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Abstract 

Background: Causal variants underlying rare disorders may remain elusive even after expansive 
gene panels or exome sequencing (ES). Clinicians and researchers may then turn to genome 
sequencing (GS), though the added value of this technique and its optimal use remain poorly 
defined. We therefore investigated the advantages of GS within a phenotypically diverse cohort. 
 
Methods: GS was performed for 744 individuals with rare disease who were genetically 
undiagnosed. Analysis included review of single nucleotide, indel, structural, and mitochondrial 
variants. 

Results: We successfully solved 218/744 (29.3%) cases using GS, with most solves involving 
established disease genes (157/218, 72.0%). Of all solved cases, 148 (67.9%) had previously had 
non-diagnostic ES. We systematically evaluated the 218 causal variants for features requiring GS 
to identify and 61/218 (28.0%) met these criteria, representing 8.2% of the entire cohort. These 
included small structural variants (13), copy neutral inversions and complex rearrangements (8), 
tandem repeat expansions (6), deep intronic variants (15), and coding variants that may be more 
easily found using GS related to uniformity of coverage (19). 
 
Conclusion: We describe the diagnostic yield of GS in a large and diverse cohort, illustrating 
several types of pathogenic variation eluding ES or other techniques. Our results reveal a higher 
diagnostic yield of GS, supporting the utility of a genome-first approach, with consideration of 
GS as a secondary or tertiary test when higher-resolution structural variant analysis is needed or 
there is a strong clinical suspicion for a condition and prior targeted genetic testing has been 
negative. 
  



Introduction 

Massively-parallel (“next generation”) sequencing has revolutionized clinical medicine by 

uncovering the causal variants underlying rare conditions, particularly via large gene panels or 

exome sequencing (ES).1 Even if a clinical diagnosis has been made, identifying the molecular 

diagnosis – the underlying genomic change responsible for disease – can provide new clinical 

insight and support individualized therapies2 and familial testing and counseling. However, many 

causal variants, including those uniquely amenable to precision therapies,3 remain elusive even 

after ES or gene panel sequencing. Thus, a majority of rare disease patients remain molecularly-

undiagnosed,4,5 and clinicians may thus turn to genome sequencing (GS). Although more costly 

than ES, which only evaluates the ~2% of the genome that is protein-coding, GS has many 

potential advantages, including the ability to detect variants that ES cannot easily detect, such as 

certain structural variants (SVs, encompassing a broader range of copy number gains and losses 

in addition to copy-neutral inversions, retroviral insertions and other, more complex events), 

tandem repeat expansions (TREs), and deep intronic variants. Moreover, the lack of an exon-

capture step in GS leads to improved uniformity of sequence coverage, increasing detection 

sensitivity for single nucleotide variants (SNVs) and insertions/deletions (indels) in certain 

coding regions compared to ES.6-10 However, with the enhanced technical sensitivity of GS 

comes a higher analytic burden due to the millions of non-coding or structural variants identified. 

To date, the few publications that have compared the relative yield of GS versus ES have found 

that higher detection sensitivity of GS is associated with only a modest increase in diagnostic 

yield.11-14 Thus, the incremental benefit of GS remains unclear.   

Through the Center for Mendelian Genomics (CMG) and the Rare Genomes Project (RGP) at the 

Broad Institute of MIT and Harvard, we have sequenced and analyzed over 8,000 families with 



rare, suspected monogenic disease, employing a variety of analytic techniques to identify 

pathogenic variants responsible for a variety of phenotypes.15 We therefore evaluated the 

diagnostic yield of GS for rare disease diagnosis within this cohort, focusing on features enabling 

successful diagnosis via GS, particularly where ES or other methods had been unsuccessful. 

Methods  

The Broad Institute CMG and RGP are research studies aimed at genetic diagnosis and discovery 

for people with suspected rare Mendelian disorders. The Broad CMG was established in 2016 as 

part of an initiative funded by the National Institutes of Health to identify novel disease genes 

underlying Mendelian disorders using ES and GS.15-17 Families sequenced through the Broad 

CMG are enrolled by collaborating investigators in research studies under a local institutional 

review board (IRB)-approved protocol that includes a provision for data sharing. RGP was 

launched in 2017 as a patient-centered initiative to directly recruit individuals and families with 

suspected Mendelian disorders throughout the United States for sequencing and analysis via the 

Broad CMG. Potential participants self-refer through the study website. Both studies have been 

approved by the Mass General Brigham IRB. 

Over a five-year period, from April 2016 to April 2021, 744 families underwent GS via the 

Broad CMG (354 families) or RGP (390 families) following an unrevealing prior diagnostic 

evaluation.   

Case selection 

Individuals or families were selected for GS after case review by at least two members of 

CMG/RGP team (genetic counselors, clinical geneticists or other relevant subspecialists).  Cases 

approved for GS were thought to have a high likelihood of an underlying genetic disorder in 

addition to appropriate, non-diagnostic prior testing justifying the need for GS, such as ES or 



targeted testing of specific disease genes. The RGP study also includes families who are unable 

to access genetic testing due to lack of insurance coverage or other barriers to care and, therefore, 

may have not had any prior genetic testing. 

 

Sequencing and Analysis 

GS and data processing were performed by the Genomics Platform at the Broad Institute.  Our 

approaches to data analysis continue to evolve as we develop innovative approaches to derive the 

maximum diagnostic yield. Additionally, our Broad CMG collaborators use multiple 

“homegrown” approaches to data analysis based on their experience and the genetic architecture 

of the various phenotypes. Generally, we analyze our ES/GS data under the assumptions that the 

affected individual/family has a severe, rare Mendelian condition, and our analysis filters reflect 

these assumptions (Table S1). Our “first pass” analysis for SNV and indels includes evaluation 

for both de novo dominant or recessive conditions. For most families, we also perform a search 

with a list of priority genes based on phenotype and incorporating literature reports, Online 

Mendelian Inheritance in Man (OMIM)18, and internal communication with 

researchers/collaborators and relax our filtering strategy when using these lists. Additional 

sequencing methods and analytic tools are further described in the Supplement.  

Variant interpretation 

Candidate variants (SNVs, indels and SVs) in known disease-associated genes were classified 

according to established criteria19-21 (additional details in the Supplement). We considered a case 

solved if a pathogenic or likely pathogenic variant was found in a known disease gene that 

explained the phenotype or if a variant was found in a novel disease gene with moderate/strong 

supporting evidence for the individual’s phenotype by ClinGen criteria22; we considered cases 



likely solved when a variant was identified in a known disease gene that was classified as a 

variant of uncertain significance (VUS) by ACMG/AMP criteria but the multidisciplinary CMG 

team and referring provider, when relevant, considered the variant causative based upon 

supportive clinical data. Re-analysis of unsolved cases remains ongoing; the solve status reported 

here is as of May 1, 2023. 

Evaluation of diagnoses 

We systematically evaluated all solved/likely solved cases to determine variants requiring GS for 

identification (Figure). These included deep intronic non-coding variants as well as coding 

variants such as SNVs and indels poorly covered by standard ES platforms. In addition, we 

evaluated all TREs and SVs to identify those that were missed on prior exome or could not 

reliably be found using ES data. For example, larger CNVs in well-covered regions may be 

identified on ES data if dedicated CNV calling pipelines are applied. Because the performance of 

many CNV callers on ES data decays for CNVs smaller than 3 exons, 23-25 any heterozygous 

CNV with less than 3 targets was considered to require GS as it would not be reliably detected 

by ES. We also considered CNVs involving noncoding regions or regions that are challenging to 

sequence (such as high sequence homology, exons with high GC content) as requiring GS to 

detect and manually reanalyzed the ES data when available with updated CNV calling to see if 

we could retrospectively identify the CNV. Comparisons of diagnostic yield across categories 

were made using the Fisher’s exact test or chi square test when appropriate. 



 

Figure 1. Variants assessed as requiring genome sequencing over exome sequencing to be 
identified within our cohort. These include: (A) deep intronic variants (arrow) unlikely to be 
reliably detected by typical ES methodologies (greater than 20 base pairs upstream/downstream 
from the beginning or end of an exon), (B) indels or SNVs that were missed on prior ES due to 
poor coverage of the region (arrow),  tandem repeat expansions (TREs), and some SVs such as 
copy-neutral inversions, (C) small (~50-2000 base pair) and/or largely intronic CNVs, or 
complex events involving more than one type of SV.  
 

Results:  

Diagnostic yield  

Of the 744 families who underwent GS, we consider 218 (29.3%) solved or likely solved (Table 

S2). Characteristics of the probands undergoing GS are presented in Table 1. Most solves 

(157/218, 72.0%) were identified in previously known disease genes and the remainder 

represented novel disease gene discoveries (61/218, 32.1%), with one case involving both a 

novel gene and a known gene contributing to a blended phenotype. Our diagnostic yield was 

lowest in cases sequenced as duos (two affected siblings or a parent/proband pair, 14/77, 18.2%), 



compared to proband only (44/215, 20.5%), trios (136/369, 36.9%), or larger family groups 

(24/83, 28.9%) (p < 0.001).  Diagnostic yield was lower in RGP-enrolled cases (102/390, 26.1%) 

compared to CMG collaborator-recruited cases (116/354, 32.8%), though this did not reach 

statistical significance. Although we allowed for cases to be considered solved by VUS that were 

clinically-interpreted by our multi-disciplinary team as causal, excluding any solve involving a 

VUS would result in a diagnostic yield of 130/744 (17.5%). 

For the 138/744 (18.5%) cases with VUS, most were in strong candidate novel disease genes 

(109/138, 80.0%) where ACMG/AMP criteria are not yet appropriate to be applied and the 

remainder were novel variants in known disease genes (29/138, 21.0%) identified that did not yet 

have sufficient evidence for a pathogenic classification. A list of candidate disease genes is 

provided and cases have been submitted to Matchmaker Exchange (Table S3).26 

The average diagnostic yield varied significantly by phenotype category (p<0.0001 by chi-square 

test), with the highest yields seen in probands with neurodevelopmental conditions or syndromic 

anomalies (Figure 2). Our solve rate did not significantly differ by imputed ancestry (Table S3) 

either when considered across multiple groups or when all European were compared to non-

European ancestries, though this may be due to the small sample size as the solve rates were 

lower for African/African American, Admixed American, and East Asian (22%, 15%, 17%) as 

compared to European (43%). 



 

Figure 2. Diagnostic yield by phenotype category. Probands were categorized by most 
prominent phenotypic features.  

Solves requiring GS 

We determined that 62 of our 218 solved/likely solved cases required GS to detect the causal 

variant, comprising 28.3% of the diagnosed cases and 8.3% of the entire cohort (Figure 3). Of 

these 62 cases, 55 had prior negative ES, and two others had prior targeted sequencing of the 

causal gene (ADA, DMD). The remaining five cases were empirically determined to require GS 

as they involved a deep intronic variant, a complex SV and three TREs unlikely to be identified 

via ES pipelines.  



 

Figure 3. Classification of solved cases. Of all 218 cases solved/likely solved by GS, the types 
of variants requiring GS (61) to identify are displayed. Twenty-one (34%) were SVs, including 
11 deletions (2 non-coding regions), 2 duplications, 4 inversions, 3 complex del/dup events, and 
one mobile element insertion (MEI) in a non-coding region. Additionally, there were 6 tandem 
repeat expansions identified.  Nineteen cases (31%) requiring GS involved coding variants 
missed on prior ES due to poor coverage of the region, either resulting in no variant call at that 
site or a poor-quality variant that was filtered out during the analysis process. Most of these 
(13/19) were indels (small insertion/deletions usually of 10-15 bp in size) of which 8/13 were 
deletions and 5/13 were involved indels of different types. Fifteen (25%) of the diagnoses 



requiring GS involved deep intronic non-coding variants (complemented by RNA sequencing). 
Three cases had variants that were missed for more than one reason (SVs in non-coding regions 
for two and a deep intronic variant in a novel gene in one). Of the cases solved by variants that 
were detectable by ES, most (93/156, 59.6%) had prior ES that missed the variant, whereas the 
remaining 63 did not have prior ES but were solved via variants expected to be detectable by 
current ES methodologies. The three cases of SMN1 homozygous deletions responsible for spinal 
muscular atrophy (SMA) were identified in RGP probands (two were concurrently identified via 
clinical genetic testing, one was an adult who had been clinically diagnosed with SMA of 
unknown type but never received testing). Two diagnostic mitochondrial DNA (mtDNA) 
variants were identified by GS and missed by prior ES, although these variants were also 
identified by mitochondrial genome sequencing. 

 

Diagnostic yield of GS detectable by ES  

Most cases solved via GS previously had non-diagnostic ES (148/218, 67.9%) (Figure 4), 

confirming that these variants were overlooked previously. Overall, 94/148 (63.5%) exome-

negative cases later solved by GS could have been found by exome reanalysis, most commonly 

because the diagnosis involved a recent novel gene-disease discovery (46/94, 48.9%), a variant 

in a known gene that was re-interpreted as disease causing over time (31/94, 33.0%), or analysis 

of variants in noncoding disease-associated transcripts (1/94, 1.1%).  

Expanding the methodologies for variant calling applied to ES is predicted to uplift diagnosis by 

3.2% (24/744) overall for the cohort. If CNV calling (8), mobile element insertion calling (1),27 

and mitochondrial genome variant calling (2) were performed on ES data, an additional 11/94 

(11.7%) would be solved. RNA sequencing analysis helped identify or validate the impact of a 

variant on gene expression and/or splicing for deep intronic variants (6/94, 6.4%). For the 63 

families without prior ES that could have been found by exome analysis, seven diagnoses 

required CNV calling (4) or specialized calling of SMN1 deletions responsible for SMA (3).28 

Indels were a common source of variants requiring GS, so it remains possible that some of the 16 

coding indels identified in individuals without prior ES may be missed by ES. Given that this 



cannot be ascertained with the available data, we have not counted them as requiring GS to avoid 

over-reporting.  

 

Figure 4. Reasons cases were not solved by prior exome sequencing. 

Maximizing the yield of GS 

Of the 61 solves/likely solves requiring GS, 54 (89%) were in known disease genes and most 

were identified by untargeted analysis either due to improved coverage of coding regions (19), or 

by genome-wide evaluation for rare SVs (21) or known pathogenic TREs (6). Deep intronic 

variants (15) were typically identified in a more targeted fashion, by evaluating genes associated 

with the specific phenotype, and the impact of several were validated by RNA sequencing (7/15) 

or other functional evaluation (2/15). Additionally, eight diagnoses involving SVs benefited from 

a strong clinical suspicion based upon phenotypic or biochemical data that was used to identify 

the underlying causal variant(s) that had been missed by standard genetic testing methodologies 

(FBN1, ADA, QDPR, NIPBL, RPGRIP1, DMD, RSP19, EDA). 29,30  In these cases, a clinical 

id 

 or 

d 

) 

m 



diagnosis suggested a particular molecular genetic diagnosis - often narrowing the differential to 

a single gene - though the diagnosis eluded either ES or more targeted testing. 

Only seven solved cases requiring GS were in novel disease genes, reflecting the challenges in 

prioritizing and validating variants beyond ES for genes not currently associated with human 

disease and the power of GS analyzed via research consortia. These diagnoses include: i) a 

homozygous deep intronic variant in a novel mitochondrial disease gene, NDUFB10, ultimately 

solved via a ‘multi-omic’ approach;31 ii) a deep intronic variant in RPL17; iii) a homozygous 

splice-impacting variant in CYS1 missed on ES due to poor coverage of a GC-rich region; 32 iv) a 

structural long non-coding RNA variant in CHASERR; v) a missense variant in PNPLA7 that was 

missed due to poor coverage on ES present in trans with a splice-impacting variant; vi) a single 

exon deletion in the loss-of-function-constrained ZFHX3 gene; vii) and a homozygous 16 kb 

deletion in WBP4 identified on GS complemented by RNA sequencing.33 The latter four 

diagnoses were aided by identification of other affected cases via the Matchmaker Exchange.34 

 

Discussion:   

We describe a large cohort of individuals with rare disease for whom a plausible diagnosis was 

found using GS, often after being missed by prior testing approaches. These cases illustrate 

several types of pathogenic variation that may be missed by ES or other standard genetic testing 

methodologies, particularly small or copy-neutral SVs, deep intronic variants, and TREs. 

Importantly, these cases were solved using short read GS, which is currently clinically available. 

Long read GS, which is anticipated to soon be clinically available, should also be able to identify 

these variants described here as well as additional findings undetectable by short read GS. For 

this cohort, in order to achieve the overall solve rate of 29.3% after prior negative testing, 13.3% 



of families needed ES reanalysis, 2.3% needed additional methodologies (calling of CNV, 

mitochondrial genome variants, mobile element insertions, and SMN1 deletions on ES data), and 

8.3% of families truly required sequencing of the genome.  

Most of our solved and likely solved cases requiring GS (47/61, 77%) were identified in an 

untargeted fashion, by systematically applying analytic tools across the entire cohort. As most 

diagnoses identified in the cohort could have been found using ES, those that truly required GS 

offer important insight into optimal clinical application of GS for rare disease diagnosis. Our 

analysis for SVs was particularly high-yield at identifying variants missed by prior testing, as 35 

solves involved SVs, most (20/35) of which required GS to identify. The deep intronic variants 

described in this cohort were identified by a targeted approach, narrowed down to a single gene 

or list of genes by phenotyping or RNA sequencing. This reflects not only the challenges in 

variant prioritization related to the multitude of SVs, deep intronic, or non-coding variants 

identified by GS data, but also suggests that additional diagnoses may be found in the future by 

continued reanalysis of GS data from unsolved cases using regularly updated candidate gene 

lists. These diagnoses also demonstrate the value of careful phenotyping in the evaluation of 

genetic testing results in addition to prioritization of genetic loci for evaluation by GS via 

transcriptome analysis (RNA sequencing).35 In particular, a phenotypically-driven or otherwise 

targeted approach may mitigate some of the analytic burden of GS analysis, as a deep analysis of 

a limited number of genetic loci is more feasible than a search for SNVs and SVs across the 

entire genome. We have previously demonstrated the success of this technique in an individual 

with early-onset Marfan syndrome, in which a structural variant (deletion) was identified using 

GS that had been missed by multiple prior approaches, including targeted deletion/duplication 

analysis via multiplex ligation-dependent probe amplification (MLPA) in addition to ES.30 



Critical to this approach is the ability to accurately phenotype the patient in order to guide the 

genomic evaluation36, and, indeed, the diagnostic yield within our cohort was greatly augmented 

by the expertise of the investigators providing cohorts for collaborative analysis.    

Prior evaluations of the diagnostic yield of GS when compared to ES have demonstrated either a 

similar13 or only mildly increased yield11, with few diagnoses identified that would not be 

detectable by ES alone - usually SVs.4,12-14,37,38 In particular, one prior report of 108 cases of GS 

after non-diagnostic ES identified an incremental yield of 7%, but only 3% for cases requiring 

GS for diagnosis.11 A more recent study of GS as a first-line modality for rare disease diagnosis 

via identified an incremental yield of 37.5% in those who had prior ES, though notably only 16 

individuals (1.5% of the larger cohort) had ES prior to GS, making it difficult to directly 

compare to our data given the small numbers39. Furthermore, while 14% of all diagnoses were 

described by the investigators as requiring GS for detection, this included all SVs identified in 

the study, even though some may be callable on ES data, which is distinct from our approach.39 

Our larger proportion of diagnoses requiring GS for detection (28.4% of the solved cohort) 

compared to this and prior studies also likely reflects our increased detection of SVs and variants 

outside of coding regions, as many prior analyses of GS yield have focused primarily on coding 

variants5,13,14, as well the case selection in our cohort, with families with a high probability of 

monogenic disease (often with prescreening by gene panel or prior ES) selected for sequencing 

via the Broad CMG.  

Overall, our results support the use of GS as a first-line test for rare disease diagnosis due to the 

ability to detect multiple types of disease-causing variation, replacing both ES and chromosomal 

microarray in a single test, and superior ability to detect all classes of variation (with the 

exception of somatic mosaic variants, for which the lower mean coverage of GS reduces 



sensitivity). However, routinely applying GS after ES or other non-diagnostic testing is still not 

likely to be the most efficient strategy, reflected in our relatively low incremental yield after non-

diagnostic ES. While sequencing, analysis, and storage costs for short read GS and variation in 

payor reimbursement may present limitations to its routine application for genetic diagnosis, we 

anticipate these barriers to be overcome in the future, particularly as sequencing costs continue to 

fall. For people who remain undiagnosed after clinical ES, our findings support a reasonable 

diagnostic potential from GS, especially in the case where there is a clinical diagnosis directing 

focused attention in the GS analysis. Transcriptome analysis, which was utilized for a minority 

of families here, has a complementary role in GS, and its implementation in clinical testing 

laboratories and is likely to further improve diagnosis rates. Altogether, our findings provide 

important insight into the present diagnostic utility of GS and the role it may play in the future. 
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Table 1. Demographics of sequenced probands 

 Probands (N, %) 

Sex 

   Male 

   Female 

 

406 (54.6%) 

338 (45.4%) 

Age* Median, IQR 

10.2 (4 – 36) 



Imputed ancestry** 

   African/African American 

   Ashkenazi Jewish 

   East Asian 

   European  

   Admixed American 

   Middle Eastern 

   South Asian 

   Multiple/Unassigned 

 

22 (3.0%) 

33 (4.4%) 

12 (1.6%) 

570 (76.6%) 

27 (3.6%) 

2 (0.3%) 

13 (1.7%) 

65 (8.7%) 

* Age unknown for 116 participants 

**For ancestry imputation, we computed principal components (PCs) on high-quality bi-allelic 

autosomal SNVs in our rare disease cohorts using the gnomAD v2 method40.  The sample 

scores from this projection are input into the gnomAD v2 random forest model and an ancestry 

assigned to all samples for which the probability of that ancestry is > 90%. All samples that do 

not meet the 90% threshold are assigned as Multiple/Unassigned. 

 


