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ABSTRACT Atrial Fibrillation (AFib) and Atrial Flutter (AFlut) are prevalent irregular heart rhythms
that poses significant risks, particularly for the elderly. While automated detection systems show promise,
misdiagnoses are common due to symptom similarities. This study investigates the differentiation of
AFib from AFlut using standard 12-lead ECGs from the PhysioNet CinC Challenge 2021 (CinC2021)
databases, along with data from a private database. We employed both one dimensional-based (1D) and
image-based (2D) Deep Learning models, comparing different 1D and 2D Convolutional Neural Network
(CNN) architectures for classification. For 1D models, LiteVGG-11 demonstrated the highest performed,
achieving an accuracy (Acc) of 77.91 (±1.73%), area under the receiver operating characteristic curve
(AUROC) of 87.17 (±1.29%), F1 score of 76.59 (±1.90%), specificity (Spe) of 71.69 (±4.73%), and
sensitivity (Se) of 86.53 (±5.33%). On the other hand, for 2D models the EfficientNet-B2 outperformed
other architectures, with an Acc of 75.20 (±3.38%), AUROC of 85.50 (±1.14%), F1 of 71.59 (±3.66%),
Spe of 74.76 (±13.85%) and Se of 75.74 (±13.85%). Our findings indicate that distinguishing between
AFib and AFlut is non-trivial, with 1D signals exhibiting superior performance compared to their 2D
counterparts. Furthermore, it’s noteworthy that the performance of our models on the CinC2021 databases
was considerably lower than on our private dataset.

INDEX TERMS ECG, Atrial Fibrillation, Atrial Flutter, Deep Learning, Convolutional Neural Network

I. INTRODUCTION
Atrial Fibrillation (AFib) and Atrial Flutter (AFlut) are dis-
tinct irregular heart rhythms originating from abnormal ac-
tivity in the heart’s upper chambers, the Atria [1], [2]. These
conditions pose significant risks, especially for the elderly
[3]. AFib involves chaotic electrical activity, causing rapid,
irregular atrial contractions at 350-500 beats per minute,
compromising heart function and raising stroke risk [4],
[5]. AFlut, often misdiagnosed as AFib, features a single
electrical circuit driving atrial contractions at 250-350 beats
per minute, disrupting heart function [4]. Early diagnosis
and treatment are crucial for managing AFib and AFlut and
reducing severe complications such as stroke [3].

Subtle or absent symptoms often accompany irregular
heart rhythms, including chest pain, dizziness, shortness of
breath, fainting, and palpitations [3], [5], associated with
rapid ventricular rate and inadequate diastolic ventricular

filling [2]. Automated detection systems can significantly aid
in promptly and accurately identifying these conditions, im-
proving healthcare efficiency and reducing patient wait times.
This is especially beneficial for underprivileged hospitals
with limited access to experienced cardiologists, alleviating
strain on their healthcare infrastructure.

The electrocardiogram (ECG), an essential tool for di-
agnosing cardiac issues, is utilized extensively worldwide,
with millions of exams conducted annually. ECG involves
the measurement of the heart’s electrical activity using elec-
trodes affixed to patient’s skin and is considered the gold
standard for noninvasive diagnosis of various heart disorders
[4]. Clinical assessment of AFib and AFlut predominantly
relies on non-invasive 12-lead ECGs where distinct patterns
of electrical activity on the ECG signal enable differentiation
between these two conditions [1], [5].

On the ECG, AFib is characterized by the absence of P
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waves, irregular RR intervals, and fibrillatory waves, while
AFlut typically displays sawtooth flutter waves [4]. However,
despite these distinct patterns, AFlut is often misdiagnosed
as AFib due to similar symptoms and AFib’s higher preva-
lence [2], [3], [5]. Some studies suggest that AFlut may be
misinterpreted as AFib, especially when ventricular activity
is highly irregular, causing AFlut to mimic AFib on surface
ECGs [6]. This misinterpretation can lead to inappropriate
treatment, as each condition requires a specific therapeutic
approach.

Over the past decades, the research community has in-
creasingly focused on automating AFib detection, with Deep
Learning (DL) emerging as an effective technique for ECG
analysis [7], [8]. Studies consistently show high accuracy
in detecting AFib compared to non-AFib classes [9]–[13],
with some proposing merging AFib and AFlut into a single
class for classification [12]. However, distinguishing between
AFib and AFlut has received limited attention, and existing
studies have produced unsatisfactory results [9].

Most studies differentiating between AFib and AFlut typ-
ically use datasets such as the MIT-BIH Atrial Fibrillation
[14], [15] and MIT-BIH Arrhythmia [15], [16], featuring
extended records of two-lead one-dimensional ECGs. These
studies adopt a classification approach for ECG signals, cat-
egorizing them into AFib, AFlut, and Normal Sinus Rhythm,
often with limited subject pools. Consequently, they fre-
quently had to partition this data into smaller segments for
analysis. While employing the same subject for both training
and testing sets may yield more precise results due to intra-
subject heartbeat interdependence, caution is necessary, as
relying solely on intra-subject paradigms could lead to overly
optimistic and biased classifications [17]–[19].

Furthermore, most studies classifying ECGs rely on one-
dimensional signals [13]. However, in clinical practice,
physicians diagnose by visually examining and interpret-
ing 12-lead ECGs exams. Thus, we hypothesize that bi-
dimensional (image-based 12 lead ECG exams) DL models
designed for AFib and AFlut discrimination may outperform
one-dimensional models. Additionally, considering the com-
mon occurrence of misdiagnoses between these conditions,
we also anticipate sub-optimal performance from DL models.

In this study, our aim is to investigate the effectiveness
of employing 12-lead ECGs to differentiate between AFib
and AFlut, utilizing either one-dimensional signals or tra-
ditional 12-lead ECG images, with a binary classification
approach. We utilized data from the six largest PhysioNet
Cinc Challenge 2021 (CinC2021) databases, along with a pri-
vate database sourced from ambulatory patients at a tertiary
referral hospital. We explored two types of input data: images
(2D) and one-dimensional (1D) signals, with the objective of
determining which yields better performance. This approach
distinguishes our study from other state-of-the art DL-based
ECG classification research. To conduct our experiments, we
evaluated the performance of various different Convolutional
Neural Network (CNN) architectures for image-based and
one-dimensional-based input data. To the best of our knowl-

FIGURE 1. General structure of the proposed methodology for AFib and AFlut
classification based on ECG data with different 1D and 2D CNN architectures.

edge, this study represent the first report on the assessment of
AFib and AFlut discrimination using end-to-end CNNs. Our
study offers the following contributions:

1) Thorough evaluation of CNN models for distinguish-
ing between AFib and AFlut based on ECG data;

2) Comparative analysis of 1D and image-based CNN
models, shedding light on their relative efficacy in
arrhythmia classification tasks;

3) Analysis of different datasets highlighting the impor-
tance of dataset composition and balance in model
performance.

II. METHODS
In this section, we describe the dataset, the preprocessing
steps and the deep neural networks architecture used for
binary classification of ECG signals. The general structure
of the proposed method is shown in Figure 1.

All of our experiments were performed using a Foxconn
High-Performance Computer (HPC) M100-NHI with an 8
GPU cluster of 32 GB NVIDIA Tesla V100 cards. The
methodology was implemented using the Python framework
(version 3.6.8) and Keras/TensorFlow (version 2.3.0).

A. DATASETS
We utilized the PhysioNet CinC Challenge 2021 (CinC2021)
databases [20], [21], which offer a repository of standard
12-lead ECGs covering 30 cardiac abnormality diagnoses.
It comprises the following datasets: public (CPSC) and
unused (CPSC extra) China Physiological Signal Chal-
lenge, St. Petersburg Institute of Cardiological Technics
(INCART), Physikalisch-Technische Bundesanstalt (PTB),
PTB-XL, Georgia 12-lead ECG Challenge, Chapman Shaox-
ing and Ningbo.

Typically, 12-lead ECGs present 10 s of recorded signals.
To avoid losing arrhythmic morphologies present in long-
term ECG labels, we selected datasets with recordings of ap-
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TABLE 1. Number of selected 12-lead ECG exams from the six CinC2021 datasets and the InCor-DB private database.

Datasets ECGs (Total) Atrial Fibrillation Atrial Flutter
Chapman-Shaoxing 12-lead ECG 2,225 1,780 445

CPSC 2018 Training Set (CPSC 2018) 1,221 1,221 0

China 12-Lead ECG (CPSC2018-Extra) 207 153 54

Georgia 12-Lead ECG Challenge 756 570 186

Ningbo First Hospital 12-lead ECG 7,615 0 7,615

PTB-XL Electrocardiography 1,587 1,514 73

Private InCor-DB 12-Lead ECG 9,528 8,219 1,309

Total 23,139 13,457 9,682

proximately 10 s. Therefore, we excluded PTB and INCART
datasets due to longer recordings exceeding 10 s.

We also incorporated a private dataset of 12-lead ECGs,
denoted as InCor-DB, comprising data collected between
2017 and 2020 [13]. This dataset was sourced from the
Picture Archiving and Communication System (PACS) of
a specialized tertiary referral hospital in Brazil with focus
on cardiology, namely Heart Institute Hospital. Data were
acquired using MORTARA TM ELI 250c machines, en-
compassing 52 distinct clinical diagnoses related to cardiac
abnormalities. It is important to note that this private dataset
fully adheres to all pertinent ethical regulations and was
approved from the Institutional Review Board (IRB).

This study aimed to analyze patient data diagnosed with
AFib and AFlut arrhythmia, excluding records with different
diagnostic annotations. We utilized class weight estimation
techniques to handle dataset imbalance. Table 1 outlines the
number of ECGs in the six largest CinC2021 databases and
the InCor-DB dataset.

B. DATA PREPROCESSING
The standard 12-lead ECG raw signals were resampled to 500
Hz and standardized to a length of 10 seconds. This entailed
either truncating longer signals to the initial 10 seconds or
zero-padding shorter signals to achieve the desired duration.
Our preprocessing consists of two phases: one for 1D signals
and the other for 2D signals, which are essentially images.
Figure 2 displays our preprocessing approach.

For 1D signals, we applied a Butterworth bandpass filter
with a frequency range of 2-40 Hz, maintaining the original
sampling rate of 500 Hz.

To create the dataset for 2D signals, we converted the 1D
raw signals from the original datasets into images using the
MORTARA ECG image template, with the signals drawn
onto this background. The original image dimensions were
1671x3122x3. We opted for the MORTARA template to
mimic how physicians would typically encounter ECG ex-
ams. Prior to conversion, the signals underwent filtering with
a 60 Hz notch filter and a 0.5–100 Hz bandpass Butterworth
filter. We then converted the images to grayscale and resized
them to 30% of their original dimensions (resulting in a
501x936 grayscale image) to reduce computational complex-
ity.

C. DEEP LEARNING MODELS
1) One-dimensional Classification
We employed seven 1D CNN architectures to assess the
performance of AFib and AFlut classification in 1D data: (i)
LiteVGG-11 [22]; (ii) LiteResNet-18 [22]; (iii) MobileNet
[23]; (iv) ResNet-50 [24]; (v) VGG-16 [25]; (vi) DenseNet-
121 [26]; and (vii) EfficientNet-B2 [27].

For the traditional CNNs, we adapted the 2D convolutions
to 1D convolutions. In the case of Lite models (LiteVGG-
11 and LiteResNet-18), we implemented a lightweight CNN
proposed by Quenaz et al. (2022) [22]. These Lite models
deliver comparable performance to their original counter-
parts, while demanding fewer computing resources. Their
approach incorporates depth-wise separable 1D convolution
layers (DWConv), a reduced number of filters, a global
average pooling for flattening, and fewer units in the dense
layers. We retained the fully connected layers of the original
models, only modifying the replacement of the last layer
with a single output using a sigmoid activation. Each model
underwent training for over up to 120 epochs with a batch
size of 64. To mitigate overfitting, we incorporated an early
stopping callback with patience of seven epochs. This means
that if the model does not improve in the validation dataset
for seven consecutive epochs, the training process is stopped.

2) Image Classification
To assess the performance of image-based classification of
AFib and AFlut, we used five traditional and widely used 2D
CNNs: (i) MobileNet [23]; (ii) ResNet-50 [24]; (iii) VGG16
[25]; (iv) Densenet-121 [26]; and (v) EfficientNetB2 [27].

The fully connected layers comprised a customized 3-layer
perceptron with dropout regularization set at 30%, ReLU
activation function in intermediate layers, and a sigmoid
function in the final layer. Each model underwent training
for 30 epochs, utilizing a batch size of 8. Similar to the 1D
classification, we implemented an early stopping callback
with patience of seven epochs to prevent overfitting.

D. PERFORMANCE EVALUATION
We conducted a 10-fold cross-validation for all experiments,
and we present the results in the following format: mean
(std). To prevent data leakage, we ensured that exams from
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FIGURE 2. Preprocessing Steps for 1D and 2D ECG signals.

the same patient did not appear in different partitions of
the cross-validation protocol. In order to evaluate the perfor-
mance of the employed models, we considered five distinct
metrics, including: Sensitivity (Se), Specificity (Spe), F1-
score (F1), Area Under Receiver Operating Characteristic
curve (AUROC) and Accuracy (Acc). Given the significant
class imbalance within the dataset, we defined our best model
based on the F1-score.

E. EXPERIMENTAL SETUP
We conducted experiments to assess the performance and
generalizability of our models utilizing distinct approaches:
1D and image-based ECGs. To evaluate the effectiveness of
our models, we employed various evaluation setups. Our goal
was to assess the overall performance of the models and their
ability to generalize to external datasets. The experiments
were carried out for both the 1D and image-based ECGs,
utilizing the following setups:

1) Setup 1:
a) Train / Validation / Test (10-fold): CinC2021 and

InCor-DB.
b) External Validation: None.

2) Setup 2:
a) Train / Validation / Test (10-fold): CinC2021.
b) External Validation: InCor-DB.

3) Setup 3:
a) Train / Validation / Test (10-fold): InCor-DB.
b) External Validation: CinC2021.

4) Setup 4:
a) Train / Validation / Test (10-fold): InCor-DB.
b) External Validation: CHAPMAN, CPSC, CPSC

(extra), GA, NINGBO, PTB-XL.

III. RESULTS
A. ONE-DIMENSIONAL-BASED CLASSIFICATION
Table 2 displays performance results for seven proposed
architectures, considering AFlut as the positive class. We
employed Setup 1 (aforementioned), utilizing both the
CinC2021 and InCor-DB datasets for training, validation,
and testing.

In addition to these results, we adopted different strate-
gies: (Setup 2) Training/validating/testing exclusively with
CinC2021 followed by external validation with InCor-DB
(Table 3); and the opposite (Setup 3) training with InCor-DB
and external validation using CinC2021 (Table 4).

Moreover, Figure 3 presents the accuracy results for the
top-performing 1D-based classification model, LiteVGG-11,
trained exclusively on InCor-DB and validated externally on
individual CinC2021 datasets (Setup 4).

B. IMAGE-BASED CLASSIFICATION
Table 5 showcases performance results for five proposed
architectures in image-based AFib and AFlut classification.
We employed Setup 1, utilizing both CinC2021 and InCor-
DB for training, validation, and testing.

Similar to 1D-based classification, we implemented the
following strategies: (Setup 2) Training/validating/testing
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TABLE 2. Performance results of seven proposed architectures for 1D input data.

Architectures Acc AUROC F1 Spe Se
LiteVGG-11 77.91 (± 1.73) 87.17 (± 1.29) 76.59 (± 1.90) 71.69 (± 4.73) 86.53 (± 5.33)

LiteResNet-18 76.88 (± 1.61) 86.64 (± 0.77) 73.95 (± 2.76) 75.30 (± 6.66) 79.06 (± 8.33)

MobileNet 77.38 (± 6.67) 89.52 (± 0.78) 76.55 (± 4.74) 70.10 (± 16.97) 87.53 (± 12.25)

ResNet-50 61.51 (± 11.42) 76.81 (± 9.93) 64.35 (± 5.78) 46.73 (± 28.84) 82.07 (± 17.11)

VGG-16 66.49 (± 2.04) 71.07 (± 2.76) 59.73 (± 2.77) 71.48 (± 3.58) 59.51 (± 4.39)

DenseNet-121 75.90 (± 0.84) 84.46 (± 0.92) 71.78 (± 1.31) 77.69 (± 3.64) 73.39 (± 4.17)

EfficientNet-B2 52.49 (± 6.92) 54.27 (± 2.78) 28.48 (± 28.55) 59.28 (± 44.05) 43.30 (± 45.59)

TABLE 3. Performance results of seven proposed architectures for one-dimensional input data. Train = CinC2021 dataset. External Validation = InCor-DB dataset.

Test on CinC2021 dataset

Architectures Acc AUROC F1 Spe Se
LiteVGG-11 72.24 (± 2.13) 77.43 (± 1.38) 78.21 (± 2.95) 57.02 (± 7.39) 81.73 (± 7.25)

LiteResNet-18 70.15 (± 5.05) 75.85 (± 2.19) 75.98 (± 8.50) 53.49 (± 14.11) 80.64 (± 15.41)

MobileNet 71.01 (± 4.54) 76.49 (± 1.69) 78.44 (± 3.92) 45.58 (± 22.44) 86.90 (± 12.13)
ResNet-50 64.63 (± 9.51) 71.08 (± 3.71) 67.62 (± 22.32) 49.25 (± 26.80) 74.24 (± 29.69)

VGG-16 53.45 (± 9.89) 55.94 (± 4.73) 48.18 (± 31.63) 57.28 (± 30.64) 50.96 (± 34.33)

DenseNet-121 67.12 (± 1.38) 72.52 (± 1.29) 73.01 (± 2.20) 58.30 (± 5.75) 72.63 (± 5.36)

EfficientNet-B2 48.34 (± 10.84) 50.62 (± 2.02) 34.21 (± 34.65) 59.46 (± 45.51) 41.25 (± 45.96)

External Validation on InCor-DB dataset

Architectures Acc AUROC F1 Spe Se
LiteVGG-11 48.93 (± 10.59) 83.37 (± 3.67) 32.98 (± 4.20) 42.56 (± 12.79) 88.95 (± 4.66)

LiteResNet-18 45.25 (± 14.84) 86.03 (± 3.11) 32.92 (± 6.19) 37.80 (± 18.58) 92.02 (± 9.55)

MobileNet 38.04 (± 19.33) 74.13 (± 4.20) 29.09 (± 4.39) 30.16 (± 24.27) 87.50 (± 12.30)

ResNet-50 42.42 (± 25.60) 66.73 (± 8.37) 26.20 (± 9.99) 36.90 (± 33.70) 77.08 (± 28.61)

VGG-16 55.35 (± 22.09) 54.69 (± 3.11) 18.07 (± 11.87) 56.04 (± 31.05) 51.05 (± 34.61)

DenseNet-121 58.30 (± 6.89) 77.67 (± 2.59) 35.45 (± 3.41) 54.52 (± 8.28) 82.02 (± 3.01)

EfficientNet-B2 56.94 (± 33.60) 50.53 (± 1.29) 11.95 (± 10.38) 59.54 (± 46.38) 40.65 (± 46.62)

TABLE 4. Performance results of seven proposed architectures for one-dimensional input data. Train = InCor-DB dataset. External Validation = CinC2021 dataset.

Test on InCor-DB dataset

Architectures Acc AUROC F1 Spe Se
LiteVGG-11 95.50 (± 0.99) 98.33 (± 0.65) 84.77 (± 3.28) 96.07 (± 1.08) 91.70 (± 2.70)

LiteResNet-18 95.52 (± 1.10) 98.28 (± 0.64) 84.66 (± 4.19) 96.23 (± 1.58) 91.26 (± 3.61)

MobileNet 87.38 (± 11.42) 97.62 (± 1.03) 71.31 (± 14.94) 86.40 (± 14.02) 93.53 (± 4.79)

ResNet-50 82.93 (± 22.41) 96.86 (± 2.36) 69.01 (± 19.15) 81.84 (± 27.50) 88.87 (± 13.93)

VGG-16 83.88 (± 24.46) 82.12 (± 20.69) 56.70 (± 33.21) 87.72 (± 29.32) 64.64 (± 33.53)

DenseNet-121 93.87 (± 3.76) 97.07 (± 1.64) 80.80 (± 7.54) 94.76 (± 4.54) 88.29 (± 5.58)

EfficientNet-B2 69.69 (± 33.03) 73.58 (± 23.25) 48.56 (± 33.66) 69.47 (± 39.74) 72.08 (± 34.73)

External Validation on CinC2021 dataset

Architectures Acc AUROC F1 Spe Se
LiteVGG-11 47.56 (± 0.56) 55.90 (± 1.01) 31.09 (± 2.12) 92.78 (± 1.34) 19.27 (± 1.70)

LiteResNet-18 46.89 (± 0.85) 55.90 (± 0.65) 28.80 (± 3.44) 93.78 (± 2.15) 17.56 (± 2.70)

MobileNet 48.66 (± 2.88) 53.58 (± 1.66) 38.37 (± 12.07) 81.07 (± 16.31) 28.38 (± 14.83)

ResNet-50 49.18 (± 4.77) 55.98 (± 1.18) 37.95 (± 17.22) 78.57 (± 27.71) 30.80 (± 24.83)

VGG-16 45.40 (± 6.03) 54.11 (± 2.79) 24.21 (± 20.07) 86.28 (± 28.93) 19.82 (± 27.44)

DenseNet-121 47.68 (± 1.21) 57.04 (± 0.53) 31.57 (± 5.40) 92.07 (± 4.47) 19.91 (± 4.63)

EfficientNet-B2 49.16 (± 7.30) 52.68 (± 3.04) 38.59 (± 24.52) 67.61 (± 39.09) 37.61 (± 35.87)
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TABLE 5. Performance results of five proposed architectures for image input data.

Architectures Acc AUROC F1 Spe Se
MobileNet 54.94 (± 13.94) 76.02 (± 10.99) 64.16 (± 5.56) 27.64 (± 31.50) 92.96 (± 11.62)

ResNet-50 49.11 (± 9.51) 72.35 (± 10.15) 51.51 (± 19.18) 26.32 (± 40.88) 80.11 (± 37.90)

VGG16 46.45 (± 7.76) 50.0 (± 0.0) 41.16 (± 28.40) 30.0 (± 48.30) 70.0 (± 48.30)

DenseNet 48.0 (± 9.89) 64.20 (± 12.53) 45.65 (± 24.55) 29.80 (± 47.84) 72.76 (± 44.76)

EfficientNet-B2 75.20 (± 3.38) 85.50 (± 1.14) 71.59 (± 3.66) 74.76 (± 13.85) 75.74 (± 13.85)
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FIGURE 3. Performance results of LiteVGG-11 one-dimensional-based model
trained on InCor-DB dataset and with external validation on each individual
CinC2021 dataset.

exclusively with CinC2021, followed by external validation
with InCor-DB (Table 6); and the opposite (Setup 3) training
with InCor-DB, externally validating using CinC2021 (Table
7).

Figure 4 depicts accuracy results for our top-performing
image-based classification model, EfficientNet-B2. This
model was solely trained on InCor-DB and externally vali-
dated on individual CinC2021 datasets (Setup 4).
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FIGURE 4. Performance results of EfficientNet-B2 image-based model
trained on InCor-DB dataset and with external validation on each individual
CinC2021 dataset.

IV. DISCUSSION
In our current study, we employed different approaches
to evaluate the potential of CNN models in distinguishing

between AFib and AFlut. As far as we know, we are the
first to present an assessment of AFib and AFlut specific
discrimination using end-to-end CNNs, demonstrating the
feasibility of reasonably distinguishing these two diagnoses.

Our primary findings can be summarized as follows and
will be further discussed bellow: (1) When utilizing all
available databases (CinC2021 and InCor-DB), only models
based on 1D data achieved the capacity to discriminate
between AFib and AFlut, exhibiting reasonable performance;
(2) Models based on 2D data demonstrated poor perfor-
mance, with the exception of the EfficientNet-B2 model; (3)
Concerning the available datasets, models trained solely on
the CinC2021 databases struggle to differentiate the study
classes, resulting in metrics that closely resemble chance
levels. Conversely, models exclusively based on the InCor-
DB private dataset successfully separated the classes; (4)
We emphasize the significance of evaluating the separability
of classes within the study dataset before contemplating
the combination of AFib and AFlut exams into a single
class for further analysis. In our research, we observed
a clear differentiation between these two classes in the
InCor-DB dataset, but this was not evident in the case of
the CinC2021 databases; Additionally, (5) Concerning the
CinC2021 datasets, we advise exercising caution when using
the Ningbo dataset. Our results indicate that a majority of the
exams labeled as AFlut are predicted as AFib by our models.

A. MODELS BASED ON BOTH CINC2021 AND
INCOR-DB DATASET
In 1D models (Table 2), EfficientNet-B2 struggled to ad-
dress the problem, performing close to chance level, while
LiteVGG-11 had the best performance. Moreover, among
image-based models (Table 5), performance was generally
poor, except for EfficientNet-B2, which exhibited results
similar to 1D models.

Previous research aimed at distinguishing AFib and AFlut
using MIT-BIH datasets [28] that has limitations due to a lim-
ited number of subjects in long-term Holter recordings [12].
These recordings failed in representing arrhythmia diversity
compared to CinC2021 databases and the InCor-DB dataset,
which feature more subjects and exams.

B. MODELS BASED ON CINC2021 DATASET, WITH
EXTERNAL VALIDATION ON INCOR-DB DATASET
The results from the CinC2021 databases indicated that our
proposed image-based networks struggled to differentiate
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TABLE 6. Performance results of five proposed architectures for image input data. Train = CinC2021 dataset. External Validation = InCor-DB dataset.

Test on CinC2021 dataset

Architectures Acc AUROC F1 Spe Se
MobileNet 56.11 (± 11.53) 67.49 (± 12.28) 52.94 (± 31.86) 50.82 (± 45.52) 59.66 (± 42.85)

ResNet-50 52.13 (± 11.56) 68.60 (± 9.97) 43.22 (± 35.07) 55.27 (± 48.75) 50.45 (± 47.51)

VGG-16 52.25 (± 11.91) 50.0 (± 0.0) 45.68 (± 39.31) 40.0 (± 51.63) 60.0 (± 51.63)

DenseNet-121 51.0 (± 13.32) 65.02 (± 15.25) 37.50 (± 39.27) 60.81 (± 46.79) 44.91 (± 48.58)

EfficientNet-B2 63.42 (± 3.73) 65.08 (± 10.09) 74.88 (± 6.0) 18.31 (± 29.54) 91.85 (± 18.04)
External Validation on InCor-DB dataset

Architectures Acc AUROC F1 Spe Se
MobileNet 45.53 (± 32.33) 65.98 (± 20.96) 19.31 (± 13.19) 42.65 (± 43.18) 63.64 (± 46.31)

ResNet-50 52.15 (± 36.67) 65.88 (± 14.41) 21.29 (± 13.43) 51.72 (± 49.46) 54.90 (± 44.87)

VGG-16 42.74 (± 37.45) 50.0 (± 0.0) 14.49 (± 12.47) 40.0 (± 51.63) 60.0 (± 51.63)

DenseNet-121 52.58 (± 36.16) 61.18 (± 16.95) 11.99 (± 12.43) 53.61 (± 49.75) 46.12 (± 49.20)

EfficientNet-B2 20.84 (± 14.84) 68.79 (± 14.27) 25.53 (± 2.91) 8.77 (± 18.41) 96.63 (± 7.70)

TABLE 7. Performance results of five proposed architectures for image input data. Train = InCor-DB dataset. External Validation = CinC2021 dataset.

Test on InCor-DB dataset

Architectures Acc AUROC F1 Spe Se
MobileNet 91.19 (± 6.74) 97.71 (± 1.84) 74.92 (± 11.39) 91.57 (± 9.11) 87.54 (± 17.27)

ResNet-50 72.37 (± 32.93) 92.51 (± 15.03) 60.81 (± 24.52) 69.39 (± 39.36) 91.99 (± 14.96)

VGG-16 71.19 (± 31.06) 50.0 (± 0.0) 4.39 (± 9.27) 80.0 (± 42.16) 20.0 (± 42.16)

DenseNet-121 40.81 (± 35.60) 85.79 (± 19.38) 34.17 (± 25.11) 33.42 (± 87.86) 87.86 (± 30.17)

EfficientNet-B2 94.08 (± 2.59) 97.03 (± 2.41) 80.11 (± 8.57) 95.06 (± 3.46) 87.76 (± 11.09)
External Validation on CinC2021 dataset

Architectures Acc AUROC F1 Spe Se
MobileNet 82.66 (± 8.96) 84.96 (± 3.19) 46.97 (± 12.03) 85.71 (± 13.11) 61.58 (± 25.22)

ResNet-50 51.71 (± 5.52) 52.51 (± 5.87) 48.30 (± 19.72) 60.56 (± 39.63) 46.18 (± 33.05)

VGG-16 43.09 (± 9.71) 50.0 (± 0.0) 15.23 (± 32.11) 80.0 (± 42.16) 20.0 (± 42.16)

DenseNet-121 55.70 (± 8.45) 53.58 (± 13.65) 59.41 (± 27.17) 29.04 (± 42.42) 72.37 (± 40.12)

EfficientNet-B2 47.26 (± 2.06) 54.64 (± 2.94) 32.28 (± 8.62) 89.13 (± 7.40) 21.06 (± 7.10)

AFib from AFlut, with most evaluation metrics hovering
near chance level. Table 6 supports this assessment, partic-
ularly for the CinC2021 test set. Even the EfficientNet-B2
architecture, while showing better performance compared to
others, seemed to assign exams predominantly to one class,
as indicated by specificity and sensitivity metrics. In contrast,
our 1D-based models (Table 3) performed reasonably well,
particularly LiteVGG-11, LiteResNet-18, and MobileNet ar-
chitectures.

Upon analyzing data distribution across individual datasets
within the CinC2021 database, we observed that the imbal-
anced data can potentially be leading our models to learn
to differentiate datasets rather than addressing the primary
task of discriminating AFib and AFlut. As shown in Table
1, the CinC2021 database comprises 5,238 AFib exams and
8,373 AFlut exams. Given that a significant portion of AFlut
samples originate from the Ningbo First Hospital 12-lead
ECG dataset, it’s reasonable that our models are distinguish-
ing exams based on their origin rather than their underlying

arrhythmia type.

C. MODELS BASED ON INCOR-DB DATASET, WITH
EXTERNAL VALIDATION ON CINC2021 DATASET

When utilizing the InCor-DB private dataset (Tables 4 and
7), despite class imbalance, our models achieved outstand-
ing performance, with Acc and AUROC scores exceeding
90%. However, during external validation on the CinC2021
dataset, our models struggled to generalize. Given these
findings, it appears appropriate to merge AFib and AFlut
labeled exams in future ECG classification experiments us-
ing the CinC2021 databases, as our models’ performance
approaches chance level, contrasting with the clear discrim-
inability of the two classes in the InCor-DB dataset.

Considering the significant class imbalance, we evaluated
model performance based on F1-score, selecting MobileNet
for 1D models and EfficientNet-B2 for image-based models
as our top-performing models. These models were exclu-
sively trained on the InCor-DB dataset and validated exter-
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nally with each dataset from the CinC2021 databases. In
most cases, our trained models performed well, except for
the CPSC and Ningbo datasets (Table 4).

For the CPSC dataset, most exams were predicted as
AFib, which aligns with all exams being labeled as such.
However, regarding the Ningbo dataset, where AFlut is the
designated label for all exams, our model predominantly
predicted AFib for exams labeled as AFlut. This discrepancy
may be attributed to potential variations in diagnostic criteria
among cardiologists from different nations when distinguish-
ing AFib and AFlut. Conversely, diagnoses in the InCor-
DB dataset originated from cardiologists within the same
hospital, likely following consistent diagnostic criteria. In
the worst-case scenario, one might argue that exams in the
Ningbo dataset could be mislabeled or, more concerning,
misdiagnosed.

V. CONCLUSION
In this work we explored the potential of CNN models to
distinguish between AFib and AFlut based on ECG data.
Contrary to our initial expectations, our findings suggest
that one-dimensional models generally outperformed image-
based models in this discrimination task. This discrepancy
underscores the complexity of translating clinical intuition
into computational models and highlights the importance of
empirical validation in machine learning research. Specifi-
cally, our analysis demonstrated that 1D models exhibited su-
perior performance, particularly when trained on the InCor-
DB dataset. However, model performance decreased when
validated on CinC2021 dataset. Additionally, we emphasized
the importance of careful dataset selection and evaluation, as
well as consistency in exam labeling. While models trained
on InCor-DB achieved high accuracy, there were discrepan-
cies in model predictions for the Ningbo dataset, highlighting
the need for standardized diagnostic criteria. Our research
suggests that by overcoming these challenges, CNN models
can enhance arrhythmia diagnosis, benefiting healthcare and
clinical outcomes.
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