 

France 1 36.4 (3.3 - 175) 28.1 (11.2 - 86.3) 4.78e+03 (5.18 - 

4.06e+04) 

2.35e+03 (47.9 - 

3.09e+04) 

2 57.2 (4.41 - 199) 36.1 (12.1 - 90.6) 5.70e+03 (44.1 - 

5.39e+04) 

2.55e+03 (29.5 - 

3.18e+04) 

3 57.7 (11.8 - 215) 46.4 (17.8 - 117) 8.20e+03 (141 - 

6.96e+04) 

6.38e+03 (275 - 

4.31e+04) 

4 77.7 (5.67 - 217) 46.9 (16.8 - 199) 1.46e+04 (19.6 - 

7.09e+04) 

5.51e+03 (3.82 - 

1.21e+05) 

Italy 1 23.9 (3.99 - 135) 37.7 (23.5 - 126) 1.57e+03 (2.58 - 

3.26e+04) 

3.72e+03 (70.4 - 

5.43e+04) 

2 35.6 (4.2 - 213) 44.7 (19 - 156) 4.62e+03 (1 - 6.45e+04) 2.37e+03 (49 - 7.08e+04) 
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3 68 (11.3 - 206) 70.2 (33 - 203) 9.60e+03 (49 - 6.68e+04) 8.78e+03 (1370 - 

1.03e+05) 

4 35.5 (5.2 - 230) 60.6 (33 - 272) 3.66e+03 (8.44 - 

7.55e+04) 

8.25e+03 (479 - 

1.55e+05) 
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For Czechia and France, the PIT histograms generated for the local age-stratified weekly death 
forecasts follow much more uniform distributions than those for the case forecasts, for all 
forecast horizons (Figure 4). Since the model was age stratified for both countries, the majority 
of weekly death counts in the data were 0, which was easier for the model to capture and 
forecast. In Italy, the upper bound of the prediction interval tends to be too low, since few 
observed weekly death counts fall into the lower categories of the PIT histograms. Therefore, 
our model tends to underestimate the number of weekly deaths per region in Italy. The age-
stratified PIT histograms in Czechia and France (Supplementary Figures 4 and 5) are uniform 
for younger age groups (where almost all observations are 0), and follow an inverse U-shape in 
older age groups, indicating that the forecasts are slightly overdispersed. 

 
Figure 4: Probability integral transform histograms showing the calibration of the weekly death 
forecasts from the model for Italy, Czechia and France (columns, left to right) for one-, two-, 
three- and four-week-ahead forecast horizons (rows, top to bottom) for 29 October 2022 to 22 
April 2023. Red dashed lines at relative frequencies of 0.5 and 1.5 show reasonable bounds for 
calibration compared to desired relative frequency of 1 (blue dashed line). 

Visualising the predictions in the R Shiny Application 
The RShiny app is designed to make three features accessible to the user:  
1) Forecasts: current and previous four-week ahead forecasts of the number of cases and 
deaths in each region (and age group when available)  
2) Predictors: The risks of secondary transmission and importations estimated by the model  
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3) Scenarios: The impact of changes in transmission, be it due to more infectious variants, 
changes in behaviour, or NPIs on case and death forecasts. These changes in transmission 
represent the potential impact of control measures on transmission, and should be interpreted 
with caution in a constantly changing epidemiological situation (impacted for example by 
behaviour, adherence and other factors). Similarly, this model only considers the 
epidemiological impact of NPIs, the social or economic costs of different control measures is not 
considered in this analysis. 

Previous and current forecasts 
Case and death forecasts can be viewed via a map of the predicted median case/death 
incidence over the next two weeks, or via time series plots by region (and age group when age-
stratified data is available) of the median numbers of daily cases/weekly deaths over the next 
four weeks (with 50% and 95% prediction intervals) (Figure 5). Forecasts can be visualised at 
different geographical scales, either at NUTS-3 level or NUTS-1/NUTS-2 level. The accuracy of 
past forecasts at different geographical scales and over different time horizons can be visually 
assessed by varying the date from which to predict (to a date in the past) and comparing past 
predictions to the observed data. 
 
 
A                                                          B 

Figure 5: Visualisation of COVID-19 death forecasts for a region of Czechia in the RShiny app. 
(A) Map of forecasted 14-day incidence of cases per 100,000 inhabitants from 9th to 23rd 
January 2023 at NUTS-3 level. (B) Age-stratified 28-day-ahead case forecasts for the region 
outlined in red in (A). Since the prediction date is 4 weeks in the past, the observed number of 
deaths is also plotted to allow assessment of the accuracy of the forecasts. The closeness of 
the median forecast to the observed data and the fact that the 95% prediction intervals cover 
nearly all of the observed data points indicate the good predictive performance of the model for 
this region. Time series forecast plots for other regions can be viewed in the app by clicking on 
those regions in the map. Together, panels (A) and (B) can be used to identify which regions 
appear to be at risk of higher burden. 
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Local predictors of transmission and importations 
Spatial heterogeneity in case incidence, transmission and importation risk at the latest date of 
the forecasts is displayed in the app via three different maps showing the spatial distribution of 
cases at a NUTS-3 or NUTS-1/NUTS-2 level, the local risk of transmission (the population-
weighted average value of the epidemic component for each region across all age groups), and 
the local risk of importation (the epidemic component for each region summed across age 
groups) (Figure 6). The local risk of transmission and importation are shown as a percentage of 
the highest value of the predictor in the country, and give insight into the spatial heterogeneity in 
risk in the country. In all three countries, the risk of transmission is more homogeneous across 
the regions than the risk of importation. The risk of importation, quantified by the endemic 
predictor, is heavily influenced by the number of inhabitants in a region, so the regions gathering
most of the importation risks are regions containing the major cities in all three countries. 
 
A     B        C 

 
Figure 6: Visualisation of spatial heterogeneity in case incidence and risks of transmission and 
importations in Italy in the RShiny app. (A) Map of forecasted percentage change in cases in 
next week compared to the last week of data in Italy. (B) Map of local risk of transmission (as 
quantified by the estimated epidemic predictor in the model). (C) Map of local risk of importation 
(as quantified by the estimated endemic predictor in the model). All maps are at NUTS-2 level 
and show values on 7th March 2023. 

Short-term transmission scenarios 
Finally, simulations showing the impact of various changes in transmission (either increases due
to changes in behaviour or new variants, or decreases caused by targeted or global NPIs) on 
predicted numbers of cases and deaths are shown in the app via similar figures to those used to 
display the case and death forecasts (Figure 7). Options for exploring the impact of changes in 
transmission include combinations of: 

- Increasing transmission by 0, 20, or 40% to represent different properties of an emerging
variant, or changes in behaviour that lead to increased risks of spread.  

- Dropping transmission by 0, 20, or 40% to represent the impact of increased NPIs.  
- Targeting NPIs at the whole population or a specific age group. 
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- Removing importations from outside the selected country to represent stringent border 
closures.  

- Changing the delay in the time it takes for NPIs to become effective (1 week or 2 
weeks).  

Throughout all three countries, removing importations has very little impact on the transmission 
dynamics in the case forecasts. Local transmission is sufficient to maintain transmission without 
new cases being added through the endemic component. On the other hand, the moderate and 
large changes in transmission through NPIs or changes in behaviour have a large impact on the 
forecasted number of cases and deaths. Delaying the implementation of NPIs by a week 
strongly decreases the impact of the control measures.  
 
A 

B 

Figure 7: Visualisation of impact of different scenarios for changes in transmission (due to 
changes in behaviour, a new variant, or a change in NPIs) on forecasted cases in France in the 
RShiny app. Map of forecasted 14-day case incidence from 7th to 21st March 2023 at NUTS-3 
level and age-stratified time series plots of national four-week-ahead case forecasts for (A) no 
change in transmission, and (B) a 40% decrease in transmission among 20-60-year-olds due to 
NPIs targeted at 20-60 year-olds with a one-week delay to effect. 
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Discussion 
We have developed a framework to forecast subnational COVID-19 case and death incidence 
up to 4 weeks ahead, and explore the potential impact of changes in transmission on reported 
incidence. The framework was applied to France, Czechia and Italy. The model outputs are 
based on routinely collected, publicly available surveillance data. We have also developed a 
RShiny app, where users can visualise the 4-week-ahead forecasts of both reported cases and 
deaths, and the predicted impact of changes in transmission. The code we developed to 
implement the model and the RShiny App is publicly available in two Github repositories: 
https://github.com/EU-ECDC/RShinyCovidApp and https://github.com/EU-
ECDC/BackendCovidApp. The model fits and scenario simulations are updated automatically 
every week.  
 
Case and death forecasts aggregated at a country level perform comparably with the European 
COVID-19 Forecast Hub ensemble model, a benchmark in epidemic forecasting as an 
ensemble of forecasts from many independent models. In addition, our framework provides 
NUTS-3-region-level (i.e. much more highly spatially resolved) and, if age-stratified data is 
available, age-stratified forecasts. Therefore, it can be used for more targeted policy making and 
planning at a local level. Given the significant spatiotemporal heterogeneity in COVID-19 
incidence, and changes in age patterns, the detailed local-level visualisation provided by our 
model is particularly useful to evaluate targeted control measures. This study highlights the 
need for surveillance systems that gather accurate, timely, age-stratified data, and the value of 
making such data publicly available to improve understanding and prediction of local 
transmission and outbreak response planning. 
 
As demonstrated by our calibration analysis, the subnational and age-stratified case and death 
forecasts are accurate up to 2 weeks ahead: the case PIT histograms are flat for Italy and for 
most age groups for Czechia and France, while the median country-level forecast is closer to 
the data than the European COVID-19 Forecast Hub ensemble forecast. However, the forecasts 
become less reliable beyond a 2-week horizon. This may be due to fundamental predictability 
limits, the difficulty of forecasting changes in behaviour and/or sudden changes in transmission, 
e.g. due to the emergence of a new highly transmissible variant, more than a couple of weeks 
into the future or other factors that cause the model to be misspecified, and reflects similar 
findings from other forecasting efforts (7,17,57). If COVID-19 transmission dynamics become 
similar to those of seasonal influenza, sudden unexpected changes in transmission may 
become rarer, which would improve the performance of the model. The age-stratified PIT 
histograms in both Czechia and France show that calibration is especially difficult in younger 
age groups, where changes in case-finding strategy had a big impact that could not be fully 
captured by the testing covariates (58,59).  
 
The model was built to provide accurate predictions of case and death incidence at a regional 
level. Our results show that generating reliable case forecasts several weeks ahead is 
challenging, even when using age-stratified local data. However, the accuracy of death 
forecasts was consistent throughout all the forecast horizons that were tested. The quality of the 
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case and death forecasts was robust to the large reporting changes observed throughout the 
fitting period, and improved at the latest calibration dates where incidence was low in all three 
countries. This may be because local outbreaks in groups at risk in low-incidence settings are 
easier to forecast, rather than outbreaks where all regions are equally vulnerable. Forecasts 
past two weeks generated by the model appear to be overconfident, and underestimate the 
uncertainty in the potential level of transmissions. The alternative transmission scenarios in the 
Shiny App therefore help to illustrate the full range of variability in short-term regional 
transmission dynamics that is possible. The local risk of outbreaks and importations is also 
represented in the Shiny App, using the local predictors of the Endemic-Epidemic model. The 
forecasts, scenarios, and risk map constitute a reliable, thorough representation of the local risk 
of transmission. 
 
 
The model fits and simulations highlight several features of COVID-19 dynamics common to all 
three countries: the risk of background importation of cases (i.e. new cases that were not linked 
to recent local infections) is always very strongly associated with the number of inhabitants in 
the region. Hence, more populated and urban areas are at higher risk of further importations of 
SARS-CoV-2 infections. . On the other hand, the risk of transmission is relatively homogeneous 
across regions, with no regions where the number of secondary cases expected is less than half 
the region most at risk (Figure 6B). This could change in future COVID-19 dynamics, where the 
local level of immunity may be sufficient to completely avoid transmission in certain regions, as 
is currently observed for pathogens such as measles (34). The vast majority of cases stem from 
the epidemic component of the Endemic-Epidemic model, showing that the local transmissibility 
is sufficient to maintain transmission, even without input from background importations. 
Therefore, the removal of importations (e.g., by border closures) consistently resulted in a 
minimal impact on the expected number of case numbers up to four weeks ahead. In contrast, 
altering the transmission risk within the regions (e.g. via interventions targeted at specific age 
groups or encompassing the entire population) can substantially change the forecasted case 
dynamics. Even with strategies targeting a particular age group, we observe indirect effects on 
incidence in all age groups. We did not observe a strong effect of changes in transmission risk 
on the four-week-ahead death forecasts. However, we emphasise that we considered a three-
week delay between cases and deaths and, hence, the impact of changes in transmission on 
deaths would be visible for longer-term death forecasts (beyond four weeks ahead). 

Including other countries 
The framework is currently implemented for France, Czechia and Italy, but other countries can 
be straightforwardly incorporated, provided the data required for making the subnational daily 
case and weekly death forecasts (namely NUTS-3-level daily case counts, subnational daily 
death counts, NUTS-3-/NUTS-2-level daily/weekly vaccinations administered by dose, and 
NUTS-3-/NUTS-2-/national-level daily/weekly numbers tested) for those countries is available 
and up-to-date. Full instructions for incorporating a new country are available in the public 
GitHub repository for the model code: https://github.com/EU-ECDC/BackendCovidApp.  
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Age stratification 
Our comparison of forecasted and observed numbers of cases and deaths over all age groups 
for France and Czechia indicates that the non-age-stratified model has similar predictive 
performance in terms of overall cases/deaths as the age-stratified model (Supplementary 
Figures 6-9), albeit with slightly worse prediction of deaths (Supplementary Figure 9). We 
believe the loss in performance observed in death forecasts to be due to changes in the age 
structure of reported cases from changes in case detection. Indeed, active case finding may 
lead to milder cases being reported, while interruption of such a strategy would mean that a 
larger proportion of the cases are severe. Such changes are likely to be reflected in the age 
structure of the cases and such information is lost in the non-age-stratified version of the model.  
 
The overall good performance of the non-age-stratified model is encouraging for the application 
of the model to other countries, very few of which report age-stratified case and death data. 
While we did not observe a significant improvement by age-stratifying the model, we emphasise 
that age-stratified data and models are crucial for evaluating the impact of targeted (age-
specific) non-pharmaceutical and pharmaceutical interventions, as well as for health-economic 
analyses (e.g., the computation of DALYs).  
 

Limitations 
Our forecasting framework does have some limitations. First, as for all forecasting studies, the 
forecasts are only as reliable as the input data, and we cannot guarantee the accuracy of the 
data imported from public data sources, which may have reporting errors or biases that we are 
not able to account for. The framework will only work as long as subnational (and age-stratified, 
for France and Czechia) case and death data continues to be reported online in the same 
location and format as it is currently, but several countries have ceased reporting subnational 
case and death data or changed the format or location of their reporting since we started 
developing the framework. Changes in data availability could potentially be addressed via 
changing spatial resolution of the model, but this would involve substantial modification of the 
model structure. We only forecast reported cases, which reflect a combination of underlying 
incidence of infections and reporting, rather than the “true” number of cases, but these still 
provide a useful indication of changes in transmission. The model for the death forecasts, which 
uses an estimate of the recent CFR (with uncertainty) to predict deaths, is relatively simple and 
assumes a constant relationship between changes in case numbers and changes in the CFR 
over time. However, the calibration analysis shows it provides a relatively straightforward and 
reliable means of translating case forecasts into death forecasts. 
 
The contact matrices used to fit the model for France and Czechia were taken from pre-
pandemic studies, and may not reflect the contact patterns between age groups in 2020 and 
2021. Ideally, time-varying matrices would have been used to estimate age-stratified contact, 
but such matrices were not available or straightforward to implement in the Epidemic-Endemic 
framework (60). The addition of an age-specific intercept in the epidemic component allowed 
the model to modify the risk of transmission in each group where the number of contacts was 
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not in line with the case counts. However, since these coefficients were not time-dependent, the 
model considers this age-stratified risk of new cases to be constant (if all other covariates do not 
vary). 
 
We do not include information on NPIs or population mobility in the covariates in the model 
despite the improvements in predictions these may yield, since centralised databases of these 
covariates (such as Google Mobility data (61), the Oxford Stringency Index (62), and the ECDC-
JRC Response Measures Database (2)) are no longer being updated, and binary covariates 
made the model less consistent and comparable between countries, while potentially not being 
specific enough (i.e. they incorporated the impact of other parameters associated with 
transmission). Including more NPI covariates also led to issues with identifying the effects of 
different interventions as many were implemented at the same or overlapping times. 

Generalising beyond COVID-19 
The flexible framework developed in this paper could be used or readily adapted to model 
incidence of both novel and seasonal pathogens of public health importance, such as influenza, 
in order to predict local health burden and inform outbreak response. The Endemic-Epidemic 
framework underlying our model has already been applied to a variety of other pathogens 
including measles, cholera, leishmaniasis and pertussis (34,63–65). However, the number of 
model parameters that can be estimated directly depends on the amount of data available. 
Therefore, in its current specification (with a large number of parameters), the model may not be 
suitable for the early stages of an outbreak (except if the pathogen is seasonal, with available 
data on previous outbreaks). However, it can be used to estimate the impact of various 
covariates (from different data sources) on transmission risk.  
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