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Abstract

Background

Pregnancy is a complex biological process and serious complications can arise when the delicate

balance between the maternal immune system and the semi-allogeneic fetal immune system is

disrupted or challenged. Gestational diabetes mellitus (GDM), pre-eclampsia, preterm birth, and low

birth weight, pose serious threats to maternal and fetal health. Identification of early biomarkers

through an in-depth understanding of molecular mechanisms is critical for early intervention.

Methods

We analyzed the associations between 47 proteins involved in inflammation, chemotaxis,

angiogenesis, and immune system regulation, maternal and neonatal health outcomes, and the baseline

characteristics and pre-existing conditions (diseases and obstetric history) of the mother in a

prospective cohort of 1,049 pregnant women around the 20th gestational week. Bayesian linear

regression models were used to examine the impact of risk factors on biomarker levels and Bayesian

cause-specific parametric proportional hazards models were used to analyze the effect of biomarkers

on maternal and neonatal health outcomes. Finally, we evaluated the predictive value of baseline

characteristics and the 47 proteins using machine-learning models. Shapley additive explanation

(SHAP) scores were used to dissect the machine learning models to identify biomarkers most

important for predictions.

Results

Associations were identified between specific inflammatory markers and existing conditions,

including maternal age and pre-pregnancy BMI, chronic diseases, complications from prior

pregnancies, and COVID-19 exposure. Smoking during pregnancy significantly affected GM-CSF

and 9 other biomarkers. Distinct biomarker patterns were observed for different ethnicities. In

obstetric complications, IL-6 inversely correlated with pre-eclampsia risk, while acute cesarean

section and birth weight to gestational age ratio were linked to markers such as VEGF or PlGF. GDM

was associated with IL-1RA, IL-17D, and Eotaxin-3. Severe PPH correlated with CRP and proteins of

the IL-17 family. Predictive modeling using MSD biomarkers yielded ROC-AUC values of 0.708 and

0.672 for GDM and pre-eclampsia, respectively. Significant predictive biomarkers for GDM included

IL-1RA and Eotaxin-3, while pre-eclampsia prediction yielded highest predictions when including

MIP-1β, IL-1RA, and IL-12p70.

Conclusion

Our study provides novel insights into the interplay between preexisting conditions and immune

dysregulation in pregnancy. These findings contribute to our understanding of the pathophysiology of
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obstetric complications and the identification of novel biomarkers for early intervention(s) to improve

maternal and fetal health.
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Introduction

During pregnancy there is a complex interaction between the maternal immune system and the

semi-allogeneic fetus1. The maternal immune system is highly regulated throughout pregnancy, and

successful pregnancy requires a balance between tolerance and suppression. Obstetric complications

are common, affecting more than one in four pregnancies, and immune dysregulation is involved in

the pathogenesis of a range of complications, including gestational diabetes mellitus (GDM),

pre-eclampsia, preterm birth, and low birth weight2,3. Immune dysregulation may be due to preexisting

or subclinical diseases, complications from prior pregnancies, or viral infections. Indeed, during

pregnancy, the maternal immune system seems to be more challenged by viral infections such as

influenza4,5, respiratory syncytial virus (RSV)6, severe acute respiratory syndrome (SARS-CoV)7,8,

and Middle East Respiratory Syndrome (MERS-CoV)9. Nonetheless, many pregnancy complications

arise without prior known risk factors. Consequently, identifying biomarkers that are present early in

pregnancy prior to the manifestation of the pathology is crucial to enable timely action and improve

maternal and fetal health outcomes.

Pregnancy complications such as preterm birth and early onset pre-eclampsia increase the risk in

subsequent pregnancies. Conversely, a prior uncomplicated pregnancy decreases risk of complications

in future pregnancies, possibly due to enduring immune alterations favoring fetal tolerance10. An

important aspect of the immune alteration in pregnancy involves the balance of pro- and

anti-inflammatory responses; typically, the immune system maintains a balance between T helper-1

(Th-1) cells, associated with cell-mediated immunity and inflammation, and T helper-2 (Th-2) cells,

supporting humoral immunity and linked with anti-inflammatory responses11,12. During pregnancy, the

systemic maternal immune response shifts towards a more anti-inflammatory state which promotes

fetal tolerance. Disruptions in this balance, particularly a switch towards a pro-inflammatory state, can

lead to pregnancy complications such as pregnancy loss, pre-eclampsia, and preterm birth11. Even

though it's important to understand these risks, we don't know much about how previous pregnancies

affect certain biomarker levels related to immune regulation in the current pregnancy. However,

promising research highlights the potential for early detection of preterm birth using cell-free RNA or

a protein panel, as well as pre-eclampsia through a combination of sFlt-1/PlGF and ultrasound, among

other methods13–15. A deeper understanding of the impact of previous pregnancies and the biological

changes that occur before labor starts is crucial. It serves as the foundation for the development of

diagnostic tests and tools aimed at improving maternal and fetal health outcomes.

Overall, the link between immune adaptation during pregnancy and obstetric complications is

complex and multifaceted. While immune changes are necessary for a successful pregnancy and fetal

development, they can also increase the risk of obstetric complications. Prophylactic treatment is an
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option for many obstetric complications, such as low-dose aspirin or progesterone. However, this

requires precise risk stratification of pregnant women. Early biomarkers of later complications

facilitate early interventions that can improve fetal and maternal health.

Here, we present results that build towards a deeper understanding of the immune system, the

interplay between diseases and obstetric history and the immune system and its association with

obstetric complications in 1,049 pregnant women
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Methods

Ethical approvals

The PREGCO study was approved by the Knowledge Centre for Data Protection and Compliance,

The Capital Region of Denmark (P-2020-255), and by the Scientific Ethics Committee of the Capital

Region of Denmark (journal number H-20022647). All PREGCO participants provided written

informed consent.

Danish legislation allows for register-based research to be conducted without the consent of

participants and without ethical committee approval. Registry data, i.e. the Danish Medical Birth

Registry, was held at Statistics Denmark, which is the Danish national statistical institution.

Study design and participants

PREGCO is a prospective cohort of pregnant women from Copenhagen University Hospital,

Hvidovre, Denmark, that took place during the first pandemic wave in Denmark, between 4th April

2020 and 3rd July 202016,17. Participants were invited to participate at the second trimester

malformation scan (gestational weeks 18-22). All pregnant women in Denmark are offered this scan

and more than 90% accept. Copenhagen University Hospital Hvidovre serves approximately 12% of

pregnant women in Denmark (~7,200 births/year). Participants filled out a questionnaire including,

but not limited to, pre-pregnancy body mass index (BMI), smoking, prior pregnancy outcomes and

complications, and pre-existing chronic conditions. Baseline characteristics and follow-up information

were obtained from the electronic health record, available throughout the whole study period. This

included maternal age, gestational age at birth, sex of the child, multiple pregnancy, birth weight,

results from the combined first trimester screening examination (e.g., nuchal fold thickness,

pregnancy-associated plasma protein A (PAPP-A), -human choriogonadotropin (βhCG), andβ

crown-rump length), second trimester malformation scan (e.g., head circumference and femur length),

obstetric complications (e.g., GDM, pre-eclampsia, acute cesarean section), and mode of delivery

(spontaneous delivery, induction of labor, or cesarean section). See Supplementary Table 5 for a

complete list. Furthermore, serum was collected at the 12th and 20th gestational week scans to screen

for the presence of SARS-CoV-2 antibodies (IgG and IgM) using the iFlash 1800 assay16,17. Serum

samples from the second trimester malformation scan were also used to measure a panel of 47

inflammatory markers (described below). The study was completed and all pregnancies ended before

the approval and introduction of SARS-CoV-2 vaccines in Denmark (27th December 2020).
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Comparison with the general population

The Danish Medical Birth Register (DMBR)18 was used to compare the PREGCO cohort with all

births in Denmark during the same period. DMBR, established in 1973, includes detailed data on all

births in Denmark and primarily comprises data from the Danish National Patient Registry

supplemented with information on pre-pregnancy BMI and smoking in the first trimester collected at

the combined first trimester screening examination. We compared maternal age, pre-pregnancy BMI,

smoking, parity, number of pregnancy losses, and sex of the child.

Meso Scale Diagnostics inflammatory markers

The setup for measuring the inflammatory markers has been described by Kjerulff et al19.

Inflammatory markers from the second trimester malformation scan serum sample were measured

using the Meso Scale Diagnostics (MSD) V-PLEX Human Biomarker 54-Plex kit, measuring 47

biomarkers involved in inflammation, chemotaxis, angiogenesis, and immune system regulation (due

to poor quality observed for the TH-17 panel19, the panel was excluded). The samples were spread

across sixteen 96-well plates. We performed preprocessing and median normalization of measured

intensities to minimize batch variation, as described in detail in the Supplementary Text

(Supplementary Figure 1).

Exposures and outcomes

We investigated the influence of pre-existing conditions (diseases and obstetric history) and diseases

on biomarker levels at the second trimester malformation scan. This included smoking during

pregnancy, number of prior live births, number of prior pregnancy losses, polycystic ovary syndrome

(PCOS), endometriosis, inflammatory bowel disease, GDM in the current or previous pregnancy,

pre-eclampsia in a prior pregnancy, vaginal bleeding in early pregnancy, use of assisted reproductive

technology (ART, divided into intrauterine insemination (IUI) and in-vitro fertilization (IVF)), and

Coronavirus disease 2019 (COVID-19) infection in the current pregnancy. The COVID-19 assay and

cut-offs have been previously described by Freiesleben et al and Egerup et al16,17. Second, we also

investigated the association between inflammatory markers and common obstetric complications,

namely GDM, pre-eclampsia, gestational duration, acute cesarean section, and the ratio of birth

weight to gestational duration (Supplementary Table 1). To reduce redundancy in the statistical

analysis, we identified highly correlated markers using the Hobohm II algorithm20. We tested multiple

thresholds and found that a Spearman correlation cut-off of 0.5 sufficiently removed redundant

markers (Supplementary Figure 2). For further details, see Supplementary Information.
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Machine learning models to predict obstetrical complications

We evaluated the predictive value of the clinical measures and the MSD biomarkers using two

machine learning models, namely a logistic regression model with an L1 penalty and LightGBM.

Missing values were imputed using the mean and mode for continuous and categorical variables,

respectively, and scaled for the logistic regression model. Imputation and scaling were done strictly on

training data. LightGBM is a gradient-boosted model that natively handles missing values and

categorical data, and scaling is not needed. As features we used the 47 Meso Scale Diagnostics

inflammatory markers, age, BMI, previous live births, fetal abdominal circumference, fetal abdominal

diameter, fetal head circumference, fetal femur length, PAPP-A MoM, βhCG MoM, and the difference

between gestational age measured from crown-rump length and last menstruation at the combined

first trimester screening examination.

The models’ generalizability was evaluated using a nested cross-validation (CV) procedure. Here, the

Nested CV involved an outer loop for model evaluation (interval validation) and an inner loop for

hyperparameter optimization (development data). The outer loop was a five-fold stratified CV, and the

inner loop was a five-fold stratified CV repeated five times. Hyperparameters were optimized using

the Optuna21 framework with the Tree-structured Parzen Estimator algorithm. Supplementary Table 2

provides the ranges of hyperparameters that were explored. A total of 500 hyperparameter

combinations were evaluated across the inner CV loops to identify the most effective configuration

for the model. The models were optimized to minimize the binary cross entropy (BCE). We selected

the model with the lowest average inner CV BCE. We evaluated the Area Under the Receiver

Operating Characteristic Curve (ROC-AUC) and the area under the precision-recall curve (AUPRC)

by averaging the scores from the outer CV. Feature importance was evaluated using Shapley Additive

Explanations (SHAP) on the hold-out outer fold. The ROC-AUC ranges from 0.5 (random) to 1.0

(perfect). However, in cases of severe class imbalance, the ROC-AUC may be biased. Therefore, we

also evaluated the AUPRC. The AUPRC ranges from 0 to 1. However, the baseline value

(corresponding to a random classifier) is equivalent to the prevalence. 95% Confidence intervals for

the ROC-AUC and AUPRC were calculated using a bootstrap approach, with 1,000 repetitions. We

used the linear (for logistic regression) or tree (for LightGBM) explainer algorithm. Results were

visualized as the mean absolute SHAP values. Machine learning pipelines were implemented as a

snakemake workflow, using elements from Optuna, scikit-learn, and SHAP.21–23

Statistical analysis

Baseline characteristics were summarized as mean (standard deviation, SD) or median (interquartile

range, IQR), where appropriate. Baseline characteristics were compared to data from the DMBR for
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all births in 2020 using a Z-test or test. Heatmaps were created by calculating pairwise Spearman’sχ2

correlation coefficients. Clustering was done using hierarchical complete clustering. Only MSD

biomarkers were used for clustering.

The association between prior existing conditions and inflammatory marker levels and Birth

weight-Gestational Age ratio was estimated using a Bayesian robust linear regression model to

accommodate outliers24.

The association between inflammatory markers and GDM, pre-eclampsia, gestational duration, acute

cesarean section, severe postpartum hemorrhage (PPH), and any complication was estimated using a

cause-specific Bayesian time-to-event model, in which the baseline hazard was modeled using an

M-spline25. Women lost to follow-up were censored at their last contact with the hospital. All analyses

were adjusted for age, pre-pregnancy BMI, and gestational age at enrollment. The association between

prior conditions and inflammatory markers was further adjusted for the ultrasound estimated

gestational age at the first trimester risk assesment scan. Obstetric outcomes were adjusted for

outcome-specific variables that were identified based on expert and literature review. Missing values

were imputed using multiple imputation as implemented in MICE26, with predictive mean matching.

Chains were run for 100 iterations and five imputation data sets were created. Each imputed data set

was analyzed separately in the Bayesian models and the posteriors were then combined. Conservative

prior distributions were used for the Bayesian models, providing a regularizing effect. Estimates are

reported as the median and the 95% credible interval (bCI) unless otherwise stated. See

Supplementary Methods for a more detailed description of the methods and models. All models were

fitted using rstanarm25 or brms24.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 15, 2023. ; https://doi.org/10.1101/2023.08.10.23293934doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.10.23293934
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

Results

Cohort characteristics

A total of 1,064 women were enrolled in this study during the second trimester malformation scan at

20 weeks. The cohort constitutes 75% of all pregnant women asked to participate (flowchart shown in

Figure 1A). Of these, 15 were not included due to multiple pregnancy and 18 were lost to follow-up

due to a change of hospital not using the EPIC electronic platform for medical records or home

delivery. The baseline characteristics for participants are shown in Table 1. Compared to all births in

Denmark in 2020, maternal age, pre-pregnancy BMI, and the number of previous live births are

within the expected range, albeit they are on average 1 year older, 0.7 BMI units lower, and have a

higher frequency of primipara and prior pregnancy losses (Supplementary Table 3). 33 women (3.1%)

had elevated SARS-CoV-2 IgG antibody levels indicating COVID-19 infection prior to the second

trimester malformation scan. During the study, 369 (34.7%) women experienced at least one of the

complications severe PPH (12.2%), preterm birth (11%), GDM (8.2%), pre-eclampsia (4.3%), or

acute cesarean section (11.8%) after enrollment (Table 2).

Biomarker profile clustering

Clustering analysis did not reveal any strong relationships between the women's inflammatory profiles

and their prior conditions, diseases, or later complications (Figure 2, Supplementary Figure 3a). When

we examined the pairwise correlations between markers, we found that they did not necessarily

cluster by panel or marker group (Supplementary Figure 3b). Instead, we observed one large cluster

and some minor clusters. The largest cluster, with the strongest correlations, consisted of MCP-4,

TARC, IL-8, VEGF-C, and IL-7. MCP-4, TARC, IL-8, VEGF-C, and IL-7 are all cytokines linked to

various inflammatory diseases.

The strongest anti-correlation observed was between Flt-1 and VEGF (-0.58, 95% CI -0.62; -0.53,

Pearson correlation). By binding VEGF and blocking the membrane-bound receptors, soluble Flt-1

functions as a naturally occurring antagonist of VEGF. Soluble Flt-1 also binds placental growth

factor (PlGF) that plays a crucial role in the growth and development of blood vessels, particularly

during pregnancy and fetal development27. Dysregulation of the interaction between Flt-1 and VEGF

has been linked to various diseases and disorders, including cancer and cardiovascular disease.

Pre-existing conditions, obstetrical history, and maternal characteristics

A number of previously existing conditions correlated to the measured inflammatory markers.

However, there was no widespread pleiotropy, i.e., each exposure had its own biomarker signature

(Figure 3). A majority of biomarkers were affected by maternal age (15/47) and pre-pregnancy BMI
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(26/47). Conditions altering expression levels included chronic diseases (endometriosis, PCOS),

complications in prior pregnancies (pre-eclampsia, GDM, preterm birth), and COVID-19. COVID-19

was associated with a change in expression of two inflammatory markers, IFN-γ and IL-13. Smoking

in the current pregnancy had a profound effect on ten biomarkers, including GM-CSF ( =0.05, 95%β

bCI 0.02; 0.09). GM-CSF is a known regulator of fetal growth and the association between smoking

and increased GM-CSF levels is hypothesized to be through an activation of the EGFR signaling

pathway28. GM-CSF was also upregulated in pregnancies with a female child, albeit to a lower degree

( =0.02, 95% bCI 0.01; 0.03). Altered CRP levels were associated with complications occurring inβ

prior pregnancies, e.g. pre-eclampsia ( =-0.45, 95% bCI -0.89; -0.03) and preterm birth ( =0.76, 95%β β

bCI 0.28; 1.3). The effect of pre-eclampsia and preterm birth is most likely medically induced due to

preventive treatment with aspirin and progesterone, respectively. The number of previous live births

was also associated with lower CRP levels, which could explain part of the mechanism behind the

reduced risk of pre-eclampsia ( =0.16, 95% bCI 0.06; 0.27).β

TNF-α levels were increased in women with GDM prior to the second trimester malformation scan (β

=0.17, 95% bCI 0.01; 0.34) and decreased in women with GDM in prior pregnancies ( =-0.14, 95%β

bCI -0.27; -0.01). TNF-α is a marker of insulin resistance in pregnancy29 and our findings indicate that

insulin resistance is not affected in the longer term in GDM pregnancies. This suggests that increased

TNF-α levels can be attributed to the acute pathogenic process.

Ethnicity had a major influence on the variation of inflammatory marker levels, such as CRP,

Eotaxin-3, IL-15, IL-16, IP-10, and VEGF-D, amongst others (Figure 3). These findings highlight the

need for more research on the role of ethnicity in pregnancy complications and the underlying

mechanisms. This research could inform the development of personalized interventions to reduce the

risk of adverse pregnancy outcomes by taking into account reference ranges may be specific to ethnic

groups.

Later obstetric complications

Following similarity reduction, we estimated the association between 41 markers and 11 different

outcomes (Figure 4). We found a number of unique markers that were associated with each condition.

Increasing levels of IL-6 decreased the risk of pre-eclampsia (hazard rate (HR)=0.59, 95% bCI 0.31;

0.97). Prior evidence clearly indicates an association, but the direction of effect is less clear30,31. Acute

cesarean section had four associated markers (IL-4, IL-5, MDC, MIP-1β) none of which were

associated with any of the other adverse outcomes. For the birth weight to gestational age ratio, we

found five associated markers: bFGF, GM-CSF, PlGF, sICAM-1, and VEGF. The most profound

effect on birth weight to gestational age ratio was seen for vaginal bleeding in early pregnancy, which
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led to an estimated decrease in percentile of -0.16 (95% bCI -0.06; -0.25). This means that, a woman

experiencing early hemorrhage would be expected to be in the 34th percentile (95% bCI 25; 44). In

comparison, PlGF, the inflammatory marker with the largest effect, was associated with an increased

percentile of 0.04 (95% bCI 0.01; 0.07) per standard deviation.

GDM was associated with IL-1RA (HR=1.35, 95% bCI 1.04; 1.8), IL-17D (HR=0.66, 95% bCI 0.49;

0.89), and Eotaxin-3 (HR=1.27, 95% bCI 1.11; 1.43). IL-1RA has previously been shown to associate

with GDM and has been suggested as a biomarker useful for diagnosing GDM as a complement to

blood glucose measurements, as well as to identify GDM patients who are at risk of developing

postpartum diabetes32. IL-17D is associated with incident type 2 diabetes and progression from

normoglycemia to type 2 diabetes33. GDM is associated with several chemokines in the protein family

where Eotaxin-3/CCL26 belongs34,35.

CRP (HR=1.34, 95% bCI 1.04; 1.74), IL-13 (HR=1.29, 95% bCI 1.06; 1.54), IL-17B (HR=1.25, 95%

bCI 1.02; 1.53), and IL-17C (HR=1.23, 95% bCI 1.01, 1.49) were all associated with severe PPH.

However, none of the effects had a magnitude similar to in vitro fertilization (IVF, HR=2.10, 95% bCI

1.18; 3.66).

Prediction of obstetric complications

We evaluated the prognostic potential of clinical characteristics combined with MSD biomarkers in

predicting five pregnancy-related conditions. The performance of our model was assessed using

ROC-AUC values on the development data (inner CV) ranging from 0.610 to 0.697, and similar

values were obtained in the interval validation (outer CV), ranging from 0.584 to 0.715. These results

indicate that our model generalizes well to new data. The AUPRC values were consistently better than

random guessing, as shown in Supplementary Table 6.

Among the pregnancy-related conditions analyzed, pre-eclampsia, GDM and PPH were predicted

most accurately using the MSD biomarkers. Specifically, GDM and pre-eclampsia displayed

ROC-AUC values of 0.708 (95% CI: 0.644-0.766) and 0.672 (95% CI: 0.580-0.758), respectively,

with corresponding AUPRC values of 0.176 (95% CI: 0.126-0.238) and 0.073 (95% CI: 0.042-0.115).

The SHAP analysis further confirmed the classification of IL-1RA and Eotaxin-3 as potential

predictive biomarkers for GDM (Figure 6A). Additionally, the analysis highlighted the significance of

IL-6 and CRP, proinflammatory markers that were initially overlooked in the preliminary association

analysis but have been previously suggested as predictive for GDM36–38.

Although the exploratory analysis yielded only a single probable biomarker for pre-eclampsia, our

predictive modeling emphasized the combined significance of MIP-1β, IL-1RA, and IL-12p70. These
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biomarkers collectively had a greater impact than conventional risk factors such as age and BMI.

Notably, the number of prior live births remained the most influential predictor (Figure 6B).

The remaining models had a low ability to discriminate and were not investigated further.
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Discussion

Here we present the biomarker profile of a large population-representative cohort of pregnant women

around the 20th gestational week. We show that pregnancy has long-lasting effects and that the

molecular level rewiring takes place at very early stages in the pregnancy, prior to the manifestation of

complications at a clinically detectable level. Early changes in biomarkers were associated with

development of obstetric outcomes up to 22 weeks later. Moreover, prior live births, complications

from prior births, and smoking affect circulating biomarker levels, which may have a direct effect on

complications and fetal growth. Machine learning models highlighted the joint significance of

inflammatory markers, albeit the performance is not yet adequate for clinical deployment.

PREGCO is a prospective cohort recruited at a single hospital. Enrollment was high, above 61%. The

cohort was generally comparable to other pregnancies in Denmark in the same time period. The

difference in the frequency of pregnancy loss can most likely be attributed to an underreporting in the

Danish National Patient Registry. The cohort was enrolled during a time of lowered activity in

Denmark due to restrictions on both professional and private social interactions, hence the COVID-19

prevalence was therefore low at this time. Furthermore, enrollment took place when only the alpha

COVID-19 variant was present, and later variants may have different effects on the immune

system39,40. Furthermore, the testing regime and willingness to seek medical attention could have been

different due to the COVID-19 pandemic. Relative to the sample size, the number of biomarkers

investigated was large and some were highly correlated. We pruned highly correlated markers and

utilized Bayesian models with conservative priors to provide regularization to the estimates to

mitigate this and investigate issues of collinearity. We evaluated the generalization error of the

machine learning models using a nested cross-validation approach, which yielded conservative

estimates. However, we cannot rule out that some effects could not be detected due to the sample size,

the large number of variables, and conservative Bayesian priors.

Pregnancy is a complex process that involves many changes in the body, including challenges to the

immune system. These changes are necessary to allow the developing fetus to grow and thrive, but

they can also increase the risk of obstetric complications. For instance, GM-CSF, a known regulator of

fetal growth, was upregulated in pregnancies with a female child or smoking. The association between

smoking and increased GM-CSF levels is hypothesized to be through an activation of the EGFR

signaling pathway28. Furthermore, preterm birth or pre-eclampsia in a previous pregnancy was

associated with lower levels of CRP. This is most likely medically induced due to preventive

treatment with aspirin and progesterone, respectively.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 15, 2023. ; https://doi.org/10.1101/2023.08.10.23293934doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.10.23293934
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

The balance between pro- and anti-inflammatory cytokines is crucial for successful placentation.

Pro-inflammatory cytokines, such as TNF- , IL-1, and IL-6, play a role in the recruitment andα

activation of immune cells at the implantation site, which is essential for the establishment of a

functional placenta41. IL-6 is involved in the regulation of angiogenesis, decidualization, and immune

cell migration during early pregnancy, suggesting a crucial role for IL-6 in placentation42. Likewise,

elevated levels of IL-17A have been associated with preterm labor and preterm premature rupture of

membranes (PPROM)43. One proposed mechanism for this is IL-17A's ability to promote

pro-inflammatory cytokines and chemokines that can affect the development of the fetal-placental

interface, especially together with TNF- 43. In our study, the pro-inflammatory cytokines of theα

IL-17-family were associated with disorders that have been linked with a negatively altered

placentation, such as postpartum hemorrhage or preterm birth. The association of CRP, IL-13, IL-17B,

and IL-17C with severe postpartum hemorrhage suggests that they may be involved in the regulation

of hemostasis and low-grade inflammation early in pregnancy, leading to later obstetric complications.

CRP is an acute-phase reactant produced by the liver in response to inflammation, infection, and

tissue damage. IL-13 is a Th-2 cell cytokine involved in the regulation of immune response and tissue

repair, whereas IL-17B and IL-17C are members of the IL-17 family of cytokines that are involved in

the regulation of inflammation and immunity. Alterations in these biomarkers may affect the normal

balance between pro- and anti-inflammatory factors and disrupt the physiological processes during

and after delivery, leading for example to an increased risk of postpartum hemorrhage. More

importantly, the biomarkers showed these associations to the outcome around gestational week 20,

making them promising candidates for clinical use in early detection and prevention.

GDM is associated with increased risk of maternal and fetal morbidity and mortality, as well as an

increased risk of developing type 2 diabetes later in life. The precise mechanisms underlying the

development of GDM are not yet fully understood, but evidence suggests that a complex interplay of

genetic and environmental factors is involved. In our study, Eotaxin-3, interleukin 1 receptor

antagonist (IL-1RA), and IL-17D were associated with GDM. All three cytokines have been

implicated in the regulation of immune responses, inflammation, and metabolic regulation. For

example, elevated levels of Eotaxin-3 have been observed in pregnant women with pre-existing

diabetes44. Antagonizing the pro-inflammatory cytokine IL-1, IL-1RA is an anti-inflammatory

cytokine45. The interplay of IL-1 and IL-1RA and their dysregulation appear to be related to type 2

diabetes and GDM32,46. However, study results are diverging, as for example one study has shown that

the IL-1RA levels in GDM patients are considerably lower than those of controls32, whereas another

biomarker study showed inconsistence with our results, that elevated IL-1RA are associated with

GDM35. In summary, our data show that the levels of these cytokines are altered in women developing

GDM later in pregnancy and that the balance of pro- and antiinflammatory cytokines is necessary to

maintain a normal glucose metabolism throughout pregnancy.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 15, 2023. ; https://doi.org/10.1101/2023.08.10.23293934doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.10.23293934
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

Additionally, the study highlights the importance of considering multiple biomarkers in assessing risk

of obstetric complications, as each biomarker was associated with only one or a few of the outcomes.

This suggests that a combination of biomarkers may be necessary to accurately identify women who

are at an increased risk of developing complications, supported by the machine learning models.

Once they arise, many obstetric complications cannot be reversed or treated. Perinatal medicine

therefore aims to identify high-risk populations early on, to ideally use therapies to reduce

unfavorable maternal and fetal outcomes47. Dietary adaptations and insulin for GDM, antepartum fetal

monitoring for stillbirth, aspirin for pre-eclampsia, and progesterone for preterm delivery are a few

examples of such therapies that have been proposed in high-risk populations48–53. As such, it has been

proposed that the typical care pyramid should be reversed, with the primary attention shifting to the

early rather than later stages of pregnancy47. The presented biomarkers and biomarker combinations

can potentially be used to further improve this pyramid of care by providing high-quality care to the

patients at risk.
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Figures

Figure 1: (a) Flowchart for inclusion, (b) Timepoints for data collection. Data from the electronic

health record was obtained throughout the pregnancy and postpartum.
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Figure 2: Heatmap of phenotypes across participants using hierarchical clustering based on

MSD biomarkers. Phenotypes are divided into maternal characteristics, pregnancy-related

outcomes for the current pregnancy (observed before or at inclusion), fetal characteristics,

pregnancy-related outcomes for prior pregnancies, prior diseases to the current pregnancy,

and phenotypes observed after inclusion.

BMI, body mass index; C-section, cesarean section; DM, diabetes mellitus; GA, gestational age;

GDM, gestational diabetes mellitus; IBD, irritable bowel diseases; IUI, intrauterine insemination; IVF,
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in vitro fertilization; MoM, multiples of medians; PCOS, polycystic ovary syndrome; PE,

Pre-eclampsia; PPH, postpartum hemorrhage; SGA, small for gestational age; UTI, urinary tract

infection
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Figure 3: Previous pregnancies and pre-existing conditions effects on inflammatory markers.

Effect size is increase or decrease in standard deviations. Only associations where the 95%

Bayesian Credible Interval does not include zero are shown.

BMI, body mass index; GA, gestational age; GDM, gestational diabetes mellitus; IUI, intrauterine

insemination; IVF, in vitro fertilization; MOM, multiples of medians; PCOS, polycystic ovary

syndrome; PE, pre-eclampsia; PPH, postpartum hemorrhage
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Figure 4: Associations between markers and later obstetrical outcomes. The effect size is the

log-hazard rate for all outcomes, except Birth Weight-Gestational Age Ratio (BWGA). The

effect of biomarkers on BWGA is a change in percentile from the 50th percentile. Only

associations where the 95% Bayesian Credible Interval does not include zero are shown.

BMI, body mass index; GA, gestational age; IUI, intrauterine insemination; IVF, in vitro fertilization
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Figure 5: Summarised SHAP values for each feature category (red = clinical measure, blue

= MSD biomarker) across all outcomes investigated in the prognostic model.

PPH, postpartum hemorrhage
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Figure 6: SHAP values for all prognostic features for gestational diabetes mellitus (GDM)

and pre-eclampsia, respectively. The top ten features with the highest median value for each

outcome are indicated with light colors. Only IL-1RA and CRP were part of both top ten lists.

Features are colored based on the feature category as clinical measure (red) or MSD

biomarker (blue).

BMI, pre-pregnancy body mass index;MoM, multiple of medians; SHAP, Shapley additive

explanation
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Tables

Table 1: Baseline characteristics for the 1,049 women included in the PREGCO cohort.

Variable PREGCO (n=1,049)

Maternal age, years* 31.7 (4.5)

Gestational age at inclusion, days** 141 (140-143)

Pre-pregnancy BMI, kg/m2* 24.1 (4.8) (na=9)

Smoking in pregnancy 40 (3.8%)

Parity

0 576 (54.9%)

1 375 (35.7%)

2 81 (7.7%)

3+ 17 (1.6%)

Number of pregnancy losses

0 810 (77.2%)

1 194 (18.5%)

2 29 (2.8%)

3 16 (1.5%)

Sex of child, male 521 (50.5%) (na=18)

HCG***β 1.2 (0.8) (na=35)

PAPP-A*** 1.3 (0.8) (na=35)

COVID-19 antibodies 34 (3.2%)

Conception method

Spontaneous 944 (88.7%)

Assisted Reproductive Technology (IVF
or IUI) 120 (11.3%)

Prior existing chronic conditions

PCOS 23 (2.2%)

Diabetes Mellitus (type 1 or type 2) 2 (0.2%)

Endometriosis 9 (0.8%)

Complications in previous
pregnancy

Preterm birth 19 (1.8%)

Pre-eclampsia 24 (2.3%)

PPH (>500 mL blood loss) 20 (1.9%)

GDM 12 (1.1%)

Symbols: * mean (sd); ** median (IQR); *** multiple of medians (MoM). Missing values denoted in

na. If no mention of missing values, the value is complete.
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Abbreviations: BMI, body mass index, GDM, gestational diabetes; IUI, intrauterine insemination;

IVF, in vitro fertilization; PCOS, polycystic ovary syndrome; PPH, postpartum hemorrhage
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Table 2: Outcome characteristics

Variable PREGCO

Birth weight (g)* 3499 (554)

Gestational age (days)** 280 (273; 287)

Preterm (<37+0) 116 (11%)

Birth weight / Gestational age** 12.6 (1.8)

Severe postpartum hemorrhage
(PPH) 130 (12.2%)

Pre-eclampsia 46 (4.3%)

Gestational diabetes mellitus (GDM) 87 (8.2%)

Mode of delivery

Spontaneous vaginal birth 634 (60.7%)

Acute cesarean section 126 (11.8%)

Elective cesarean section 95 (8.9%)

Induced birth 235 (22.1%)

Any complication
(Severe PPH, preterm birth,
GDM, pre-eclampsia, acute
cesarean section)

369 (34.7%)

Symbols: * mean (sd); ** median (IQR).
Abbreviations: GDM, gestational diabetes mellitus; PPH, postpartum hemorrhage
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Supplementary Information

Meso Scale Diagnostics data normalization

We measured 47 inflammatory markers using the V-PLEX Human Biomarker 54-Plex Kit from Meso

Scale Diagnostics (MSD). Due to low-quality assay validation, we excluded all measurements from

the Th17 panel, resulting in 47 assays on six panels to be included in the analysis.

To address the batch effect exerted by the individual 96-well plate setup, we explored the corrective

effects of three data pre-processing methods and four normalization methods with the aim of

removing batch effects at panel level.

The MSD V-PLEX kit is based on electrochemiluminescence technology, where light emission from

SULFO-TAG labels is measured as light intensity (“signal”). The signal values are within the dynamic

range of the assay linearly associated with the concentration of the measured target. While this

principle is used for concentration determination by a measured standard curve, we here used the

signals directly to avoid any noise introduced by the measurement of a standard curve.

Due to the multiplex setup, plate-based batch effects were assessed by panel, as technical variation

was assumed to be equal across the four to ten assays measured per panel. Our first aim was to

remove any observed variation based on the 16 plates the samples were run on. We compared the

combination of three pre-processing methods: a) log2-transformation, b) method a plus removal of

outliers based on principal component analysis (PCA)54, and c) method b plus ComBat batch

correction55, and four normalization methods: i) no normalization, ii) median normalization56, iii)

quantile normalization57, and iv) MA normalization58. To assess the effectiveness of normalization, we

performed a visual inspection of PCA plots, density plots, and box plots.

Based on visual inspection of the PCA plots of the log2-transformed data, we defined individual

outlier limits for the six panels removing samples that exceeded these limits. Consequently, we

removed 17 outliers on Angio1, 13 outliers on Chem1, 11 outliers on Cyto1, 41 outliers on Cyto2, 8

outliers on Pro1, and 9 outliers on Vascu2 (see limits on Supplementary Figure 2).

We found median normalization to sufficiently remove all batch effects observed at PC1 and PC2 and

yielded overlapping curves with normal or near-normal distributions for the individual assays

observed on density and box plots. Similar results were found for MA normalization, while the other

methods yielded varying poorer results.

Similarity reduction of markers using Hobohm II

Hierarchical clustering showed high similarity between markers, indicating redundancy in the data set.

To address this, we employed the Hobolm II algorithm as outlined in Hobohm et al, 199220. We used

Spearman correlation as the correlation metric and tested cut-off levels at 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
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0.9, and 1 (Supplementary Figure 3). We chose a cut-off of 0.5, resulting in 41 markers. Using this

cut-off, we did not observe issues of collinearity in any of the statistical models.

Bayesian regression models

For all statistical analyses we employed Bayesian regression models. All models were fit using

rstanarm or brms24,59,60. Unless otherwise specified, all models were run for 10,000 iterations (5,000

warm-up and 5,000 sampling) with default settings for the sampler. Convergence was assessed by

calculating r-hat statistics, looking for divergences and making sure the sample did not exceed the

maximum tree depth after warm-up. A model had converged if and only if (1) all r-hat values < 1.01,

(2) no divergences, and (3) no iterations exceeding the maximum tree depth. All parameters were

centered prior to model fitting and MSD inflammatory markers were standardized so that the

interpretation follows changes in standard deviations. Furthermore, we also inspected correlations of

the posterior distributions to identify issues of collinearity.

Bayesian robust linear regression

The Bayesian robust linear regression extends the classical ordinary least squares by assuming a

Student t-distribution, thereby accommodating outliers. The degree of freedom is estimated directly

from the data. Formally,

𝑦 ~ 𝑡(ν,  µ,  σ)

in which is the sum over the intercept and covariates,µ

µ = 𝑏
0

+  
𝑘
∑ β

𝑘 
𝑥

𝑘 

To complete the model, we specify a set of priors across the parameters in the model,

β
0
~𝑁(0,  2. 5)

β
𝑘
~𝑡(7,  0,  0. 5)

σ~𝑁(0,  1)

ν~𝑁(0,  1)

Posterior model checking was done by simulating 100 draws from the posterior and comparing with

the observed distribution.
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Cause-specific parametric proportional hazards models

For analyzing the duration, or time to failure, we employed cause-specific parametric proportional

hazards survival models, as implemented in rstanarm59. This takes into account that some women

were lost to follow-up and are thus censored, and that there may be competing outcomes (e.g. induced

labor, acute cesarean section, or scheduled cesarean section is a competing outcome to spontaneous

vaginal birth). We compared two baseline hazards (cubic B-spline and M-spline) for each outcome

and visually inspected the estimated baseline hazard curve, versus the observed curve. Model priors

follow default settings, except the regression coefficients ( ) which were assigned a moreβ
𝑘

conservative prior,

β
𝑘
 ~ 𝑡(7,  0,  0. 5)

The prior induces regularization by forcing coefficients towards zero, i.e. a null effect.

Birthweight to gestational age ratio

For the birth weight to gestational age ratio, the values were standardized according to the mean and

standard deviation estimated from the Danish Medical Birth Registry (DMBR), including all births in

2020 (Supplementary Table 4). From the posterior, we defined a transformation,

𝑃(𝑋 ≤ 𝑥) = 𝐹(𝑋|µ, σ, ν ) − 0. 5

in which X is the estimated value of the marker, and F is the Student-t cumulative density distribution

parametrized by the mean, standard deviation, and degrees of freedom estimated from the DMBR.

The parameters were estimated using a Bayesian robust linear regression. The resulting value

represents the change from the 50th percentile for a one-unit change in the variable.
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Supplementary Figures

Supplementary Figure 1: PCA plots for log2-transformed signal values colored by plate for the six

MSD panels. Grey lines indicate selected limits for outlier detection.
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Supplementary Figure 2: Number of markers remaining after pruning by the Hobohm II algorithm

according to eight cut-off levels for the Spearman correlation coefficient.
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Supplementary Figure 3: (a) Heatmap of women x markers, (b) Heatmaps of markers x markers.
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Supplementary Tables

Supplementary Table 1: Outcome descriptions, definitions, adjustments and exclusion criteria.

Outcome Definition Outcome-specific
adjustments Exclusion criteria

Pre-eclampsia Blood Pressure >
140 mmhg systolic
and/or 90 mmHg
diastolic &
proteinuria

Previous number of live
births,
Smoking,
PAPP-A MoM,
βHCG MoM,
ART (divided into IUI or
IVF),
Ethnicity

Pre-gestational hypertension
Gestational hypertension
diagnosed before inclusion
pre-eclampsia in previous
pregnancy

Spontaneous
vaginal birth

Birth not assisted by
cesarean section or
induction

Smoking,
Hemorrhage in early
pregnancy,
UTI in current pregnancy,
Conisatio

n.a.

Gestational
age at birth

Gestational age
calculated from
ultrasound.

Smoking,
Hemorrhage in early
pregnancy,
UTI in current pregnancy,
Conisatio

n.a.

Preterm birth Gestational age <
37+0

Smoking,
Hemorrhage in early
pregnancy,
UTI in current pregnancy,
Conisatio

Gestational
diabetes
mellitus
(GDM)

Based on a two-hour
75 gram oral
glucose tolerance
test (OGTT); GDM
with glucose ≥ 9.0
mmol/l in capillary
whole blood or
venous plasma

PCOS,
GDM in prior pregnancy

GDM diagnosed before
inclusion
Diabetes Mellitus

Birth weight /
gestational age
ratio

Birth weight
recorded
immediately after
birth by midwife or
doctor.

Severe
Postpartum
hemorrhage

1000 mL blood loss
or more within 24
hours

ART (divided into IUI or
IVF),
Hemorrhage in early
pregnancy,
Cesarean section in prior
pregnancy

Acute cesarean
section

Delivery by acute
cesarean section,

Cesarean section in prior
pregnancy
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any degree

Any
complication

Pre-eclampsia,
GDM, Severe PPH,
Preterm birth, or
acute cesarean
section.

Previous number of live
births,
Smoking,
PAPP-A MoM,
βHCG MoM,
ART (divided into IUI or
IVF),
PE in prior pregnancy,
GDM in prior pregnancy,
PCOS,
UTI in current pregnancy,
Cesarean section in prior
pregnancy,
Conisatio,
Ethnicity

Pre-gestational hypertension
Gestational hypertension
diagnosed before inclusion
pre-eclampsia in previous
pregnancy
GDM diagnosed before
inclusion
Diabetes Mellitus (type 1 or 2)

Abbreviations: ART, assisted reproductive technology; GDM, gestational diabetes mellitus; IUI,

intrauterine insemination; IVF, in vitro fertilization; MoM, multiple of the median; n.a., not

applicable; OGTT, oral glucose tolerance test; PCOS, polycystic ovary syndrome; PE, Pre-eclampsia;

PPH, postpartum hemorrhage; UTI, urinary tract infection
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Supplementary Table 2: Hyperparameter values

Model Definition Outcome-specific adjustments

Logistic regression L1 penalty 1e-8 … 1 (log spaced)

LightGBM

Number of estimator 1 … 200

Learning rate 0.0001 … 1 (log spaced)

Max depth 3 … 30

Subsample, individuals 0.2 … 0.8

Subsample, feature 0.2 … 0.8

Mininum child samples 50 … 200

Maximum tree leaves 6 … 50

L1 penalty [0, 0.01, 1, 2, 5, 7, 10, 50, 100]

L2 penalty [0, 0.01, 1, 2, 5, 7, 10, 50, 100]
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Supplementary Table 3: Comparison of PREGCO and the Danish Medical Birth Registry (DMBR).

Variable PREGCO
(n=1,049)

DMBR 2020
(n=60,573)

Difference

Maternal age, years* 31.7 (4.5) 30.7 (4.7) 1.0 (0.72; 1.27, p
< 0.001)

Pre-pregnancy BMI, m/kg2* 24.1 (4.8) 24.8 (5.4) -0.7 (-0.99; -0.41,
p < 0.001)

Smoking during pregnancy** 40 (3.8%) 4,660 (7.7%) 0.49 (0.35; 0.67,
p < 0.001)

Parity**

0 576 (54.9%) 22,644 (37.3%) p < 0.001

1 375 (35.7%) 20,421 (33.7%)

2 81 (7.7%) 10,011 (16.5%)

3+ 17 (1.6%) 7,507 (12.4%)

Number of Pregnancy
Losses**

0 810 (77.2%) 52,145 (86%) p < 0.001

1 194 (18.5%) 6,965 (11.5%)

2 29 (2.8%) 1,230 (2.0%)

3+ 16 (1.5%) 282 (0.5%)

Sex of child, male** 521 (50.5%) 30,983 (51%) 0.96 (0.86; 1.07,
p=0.44)

* Z-test; ** testχ2
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Supplementary Table 4: Birth weight-gestational duration ratio parameters estimated from the Danish

Medical Birth Registry (DMBR).

Parameter Median 95% bCI

µ 12.61 12.59-12.62

σ 1.54 1.53-1.56

ν 6.88 6.54-7.24
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Supplementary Table 5: Variables and sources

Group Name Timepoint measured /
recorded and Source

Maternal
Characteristics

Maternal age Pre-pregnancy, EHR

BMI Pre-pregnancy, EHR

Smoking At inclusion, EHR

Ethnicity Pre-pregnancy, EHR

Current
Pregnancy

ART Pre-pregnancy, EHR

Gestational age at inclusion, based on
ultrasound At inclusion, EHR

GDM in current pregnancy At inclusion, EHR

COVID-19 antibodies 8-12th week scan and at
inclusion, EHR

Early hemorrhage At inclusion, EHR

Fetal
characteristics

Sex of child At inclusion, EHR

PAPP-A, MoM 8-12th week scan, EHR

HCG, MoMβ 8-12th week scan, EHR

Gestational age, based on ultrasound 8-12th week scan, EHR

Abdominal circumference At inclusion, EHR

Head circumference At inclusion, EHR

Femur length At inclusion, EHR

Prior
pregnancies

GDM in prior pregnancy At inclusion, Questionnaire

Pre-eclampsia in prior pregnancy At inclusion, Questionnaire

PPH in prior pregnancy At inclusion, Questionnaire

Preterm labor in prior pregnancy At inclusion, Questionnaire

Previous number of cesarean sections At inclusion, Questionnaire

Previous number of live births At inclusion, Questionnaire

Previous number of pregnancy losses At inclusion, Questionnaire

Prior diseases

Conisatio At inclusion, Questionnaire

Endometriosis At inclusion, Questionnaire

PCOS At inclusion, Questionnaire
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Abbreviations: ART, assisted reproductive technology; BMI, body mass index; EHR, Electronic

Health record; GDM, gestational diabetes mellitus; MoM, multiples of medians; PCOS, polycystic

ovary syndrome

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 15, 2023. ; https://doi.org/10.1101/2023.08.10.23293934doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.10.23293934
http://creativecommons.org/licenses/by-nc-nd/4.0/


44

Supplementary Table 6: Results from cross-validation of machine learning models. The highest

ranking model for each outcome is highlighted in bold, based on the binary cross entropy from the

inner CV.

Outcome Model

Development (inner CV) Interval validation (outer CV)

Binary
Cross
Entropy ROC-AUC AUPRC ROC-AUC AUPRC

Acute Sectio
LASSO 0.216 0.638 0.130 0.590

(0.515-0.667)
0.086
(0.057-0.126)

LightGBM 0.216

Any
complication

LASSO 0.599 0.630 0.457 0.615
(0.576-0.655)

0.421
(0.367-0.477)

LightGBM 0.602

Gestational
Diabetes

LASSO 0.268

LightGBM 0.266 0.697 0.219 0.708
(0.644-0.766)

0.176
(0.126-0.238)

Pre-eclampsia
LASSO 0.150

LightGBM 0.149 0.655 0.125 0.672
(0.580-0.758)

0.073
(0.042-0.115)

Preterm birth
LASSO 0.172

LightGBM 0.171 0.610 0.118 0.564
(0.460-0.66)

0.071
(0.041-0.132)

Severe PPH

LASSO 0.349

LightGBM 0.349 0.628 0.198 0.587
(0.530-0.638)

0.152
(0.117-0.193)
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